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The late Ven Te Chow was a professor in the Civil Engineering Department of
the University of Illinois at Urbana-Champaign from 1951 to 1981. He gained
international prominence as a scholar, educator, and diplomat in hydrology,
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instructor and professor, then went to Pennsylvania State University from which
he received his M.S. degree in 1948 and the University of Illinois where he
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age of 27 on the theory of structures (in Chinese). He authored Open-Channel
Hydraulics in 1959 and was editor-in-chief of the Handbook of Applied Hydrology
in 1964; both books are still considered standard reference works. He was active
in professional societies, especially the International Water Resources Association
of which he was a principal founder and the first President.
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to that time he taught at Texas A & M University and carried out hydrology
research at the International Institute for Applied Systems Analysis in Vienna,
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obtained his bachelor's degree from the University of Canterbury, Christchurch
New Zealand, and his M.S. and Ph.D degrees from the University of Illinois
at Urbana-Champaign. Dr. Maidment serves as a consultant in hydrology to
government and industry and is an associate editor of the Hydrological Sciences
Journal.
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B.S. (1970) and M.S. (1971) degrees from the University of Missouri at Rolla,
after which he served in the U.S. Army stationed at the Lawrence Livermore
Laboratory in California. Dr. Mays has been very active in research and teach-
ing at the University of Texas in the areas of hydrology, hydraulics, and water
resource systems analysis. In addition he has served as a consultant in these areas
to various government agencies and industries including the U.S. Army Corps of
Engineers, the Attorney General's Office of Texas, the United Nations, NATO,
the World Bank, and the Government of Taiwan. He is a registered engineer
in seven states and has been active in committees with the American Society of
Civil Engineers and other professional organizations.



Applied Hydrology is a textbook for upper level undergraduate and graduate
courses in hydrology and is a reference for practicing hydrologists. Surface water
hydrology is the focus of the book which is presented in three sections: Hydrologic
Processes, Hydrologic Analysis, and Hydrologic Design.

Hydrologic processes are covered in Chapters 1 to 6, which describe the
scientific principles governing hydrologic phenomena. The hydrologic system is
visualized as a generalized control volume, and the Reynold's Transport Theorem
(or general control volume equation) from fluid mechanics is used to apply the
physical laws governing mass, momentum, and energy to the flow of atmospheric
water, subsurface water, and surface water. This section is completed by a chapter
on hydrologic measurement.

Hydrologic analysis is treated in the next six chapters (7 to 12), which
emphasize computational methods in hydrology for specific tasks such as rainfall-
runoff modeling, flow routing, and analysis of extreme events. These chapters
are organized in a sequence according to the way the analysis treats the space and
time variability and the randomness of the hydrologic system behavior. Special
attention is given in Chapters 9 and 10 to the subject of flow routing by the
dynamic wave method where the recent availability of standardized computer
programs has made possible the general application of this method.

Hydrologic design is presented in the final three chapters (13 to 15), which
focus on the risks inherent in hydrologic design, the selection of design storms
including probable maximum precipitation, and the calculation of design flows
for various problems including the design of storm sewers, flood control works,
and water supply reservoirs.

How is Applied Hydrology different from other available books in this field?
First, this is a book with a general coverage of surface water hydrology. There
are a number of recently published books in special fields such as evaporation,
statistical hydrology, hydrologic modelling, and stormwater hydrology. Although
this book covers these subjects, it emphasizes a sound foundation for the subject
of hydrology as a whole. Second, Applied Hydrology is organized around a
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central theme of using the hydrologic system or control volume as a framework
for analysis in order to unify the subject of hydrology so that its various analytical
methods are seen as different views of hydrologic system operation rather than as
separate and unrelated topics. Third, we believe that the reader learns by doing,
so 90 example problems are solved in the text and 400 additional problems are
presented at the end of chapters for homework or self-study. In some cases,
theoretical developments too extensive for inclusion in the text are presented as
problems at the end of the chapter so that by solving these problems the reader
can play a part in the development of the subject. Some of the problems are
intended for solution by using a spreadsheet program, by developing a computer
code, or by use of standard hydrologic simulation programs.

This book is used for three courses at the University of Texas at Austin:
an undergraduate and a graduate course in surface water hydrology, and an
undergraduate course in hydrologic design. At the undergraduate level a selection
of topics is presented from throughout the book, with the hydrologic design course
focusing on the analysis and design chapters. At the graduate level, the chapters
on hydrologic processes and analysis are emphasized. There are conceivably
many different courses that could be taught from the book at the undergraduate
or graduate levels, with titles such as surface water hydrology, hydrologic design,
urban hydrology, physical hydrology, computational hydrology, etc.

Any hydrology book reflects a personal perception of the subject evolved by
its authors over many years of teaching, research, and professional experience.
And Applied Hydrology is our view of the subject. We have aimed at making
it rigorous, unified, numerical, and practical. We believe that the analytical
approach adopted will be sufficiently sound so that as new knowledge of the field
becomes available it can be built upon the basis established here. Hydrologic
events such as floods and droughts have a significant impact on public welfare,
and a corresponding responsibility rests upon the hydrologist to provide the best
information that current knowledge and available data will permit. This book
is intended to be a contribution toward the eventual goal of better hydrologic
practice.

A special word is appropriate concerning the development of this book. The
work was initiated many years ago by Professor Ven Te Chow of the University of
Illinois Urbana-Champaign, who developed a considerable volume of manuscript
for some of the chapters. Following his death in 1981, his wife, Lora, asked
us to carry this work to completion. We both obtained our graduate degrees at
the University of Illinois Urbana-Champaign and shared the hydrologic system
perspective which Ven Te Chow was so instrumental in fostering during his
lifetime. During the years required for us to write this book, it occurred, perhaps
inevitably, that we had to start almost from the beginning again so that the
resulting work would be consistent and complete. As we used the text in teaching
our hydrology courses at the University of Texas at Austin, we gradually evolved
the concepts to the point they are presented here. We believe we have retained
the concept which animated Ven Te Chow's original work on the subject.
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CHAPTER

i
INTRODUCTION

Water is the most abundant substance on earth, the principal constituent of all
living things, and a major force constantly shaping the surface of the earth. It is
also a key factor in air-conditioning the earth for human existence and in influenc-
ing the progress of civilization. Hydrology, which treats all phases of the earth's
water, is a subject of great importance for people and their environment. Practical
applications of hydrology are found in such tasks as the design and operation of
hydraulic structures, water supply, wastewater treatment and disposal, irrigation,
drainage, hydropower generation, flood control, navigation, erosion and sediment
control, salinity control, pollution abatement, recreational use of water, and fish
and wildlife protection. The role of applied hydrology is to help analyze the
problems involved in these tasks and to provide guidance for the planning and
management of water resources.

The hydrosciences deal with the waters of the earth: their distribution and
circulation, their physical and chemical properties, and their interaction with the
environment, including interaction with living things and, in particular, human
beings. Hydrology may be considered to encompass all the hydrosciences, or
defined more strictly as the study of the hydrologic cycle, that is, the endless
circulation of water between the earth and its atmosphere. Hydrologic knowledge
is applied to the use and control of water resources on the land areas of the earth;
ocean waters are the domain of ocean engineering and the marine sciences.

Changes in the distribution, circulation, or temperature of the earth's waters
can have far-reaching effects; the ice ages, for instance, were a manifestation of
such effects. Changes may be caused by human activities. People till the soil,
irrigate crops, fertilize land, clear forests, pump groundwater, build dams, dump
wastes into rivers and lakes, and do many other constructive or destructive things
that affect the circulation and quality of water in nature.



1.1 HYDROLOGIC CYCLE
Water on earth exists in a space called the hydrosphere which extends about
15 km up into the atmosphere and about 1 km down into the lithosphere, the
crust of the earth. Water circulates in the hydrosphere through the maze of paths
constituting the hydrologic cycle.

The hydrologic cycle is the central focus of hydrology. The cycle has no
beginning or end, and its many processes occur continuously. As shown schemat-
ically in Fig. 1.1.1, water evaporates from the oceans and the land surface to
become part of the atmosphere; water vapor is transported and lifted in the atmo-
sphere until it condenses and precipitates on the land or the oceans; precipitated
water may be intercepted by vegetation, become overland flow over the ground
surface, infiltrate into the ground, flow through the soil as subsurface flow, and
discharge into streams as surface runoff. Much of the intercepted water and sur-
face runoff returns to the atmosphere through evaporation. The infiltrated water
may percolate deeper to recharge groundwater, later emerging in springs or seep-
ing into streams to form surface runoff, and finally flowing out to the sea or
evaporating into the atmosphere as the hydrologic cycle continues.

Estimating the total amount of water on the earth and in the various processes
of the hydrologic cycle has been a topic of scientific exploration since the second
half of the nineteenth century. However, quantitative data are scarce, particularly
over the oceans, and so the amounts of water in the various components of the
global hydrologic cycle are still not known precisely.

Table 1.1.1 lists estimated quantities of water in various forms on the earth.
About 96.5 percent of all the earth's water is in the oceans. If the earth were a
uniform sphere, this quantity would be sufficient to cover it to a depth of about
2.6 km (1.6 mi). Of the remainder, 1.7 percent is in the polar ice, 1.7 percent in
groundwater and only 0.1 percent in the surface and atmospheric water systems.
The atmospheric water system, the driving force of surface water hydrology,
contains only 12,900 km3 of water, or less than one part in 100,000 of all the
earth's water.

Of the earth's fresh water, about two-thirds is polar ice and most of the
remainder is groundwater going down to a depth of 200 to 600 m. Most ground-
water is saline below this depth. Only 0.006 percent of fresh water is contained
in rivers. Biological water, fixed in the tissues of plants and animals, makes up
about 0.003 percent of all fresh water, equivalent to half the volume contained
in rivers.

Although the water content of the surface and atmospheric water systems is
relatively small at any given moment, immense quantities of water annually pass
through them. The global annual water balance is shown in Table 1.1.2; Fig. 1.1.1
shows the major components in units relative to an annual land precipitation
volume of 100. It can be seen that evaporation from the land surface consumes
61 percent of this precipitation, the remaining 39 percent forming runoff to the
oceans, mostly as surface water. Evaporation from the oceans contributes nearly
90 percent of atmospheric moisture. Analysis of the flow and storage of water in
the global water balance provides some insight into the dynamics of the hydrologic
cycle.



FIGURE 1.1.1

Hydrologic cycle with global annual average water balance given in units relative to a value of 100 for the rate of precipitation on land.
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TABLE 1.1.1
Estimated world water quantities

Item Area Volume Percent of Percent of
(106 km2) (km3) total water fresh water

Oceans 361.3 1,338,000,000 96.5

Groundwater

Fresh 134.8 10,530,000 0.76 30.1

Saline 134.8 12,870,000 0.93

Soil Moisture 82.0 16,500 0.0012 0.05

Polar ice 16.0 24,023,500 1.7 68.6

Other ice and snow 0.3 340,600 0.025 1.0

Lakes

Fresh 1.2 91,000 0.007 0.26

Saline 0.8 85,400 0.006

Marshes 2.7 11,470 0.0008 0.03

Rivers 148.8 2,120 0.0002 0.006

Biological water 510.0 1,120 0.0001 0.003

Atmospheric water 510.0 12,900 0.001 0.04

Total water 510.0 1,385,984,610 100

Freshwater 148.8 35,029,210 2.5 100

Table from World Water Balance and Water Resources of the Earth, Copyright, UNESCO, 1978.

Example 1.1.1. Estimate the residence time of global atmospheric moisture.

Solution. The residence time Tr is the average duration for a water molecule to
pass through a subsystem of the hydrologic cycle. It is calculated by dividing the
volume of water S in storage by the flow rate Q.

Tr= "^- (1.1.1)

The volume of atmospheric moisture (Table 1.1.1) is 12,900 km3. The flow rate of
moisture from the atmosphere as precipitation (Table 1.1.2) is 458,000 + 119,000
= 577,000 km3/yr, so the average residence time for moisture in the atmosphere
is Tr = 12,900/577,000 = 0.022 yr = 8.2 days. The very short residence time
for moisture in the atmosphere is one reason why weather cannot be forecast
accurately more than a few days ahead. Residence times for other components of
the hydrologic cycle are similarly computed. These values are averages of quantities
that may exhibit considerable spatial variation.

Although the concept of the hydrologic cycle is simple, the phenomenon is enor-
mously complex and intricate. It is not just one large cycle but rather is composed
of many interrelated cycles of continental, regional, and local extent. Although
the total volume of water in the global hydrologic cycle remains essentially



TABLE 1.1.2

Global annual water balance

Ocean Land

Area (km2) 361,300,000 148,800,000

Precipitation (km3/yr) 458,000 119,000
(mm/yr) 1270 800

(in/yr) 50 31
Evaporation (km3/yr) 505,000 72,000

(mm/yr) 1400 484
(in/yr) 55 19

Runoff to ocean
Rivers (km3/yr) _ 44,700
Groundwater (km3/yr) _ 2200
Total runoff (km3/yr) _ 47,000

(mm/yr) _ 316
(in/yr) _ 12

Table from World Water Balance and Water Resources of the Earth, Copyright,
UNESCO, 1978

constant, the distribution of this water is continually changing on continents, in
regions, and within local drainage basins.

The hydrology of a region is determined by its weather patterns and by
physical factors such as topography, geology and vegetation. Also, as civiliza-
tion progresses, human activities gradually encroach on the natural water envi-
ronment, altering the dynamic equilibrium of the hydrologic cycle and initiating
new processes and events. For example, it has been theorized that because of
the burning of fossil fuels, the amount of carbon dioxide in the atmosphere is
increasing. This could result in a warming of the earth and have far-reaching
effects on global hydrology.

1.2 SYSTEMS CONCEPT

Hydrologic phenomena are extremely complex, and may never be fully under-
stood. However, in the absence of perfect knowledge, they may be represented
in a simplified way by means of the systems concept. A system is a set of
connected parts that form a whole. The hydrologic cycle may be treated as a
system whose components are precipitation, evaporation, runoff, and other phases
of the hydrologic cycle. These components can be grouped into subsystems of
the overall cycle; to analyze the total system, the simpler subsystems can be
treated separately and the results combined according to the interactions between
the subsystems.

In Fig. 1.2.1, the global hydrologie cycle is represented as a system. The
dashed lines divide it into three subsyterns: the atmospheric water system contain-
ing the processes of precipitation, evaporation, interception, and transpiration; the
surface water system containing the processes of overland flow, surface runoff,
subsurface and groundwater outflow, and runoff to streams and the ocean; and



the subsurface water system containing the processes of infiltration, groundwater
recharge, subsurface flow and groundwater flow. Subsurface flow takes place in
the soil near the land surface; groundwater flow occurs deeper in the soil or rock
strata.

For most practical problems, only a few processes of the hydrologic cycle
are considered at a time, and then only considering a small portion of the earth's
surface. A more restricted system definition than the global hydrologic system is
appropriate for such treatment, and is developed from a concept of the control
volume. In fluid mechanics, the application of the basic principles of mass,
momentum, and energy to a fluid flow system is accomplished by using a control
volume, a reference frame drawn in three dimensions through which the fluid
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FIGURE 1.2.1
Block-diagram representation of the global hydrologic system.
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flows. The control volume provides the framework for applying the laws of
conservation of mass and energy and Newton's second law to obtain practical
equations of motion. In developing these equations, it is not necessary to know
the precise flow pattern inside the control volume. What must be known are the
properties of the fluid flow at the control surface, the boundary of the control
volume. The fluid inside the control volume is treated as a mass, which may
be represented as being concentrated at one point in space when considering the
action of external forces such as gravity.

By analogy, a hydrologic system is defined as a structure or volume in
space, surrounded by a boundary, that accepts water and other inputs, operates
on them internally, and produces them as outputs (Fig. 1.2.2). The structure (for
surface or subsurface flow) or volume in space (for atmospheric moisture flow) is
the totality of the flow paths through which the water may pass as throughput from
the point it enters the system to the point it leaves. The boundary is a continuous
surface defined in three dimensions enclosing the volume or structure. A working
medium enters the system as input, interacts with the structure and other media,
and leaves as output. Physical, chemical, and biological processes operate on the
working media within the system; the most common working media involved in
hydrologic analysis are water, air, and heat energy.

The procedure of developing working equations and models of hydrologic
phenomena is similar to that in fluid mechanics. In hydrology, however, there is
generally a greater degree of approximation in applying physical laws because the
systems are larger and more complex, and may involve several working media.
Also, most hydrologic systems are inherently random because their major input
is precipitation, a highly variable and unpredictable phenomenon. Consequently,
statistical analysis plays a large role in hydrologic analysis.

Example 1.2.1. Represent the storm rainfall-runoff process on a watershed as a
hydrologic system.

Solution. A watershed is the area of land draining into a stream at a given location.
The watershed divide is a line dividing land whose drainage flows toward the given
stream from land whose drainage flows away from that stream. The system boundary
is drawn around the watershed by projecting the watershed divide vertically upwards
and downwards to horizontal planes at the top and bottom (Fig. 1.2.3). Rainfall
is the input, distributed in space over the upper plane; streamflow is the output,
concentrated in space at the watershed outlet. Evaporation and subsurface flow could
also be considered as outputs, but they are small compared with streamflow during
a storm. The structure of the system is the set of flow paths over or through the soil
and includes the tributary streams which eventually merge to become streamflow at
the watershed outlet.

FIGURE 1.2.2
Schematic representation of system operation.
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FIGURE 1.2.3
The watershed as a hydrologic system.

If the surface and soil of a watershed are examined in great detail, the num-
ber of possible flow paths becomes enormous. Along any path, the shape, slope,
and boundary roughness may be changing continuously from place to place and
these factors may also vary in time as the soil becomes wet. Also, precipitation
varies randomly in space and time. Because of these great complications, it is not
possible to describe some hydrologic processes with exact physical laws. By using
the system concept, effort is directed to the construction of a model relating inputs
and outputs rather than to the extremely difficult task of exact representation of
the system details, which may not be significant from a practical point of view
or may not be known. Nevertheless, knowledge of the physical system helps in
developing a good model and verifying its accuracy.

1.3 HYDROLOGIC SYSTEM MODEL

The objective of hydrologic system analysis is to study the system operation
and predict its output. A hydrologic system model is an approximation of the
actual system; its inputs and outputs are measurable hydrologic variables and its
structure is a set of equations linking the inputs and outputs. Central to the model
structure is the concept of a system transformation.

Let the input and output be expressed as functions of time, I(t) and Q(t)
respectively, for t belonging to the time range T under consideration. The system
performs a transformation of the input into the output represented by

Q(t) = ni(t) (1.3.1)

which is called the transformation equation of the system. The symbol O is a
transfer function between the input and the output. If this relationship can be ex-
pressed by an algebraic equation, then ft is an algebraic operator. For example, if

Streamflow0(t)

System boundaryWatershed surface

Precipitation / (t)

Watershed
divide



G(O = CHf) (1.3.2)

where C is a constant, then the transfer function is the operator

n = ^ = C (1.3.3)

If the transformation is described by a differential equation, then the transfer
function serves as a differential operator. For example, a linear reservoir has its
storage S related to its outflow Q by

5 = JtG (1-3.4)

where k is a constant having the dimensions of time. By continuity, the time rate
of change of storage dS/dt is equal to the difference between the input and the
output

ff = / ( O - G ( O (1.3.5)

Eliminating S between the two equations and rearranging,

* ? + GW = /(r) (L3'6)
so

«-$-TTS
where D is the differential operator dldt. If the transformation equation has been
determined and can be solved, it yields the output as a function of the input.
Equation (1.3.7) describes a linear system if k is a constant. If k is a function
of the input / or the output Q then (1.3.7) describes a nonlinear system which is
much more difficult to solve.

1.4 HYDROLOGIC MODEL CLASSIFICATION

Hydrologic models may be divided into two categories: physical models and
abstract models. Physical models include scale models which represent the system
on a reduced scale, such as a hydraulic model of a dam spillway; and analog
models, which use another physical system having properties similar to those of
the prototype. For example, the Hele-Shaw model is an analog model that uses
the movement of a viscous fluid between two closely spaced parallel plates to
model seepage in an aquifer or embankment.

Abstract models represent the system in mathematical form. The system
operation is described by a set of equations linking the input and the output
variables. These variables may be functions of space and time, and they may also
be probabilistic or random variables which do not have a fixed value at a particular



point in space and time but instead are described by probability distributions. For
example, tomorrow's rainfall at a particular location cannot be forecast exactly
but the probability that there will be some rain can be estimated. The most general
representation of such variables is a random field, a region of space and time
within which the value of a variable at each point is defined by a probability
distribution (Vanmarcke, 1983). For example, the precipitation intensity in a
thunderstorm varies rapidly in time, and from one location to another, and cannot
be predicted accurately, so it is reasonable to represent it by a random field.

Trying to develop a model with random variables that depend on all three
space dimensions and time is a formidable task, and for most practical purposes
it is necessary to simplify the model by neglecting some sources of variation.
Hydrologic models may be classified by the ways in which this simplification is
accomplished. Three basic decisions to be made for a model are: Will the model
variables be random or not? Will they vary or be uniform in space? Will they
vary or be constant in time? The model may be located in a "tree" according to
these choices, as shown in Fig. 1.4.1.

A deterministic model does not consider randomness; a given input always
produces the same output. A stochastic model has outputs that are at least par-
tially random. One might say that deterministic models make forecasts while
stochastic models make predictions. Although all hydrologic phenomena involve
some randomness, the resulting variability in the output may be quite small when
compared to the variability resulting from known factors. In such cases, a deter-
ministic model is appropriate. If the random variation is large, a stochastic model
is more suitable, because the actual output could be quite different from the sin-
gle value a deterministic model would produce. For example, reasonably good
deterministic models of daily evaporation at a given location can be developed
using energy supply and vapor transport data, but such data cannot be used to
make reliable models of daily precipitation at that location because precipitation
is largely random. Consequently, most daily precipitation models are stochastic.

At the middle level of the tree in Fig. 1.4.1, the treatment of spatial varia-
tion is decided. Hydrologic phenomena vary in all three space dimensions, but
explicitly accounting for all of this variation may make the model too cumber-
some for practical application. In a deterministic lumped model, the system is
spatially averaged, or regarded as a single point in space without dimensions. For
example, many models of the rainfall-runoff process shown in Fig. 1.2.3 treat the
precipitation input as uniform over the watershed and ignore the internal spatial
variation of watershed flow. In contrast, a deterministic distributed model con-
siders the hydrologic processes taking place at various points in space and defines
the model variables as functions of the space dimensions. Stochastic models are
classified as space-independent or space-correlated according to whether or not
random variables at different points in space influence each other.

At the third level of the tree, time variability is considered. Deterministic
models are classified as steady-flow (the flow rate not changing with time) or
unsteady-flow models. Stochastic models always have outputs that are variable
in time. They may be classified as time-independent or time-correlated; a time-



FIGURE 1.4.1

Classification of hydrologic models according to the way they treat the randomness and space and time variability of hydrologic phenomena.
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independent model represents a sequence of hydrologic events that do not influ-
ence each other, while a time-correlated model represents a sequence in which
the next event is partially influenced by the current one and possibly by others in
the sequence.

All hydrologic models are approximations of reality, so the output of the
actual system can never be forecast with certainty; likewise, hydrologic phenom-
ena vary in all three space dimensions, and in time, but the simultaneous consid-
eration of all five sources of variation (randomness, three space dimensions, and
time) has been accomplished for only a few idealized cases. A practical model
usually considers only one or two sources of variation.

Of the eight possible hydrologic model types shown along the bottom line
of Fig. 1.4.1, four are considered in detail in this book. In Fig. 1.4.2, a section of
a river channel is used to illustrate these four cases and the differences between
them. On the right of the figure is a space-time domain in which space, or distance
along the channel, is shown on the horizontal axis and time on the vertical axis
for each of the four cases.

The simplest case, (a), is a deterministic lumped steady-flow model. The
inflow and outflow are equal and constant in time, as shown by the equally sized
dots on the lines at x = 0 and x = L. Many of the equations in the first six chapters
of this book are of this type (see Ex. 1.1.1, for example). The next case, (ft), is a
deterministic lumped unsteady-flow model. The inflow I(t) and outflow Q(t) are
now allowed to vary in time, as shown by the varying sized dots at x = 0 and x = L.
A lumped model does not illuminate the variation in space between the ends of
the channel section so no dots are shown there. The lumped model representation
is used in Chaps. 7 and 8 to describe the conversion of storm rainfall into runoff
and the passage of the resulting flow through reservoirs and river channels. The
third case, (c), is a deterministic distributed unsteady-flow model; here, variation
along the space axis is also shown and the flow rate calculated for a mesh of points
in space and time. Chapters 9 and 10 use this method to obtain a more accurate
model of channel flow than is possible with a lumped model. Finally, in case
(J), randomness is introduced. The system output is shown not as a single-valued
dot, but as a distribution assigning a probability of occurrence to each possible
value of the variable. This is a stochastic space-independent time-independent
model where the probability distribution is the same at every point in the space-
time plane and values at one point do not influence values elsewhere. This type
of model is used in Chaps. 11 and 12 to describe extreme hydrologic events such
as annual maximum rainfalls and floods. In the last three chapters, 13 to 15, the
models developed using these methods are employed for hydrologic design.

1.5 THE DEVELOPMENT OF HYDROLOGY

The science of hydrology began with the concept of the hydrologic cycle. From
ancient times, many have speculated about the circulation of water, including
the poet Homer (about 1000 B.C.), and philosophers Thales, Plato, and Aristotle
in Greece; Lucretius, Seneca, and Pliny in Rome; and many medieval schol-
ars. Much of this speculation was scientifically unsound; however, the Greek



(d) Stochastic space-independent time-independent model.

FIGURE 1.4.2
The four types of hydrologic models used in this book are illustrated here by flow in a channel. For
the three deterministic models (a) to (c), the size of the dots indicates the magnitude of the flow,
the change of inflow and outflow with time being shown on the vertical lines at x = 0 and x = L,
respectively. For the stochastic system (J), the flow is represented by a probability distribution that
is shown only at x = L because the model is independent in space.
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philosopher Anaxagoras of Clazomenae (50CM-28 B.C.) formed a primitive version
of the hydrologic cycle. He believed that the sun lifted water from the sea into
the atmosphere, from which it fell as rain, and that rainwater was then collected
in underground reservoirs, which fed the river flows. An improvement of this
theory was made by another Greek philosopher, Theophrastus (c. 372-287 B.C.),
who correctly described the hydrologic cycle in the atmosphere; he gave a sound
explanation of the formation of precipitation by condensation and freezing. After
studying the works of Theophrastus, the Roman architect and engineer Marcus
Vitruvius, who lived about the time of Christ, conceived the theory that is
now generally accepted: he extended Theophrastus' explanation, claiming that
groundwater was largely derived from rain and snow through infiltration from the
ground surface. This may be considered a forerunner of the modern version of
the hydrologic cycle.

Independent thinking occurred in ancient Asian civilizations (UNESCO,
1974). The Chinese recorded observations of rain, sleet, snow, and wind on An-
yang oracle bones as early as 1200 B.C. They probably used rain gages around
1000 B.C., and established systematic rain gaging about 200 B.C. In India, the first
quantitative measurements of rainfall date back to the latter part of the fourth
century B.C. The concept of a dynamic hydrologic cycle may have arisen in China
by 900 B.C.,1 in India by 400 B.C.,2 and in Persia by the tenth century,3 but these
ideas had little impact on Western thought.

During the Renaissance, a gradual change occurred from purely philosoph-
ical concepts of hydrology toward observational science. Leonardo da Vinci
(1452-1519) made the first systematic studies of velocity distribution in streams,
using a weighted rod held afloat by an inflated animal bladder. The rod would
be released at a point in the stream, and Leonardo would walk along the bank
marking its progress with an odometer (Fig. 1.5.1) and judging the difference
between the surface and bottom velocities by the angle of the rod. By releasing
the rod at different points in the stream's cross section, Leonardo traced the

1 In the volume "Minor Folksongs" of the "Book of Odes" (anonymous, 900-500 B.C.) is written:
"Rain and snow are interchangeable and becoming sleet through first (fast) condensation." Also, Fan
Li (400 B.C., Chi Ni tzu or "The Book of Master Chi Ni") said: "...the wind (containing moisture)
is ch'i (moving force or energy) in the sky, and the rain is ch'i of the ground. Wind blows according
to the time of the year and rain falls due to the wind (by condensation). We can say that the ch'i in
the sky moves downwards (by precipitation) while the ch'i of the ground moves upwards (through
evaporation)."
2 Upanisads, dating from as early as 400 B.C. (Micropaedia, Vol. X, The New Encyclopaedia
Britannica, p. 283, 1974), translated from Sanskrit to English by Swami Prabhavananda and Frederick
Manchester, Mentor Books, No. MQ921, p. 69. In this work is written: "The rivers in the east flow
eastwards, the rivers in the west flow westward, and all enter into the sea. From sea to sea they
pass, the clouds lifting them to the sky as vapor and sending them down as rain."
3 Karaji, M., "Extraction of Hidden Water", ca. 1016 A.D., translated from Arabic to Persian by
H. Khadiv-Djam, Iranian Culture Foundation, Tehran, Iran. In this work is written: "Springs come
from waters hidden inside the earth while waters on the ground surface from rains and snows ...
and rain and snowmelt percolate the earth while only excess waters run off into the sea...."



(a) (b)

FIGURE 1.5.1
Leonardo da Vinci measured the velocity distribution across a stream section by repeated experiments
of the type shown in (a). He would release a weighted rod (b) held afloat by an inflated bladder
and follow its progress downstream, measuring distance with the odometer and time by rhythmic
chanting. (Source: Frazier, 1974, Figs. 6 and 7. Used with permission.)

velocity distribution across the channel. According to Frazier (1974), the 8000
existing pages of Leonardo's notes contain more entries concerning hydraulics
than about any other subject. Concerning the velocity distribution in streams, he
wrote, "Of water of uniform weight, depth, breadth and declivity [slope], that
portion is swifter which is nearest to the surface; and this occurs because the
water that is uppermost is contiguous to the air, which offers but little resistance
through its being lighter than water; the water that is below is contiguous to the
earth, which offers great resistance through being immovable and heavier than
water" (MacCurdy, 1939). Prior to Leonardo, it was thought that water flowed
more rapidly at the bottom of a stream, because if two holes were pierced in a
wall holding back a body of water, the flow from the lower hole was more rapid
than the flow from the upper one.

The French Huguenot scientist Bernard Rilissy (1510-1589) showed that
rivers and springs originate from rainfall, thus refuting an age-old theory that
streams were supplied directly by the sea. The French naturalist Pierre Perrault
(1608-1680) measured runoff and found it to be only a fraction of rainfall.

Brick

Rod

Bladder



He recognized that rainfall is a source for runoff and correctly concluded that
the remainder of the precipitation was lost by transpiration, evaporation, and
diversion.

Hydraulic measurements and experiments flourished during the eighteenth
century. New hydraulic principles were discovered such as the Bernoulli equa-
tion and Chezy's formula, and better instruments were developed, including
the tipping bucket rain gage and the current meter. Hydrology advanced more
rapidly during the nineteenth century. Dalton established a principle for evapora-
tion (1802), the theory of capillary flow was described by the Hagen-Poiseuille
equation (1839), and the rational method for determining peak flood flows was
proposed by Mulvaney (1850). Darcy developed his law of porous media flow
(1856), Rippl presented his diagram for determining storage requirements (1883),
and Manning proposed his open-channel flow formula (1891).

However, quantitative hydrology was still immature at the beginning of
the twentieth century. Empirical approaches were employed to solve practical
hydrological problems. Gradually hydrologists replaced empiricism with rational
analysis of observed data. Green and Ampt (1911) developed a physically based
model for infiltration, Hazen (1914) introduced frequency analysis of flood peaks
and water storage requirements, Richards (1931) derived the governing equation
for unsaturated flow, Sherman devised the unit hydrograph method to transform
effective rainfall to direct runoff (1932), Horton developed infiltration theory
(1933) and a description of drainage basin form (1945), Gumbel proposed the
extreme value law for hydrologic studies (1941), and Hurst (1951) demonstrated
that hydrologic observations may exhibit sequences of low or high values that
persist over many years.

Like many sciences, hydrology was recognized only recently as a separate
discipline. About 1965, the United States Civil Service Commission recognized
hydrologist as a job classification. The "hydrology series" of positions in the
Commission list of occupations was described as follows:

This series includes professional scientific positions that have as their objective the
study of the interrelationship and reaction between water and its environment in
the hydrologic cycle. These positions have the functions of investigation, analysis,
and interpretation of the phenomena of occurrence, circulation, distribution, and
quality of water in the Earth's atmosphere, on the Earth's surface, and in the
soil and rock strata. Such work requires the application of basic principles drawn
from and supplemented by fields such as meteorology, geology, soil science, plant
physiology, hydraulics, and higher mathematics.

The advent of the computer revolutionized hydrology and made hydrologic anal-
ysis possible on a larger scale. Complex theories describing hydrologic processes
are now applied using computer simulations, and vast quantities of observed data
are reduced to summary statistics for better understanding of hydrologic phenom-
ena and for establishing hydrologic design levels. More recently, developments in
electronics and data transmission have made possible instantaneous data retrieval
from remote recorders and the development of "real-time" programs for forecast-
ing floods and other water operations. Microcomputers and spreadsheet programs



now provide many hydrologists with new computational convenience and power.
The evolution of hydrologic knowledge and methods brings about continual
improvement in the scope and accuracy of solutions to hydrologic problems.

Hydrologic problems directly affect the life and activities of large numbers
of people. An element of risk is always present — a more extreme event than
any historically known can occur at any time. A corresponding responsibility rests
upon the hydrologist to provide the best analysis that knowledge and data will
permit.
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PROBLEMS

1.1.1. Assuming that all the water in the oceans is involved in the hydrologic cycle,
calculate the average residence time of ocean water.

1.1.2. Assuming that all surface runoff to the oceans comes from rivers, calculate the
average residence time of water in rivers.



1.1.3. Assuming that all groundwater runoff to the oceans comes from fresh groundwater,
calculate the average residence time of this water.

1.1.4. The world population in 1980 has been estimated at about 4.5 billion. The annual
population increase during the preceding decade was about 2 percent. At this rate
of population growth, predict the year when there will be a shortage of fresh-water
resources if everyone in the world enjoyed the present highest living standard, for
which fresh-water use is about 6.8 m3/day (1800 gal/day) per capita including
public water supplies and water withdrawn for irrigation and industry. Assume
that 47,000 km3 of surface and subsurface runoff is available for use annually.

1.1.5. Calculate the global average precipitation and evaporation (cm/yr).
1.1.6. Calculate the global average precipitation and evaporation (in/yr).
1.2.1. Take three hydrologic systems with which you are familiar. For each, draw the

system boundary and identify the inputs, outputs, and working media.
1.3.1. The equation k{dQldt) + Q(i) = I(t) has been used to describe the gradual depletion

of flow in a river during a rainless period. In this case, I(t) = 0 and Q(t) = Q0 for
t = 0. Solve the differential equation for Q(i) for t > 0 and plot the result over a
20-day period if k = 10 days and Q0= 100 cfs.

1.3.2. The equation k(dQldi) 4- Q(t) = I(t) has been used to describe the response
of streamflow to a constant rate of precipitation continuing indefinitely on a
watershed. In this case, let I(i) = 1 for t > 0, and Q(t) = 0 for t = 0. Solve
the differential equation and plot the values of/(O and Q(i) over a 10-hour period
if k = 2 h.

1.4.1. Classify the following hydrologic phenomena according to the structure given in
Fig. 1.4.1: (a) steady, uniform flow in an open channel; (b) a sequence of daily
average flows at a stream-gaging site; (c) the annual maximum values of daily
flow at a site; (d) the longitudinal profile of water surface elevation for steady
flow in a stream channel upstream of a bridge; (e) the same as (d) but with a flood
passing down the channel; (J) a sequence of annual precipitation values at a site;
(g) a sequence of annual precipitation values at a group of nearby locations.

1.5.1. Select a major water resources project in your area. Explain the purposes of the
project and describe its main features.

1.5.2. Select a water resources project of national or international significance. Explain
the purposes of the project and describe its main features.

1.5.3. Select three major agencies in your area that have hydrologic responsibilities and
explain what those responsibilities are.

1.5.4. Select a major hydrologic event such as a flood or drought that occurred in your
area and describe its effects.



HYDROLOGIC
PROCESSES

Hydrologic processes transform the space and time distribution of water through-
out the hydrologic cycle. The motion of water in a hydrologic system is influenced
by the physical properties of the system, such as the size and shape of its flow
paths, and by the interaction of the water with other working media, including
air and heat energy. Phase changes of water between liquid, solid, and vapor are
important in some cases. Many physical laws govern the operation of hydrologic
systems.

A consistent mechanism needed for developing hydrologic models is pro-
vided by the Reynolds transport theorem, also called the general control vol-
ume equation. The Reynolds transport theorem is used to develop the continuity,
momentum, and energy equations for various hydrologic processes.

2.1 REYNOLDS TRANSPORT THEOREM
The Reynolds transport theorem takes physical laws that are normally applied
to a discrete mass of a substance and applies them instead to a fluid flowing
continuously through a control volume. For this purpose, two types of fluid
properties can be distinguished: extensive properties, whose values depend on
the amount of mass present, and intensive properties, which are independent of
mass. For any extensive property B, a corresponding intensive property /3 can be
defined as the quantity of B per unit mass of fluid, that is /3 = dBldm. B and /3
can be scalar or vector quantities depending on the property being considered.

The Reynolds transport theorem relates the time rate of change of an
extensive property in the fluid, dB/dt, to the external causes producing this
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change. Consider fluid momentum; in this case, B = raV and P = d(mV)/dm =
V, the fluid velocity, where bold face type indicates a vector quantity. By
Newton's second law, the time rate of change of momentum is equal to the net
applied force on the fluid: dB/dt = d(m\)ldt = S F . The extensive properties
discussed in this book are the mass, momentum, and energy of liquid water, and
the mass of water vapor.

When Newton's second law or other physical laws are applied to a solid
body, the focus is on the motion of the body and the analysis follows the body
wherever it moves. This is the Lagrangian view of motion. Although this concept
can be applied to fluids, it is more common to consider that fluids form a
continuum wherein the motion of individual particles is not traced. The focus is
then on a control volume, a fixed frame in space through which the fluid passes,
called the Eulerian view of motion. The theorem separates the action of external
influences on the fluid, expressed by dB/dt, into two components: the time rate
of change of the extensive property stored within the control volume, and the
net outflow of the extensive property across the control surface. The Reynolds
transport theorem is commonly used in fluid mechanics (White, 1979; Shames,
1982; Fox and MacDonald, 1985; and Roberson and Crowe, 1985). Although it
has not been widely used in hydrology up to this time it provides a consistent
means for applying physical laws to hydrologic systems.

To derive the governing equation of the theorem, consider the control
volume shown in Fig. 2.1.1, whose boundary is defined by the dashed control
surface. Within the control volume there is a shaded element of volume dV. If the
density of the fluid is p, the mass of fluid in the element is dm = pdV, the amount
of extensive property B contained in the fluid element is dB = (3dm = fipdV, and
the total amount of extensive property within any volume is the integral of these
elemental amounts over that volume:

B = jjjppdV (2.1.1)

where / J / indicates integration over a volume.
Fluid flows from left to right through the control volume in Fig. 2.1.1, but

no fluid passes through the upper or lower boundary. After a small interval of
time At, the fluid mass inside the control volume at time t has moved to the right
and occupies the space delineated by dotted lines. Three regions of space can
then be identified: region I, to the left, which the fluid mass occupies at time t
but not at t + Ar; region II, in the center, filled by the fluid mass at both points
in time; and region III, on the right, outside the control volume, which the fluid
mass occupies at t + Ar but not at t. For the cross-hatched fluid mass initially
within the control volume, the time rate of change of the extensive property can
be defined by

dB 1
— - lim - [ ( S n + flmW " (Bi + Bn)t] (2.1.2)
dt Ar^oAr

where the subscripts t and t + Ar are used to denote the values of the subscripted



(d) cos 9 vs.6 for inflow and outflow.

FIGURE 2.1.1
Fluid control volume for derivation of the Reynolds transport theorem.
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(c) Expanded view of
outflow region.

Inflow

V • d A = V cos 9 dA (cos 9 < 0)

(b) Expanded view
of inflow region.

(a) Fluid in regions I and II (the control volume) at time t occupies regions
II and III at time / + A / .

Control volume

Control
surface

Impermeable
boundary



quantities at these two time points. Rearranging (2.1.2) to separate the extensive
property remaining within the control volume (B n) from that passing across the
control surface (Bi) and (Bm) yields

Yt = A1^oI jMBll)t+At ~ № l ) ' ] + ^ [ ^ n i ) r + Ar " (*l),]} (2.1.3)

As At approaches 0, region II becomes coincident with the control volume, and
the first term in (2.1.3) becomes the time derivative (dldt) of the amount of B
stored within the control volume:

hmojt[(Bu)t+At -(Bn)1] = | J J J /3pdV (2.1.4)
CV.

In this equation, the total derivative dldt is used to account for the case
when the control volume is deformable (i.e., changes in size and shape as time
passes). If the control volume is fixed in space and time, the total derivative can
be replaced by the partial derivative dldt because the focus is on the time rate of
change of the extensive property stored in the control volume without regard for
its internal spatial distribution.

The second term in Eq. (2.1.3), involving B\ and Bm, represents the flow of
the extensive property across the control surface. Figure 2.1.1(c) shows a close-
up view of region in at the outlet from the control volume. An element of area
in the outlet control surface is labeled dA, and the element of volume dV is the
volume of the tube containing all the fluid passing through dA in time At. The
length of the tube is A/ = VAt, the length of the flow path in time At. The volume
of the tube is dV = A / cos OdA where 6 is the angle between the velocity vector
V and the direction normal to the area element dA. The amount of extensive
property B in the tube is fipdV — /3pA/cos OdA. The total amount of fluid in
region in is found by integrating these elemental amounts over the entire outlet
control surface. Thus the term in Bm in (2.1.3) can be written as

r ^ , J lppAlcosddA
Hm -(BmU J = lim — (2.1.5)

Ar->0[ At J Af-+0 At

where the double integral // indicates that the integral is over a surface.
As Ar approaches 0, the limit of the ratio All At is the magnitude of the fluid

velocity V. Let the normal area vector dA be defined as a vector of magnitude dA
with direction normal to the area dA pointing outward from the control surface;
then the term Vcos QdA can be expressed as the vector dot product VdA. So Eq.
(2.1.5) can be rewritten to give the flow rate of the extensive property leaving
the control surface as

A/™] it(Bm)t+At\ = J) PPY'dA ( 2 - L 6 >
^ ^ in



A similar analysis may be made for fluid entering the control volume
in region I [see Fig. 2.IA(Jb)]. In this case, cos0 is negative and dV =
A/cos(180° - 6)dA = - A / cos 8dA, so that

r , j6p(-A/ cos OdA)
lim -T(B1)A = lim —

Ar->o[Af J Ar-O At

f [ (2.1.7)
^-JJjSpV-dA

i

Substituting (2.1.4), (2.1.6), and (2.1.7) into (2.1.3) gives

CV. Ill I

For fluid entering the control volume, the angle between the velocity vector
V, pointing into the control volume, and the area vector dA, pointing out,
is in the range 90° < 6 < 270° for which cos 6 is negative [see Fig 2.1.1
(d)]. Consequently, VdA is always negative for inflow. For fluid leaving the
control volume cos 6 is positive, so V-dA is always positive for outflow. At
the impermeable boundaries, V and dA are perpendicular and therefore V-dA =
0. Thus, the integrals in (2.1.8) over inlet I and outlet III can be replaced by
a single integral over the entire control surface representing the outflow minus
inflow, or net outflow, of extensive property B:

^ = i\\\pPdV+ jj/3pV-dA (2.1.9)
CV. CS.

Equation (2.1.9) is the governing equation of the Reynolds transport
theorem. It is used a number of times in this book, and it is worthwhile to
review the meaning of each term. As stated previously, the equation will be used
to provide a mechanism for taking physical laws normally applied to a discrete
mass and applying them instead to continuously flowing fluid. In words, the
Reynolds transport theorem states that the total rate of change of an extensive
property of a fluid is equal to the rate of change of extensive property stored
in the control volume, dldt /JJjSp dV, plus the net outflow of extensive property
through the control surface, Jf ftp V-dA. When using the theorem, inflows are
always considered negative and outflows positive.

In the following sections, the Reynolds transport theorem is applied to
develop continuity, momentum, and energy equations for hydrologic processes.

2.2 CONTINUITY EQUATIONS

The conservation of mass is the most useful physical principle in hydrologic
analysis and is required in almost all applied problems. Continuity equations



expressing this principle can be developed for a fluid volume, for a flow cross-
section, and for a point within a flow. In this chapter, only the integral equation
of continuity for a flow volume is developed. The equation for continuity at a
point will be derived in Chap. 4 to describe flow in a porous medium, and the
continuity equation at a cross section will be derived in Chap. 9 to describe flow
at a river section. The integral equation of continuity is the basis for the other
two forms.

Integral Equation of Continuity

The integral equation of continuity applies to a volume of fluid. If mass is the
extensive property being considered in the Reynolds transport theorem, then B =
m, and j8 = dBldm = 1. By the law of conservation of mass, dBldt = dmldt = 0
because mass cannot be created or destroyed. Substituting these values into the
Reynolds transport theorem (2.1.9) gives

O = IJ j j p ^ + J j pV-dA (2.2.1)
CV. CS.

which is the integral equation of continuity for an unsteady, variable-density flow.
If the flow has constant density, p can be divided out of both terms of

(2.2.1), leaving

I J J J dV+ J J V-dA = 0 (2.2.2)
CV. CS.

The integral fjfdV is the volume of fluid stored in the control volume, denoted
by S, so the first term in (2.2.2) is the time rate of change of storage dS/dt. The
second term, the net outflow, can be split into inflow I{t) and outflow Q(t):

J J V dA = J J V dA + J J V dA = Q(t) - I(t) (2.2.3)
cs. outlet inlet

and the integral equation of continuity can be rewritten

^r + G(O - /(O = 0
dt

or

j t = /(O - G(O (2.2.4)

which is the integral equation of continuity for an unsteady, constant density flow,
used extensively in this book. When the flow is steady, dS/dt = 0, and (2.2.2)
reduces to



I I V-dA = O (2.2.5)
CS.

which states that the volumetric inflow rate and outflow rate are equal; that is,
/(O = Q{t). A steady flow is one in which the velocity at every point in the flow
is constant in time. A simple way of thinking about this is to imagine taking a
"snapshot" of the flow now, and again five minutes later; if the the flow is steady,
the two snapshots will be identical.

If the total amounts of inflow and outflow are equal, the system is said to
be closed so that

I I{t)dt=\ Q(t)dt (2.2.6)
J —oo J —oo

When this condition does not hold, the system is open. The hydrologic cycle is
a closed system for water, but the rainfall-runoff process on a watershed is an
open system, because not all the rainfall becomes runoff; some is returned to the
atmosphere through evaporation.

The continuity equations above are derived for single phase flow, that is,
a liquid or a gas, but not both together. In multiphase situations, such as when
water is evaporating, the liquid and gaseous phases of water must be carefully
distinguished. A continuity equation should be written separately for each phase
of the flow; for each phase dBldt is the rate at which mass is being added to, or
taken from, that phase.

2.3 DISCRETE TIME CONTINUITY

Because most hydrologic data are available only at discrete time intervals, it is
necessary to reformulate the continuity equation (2.2.4) on a discrete time basis.
Suppose that the time horizon is divided into intervals of length At, indexed by

j . Equation (2.2.4) can be rewritten as dS = I(f)dt — Q(t)dt and integrated over
the y'th time interval to give

fSj p'Ar pAr
dS= I{i)dt - Q(t)dt (2.3.1)

JSj-i Ja-I)Ar J(/-l)Ar

or

sJ-Sj-i =IJ~Qj 7 = 1 ,2 , . . . (2.3.2)

where T7 and Qj are the volumes of inflow and outflow in the jth time interval.
Note that in Eq. (2.2.4), /(O and Q{t) are flow rates, having dimensions [L3/T],
while S is a volume, having dimensions [L3]. In (2.3.2), all the variables have
dimensions [L3]. If the incremental change in storage is denoted by AS7-, then
one writes AS7 = /7 — Qj, and

Sj = S7-! + AS7 (2.3.3)



If the initial storage at time 0 is S0, then S1 = S0 + h ~ Qu S2 = Si + I2 ~ Q2,
and so on. By substituting for intermediate storage values, one obtains

j
SJ = S0 + ^Z(It - Qt) (2.3.4)

i = i

which is the discrete-time continuity equation.

Data Representation

The functions Q(t) and I(t) are defined on a continuous time domain; that is, a
value of the function is defined at every instant of the time domain, and these
values can change from one instant to the next [Fig. 2.3.1 (a)]. Figure 2.3.1
shows two methods by which a continuous time function can be represented on a
discrete time domain. The first method [Fig. 2.3. \{b)] uses a sample data function
in which the value of a function Q(t) in thej'th time interval, Qj, is given simply
by the instantaneous value of Q(t) at time j At:

Qj = Q(tj) = Q(JAt) (2.3.5)

The dimensions of Q(O and Qj are the same, either [L3/T] or [L/T].
The second method uses a pulse data function [Fig. 2.3. l(c)], in which the

value of the discrete time function Qj is given by the area under the continuous
time function:

Qj = Q(f)dt (2.3.6)

Here Qj has dimensions of [L3I or [L] for Q(t) in dimensions of [L3/T] or [L/T],
respectively. Alternatively, the dimensions of Qj and Q(t) can be kept the same
if Qj is calculated as the average rate over the interval:

1 P A '
Qj = T- Qif)dt (2.3.7)

J AtJ(J-I)At

The two principle variables of interest in hydrology, streamflow and pre-
cipitation, are measured as sample data and pulse data respectively. When the
values of streamflow and precipitation are recorded by gages at a given instant,
the streamflow gage value is the flow rate at that instant, while the precipitation
gage value is the accumulated depth of precipitation which has occurred up to
that instant. The successive differences of the measurements of accumulated pre-
cipitation form a pulse data series (in inches or centimeters). When divided by
the time interval At, as in Eq. (2.3.7), the resulting data give the precipitation
intensity (in inches per hour or centimeters per hour). The continuity equation
must be applied carefully when using such discrete time data.

Example 2.3.1 Calculate the storage of water on a watershed as a function of
time given the data in columns 3 and 4 of Table 2.3.1 for incremental precipitation



(c) Pulse data representation

FIGURE 2.3.1
A continuous time function Q(t), (a), can be defined on a discrete time domain either by a sampled
data system (b), in which instantaneous values of the continuous time function are used, or by a
pulse data system (c), in which the integral or average value of the function over the interval is used.

over the watershed and streamflow measured at its outlet. These data are adapted
from a flood that occurred on Shoal Creek at Northwest Park in Austin, Texas on
May 24-25, 1981. The watershed area is 7.03 mi2. Assume that the initial storage
is zero.

Solution. The precipitation input is recorded as a pulse data sequence in column 3;
the value shown is the incremental depth for the preceding time interval (e.g., the
value shown at t = 0.5 h, 0.15 in, is the precipitation depth occurring during the
first 0.5 h and the value shown at t = 1 h, 0.26 in, is the incremental precipitation

Discrete time index j

(b) Sample data representation

Discrete time index j

(a) Continuous time domain

Time t



between t = 0.5 h and t = 1 h, and so on). The streamflow output is recorded as
a sample data sequence; the value shown is the instantaneous flow rate (e.g., the
streamflow rate is 246 cfs at t = 0.5 h, 283 cfs at t = 1 h, and so on). To apply
the discrete time continuity equation (2.3.4), the streamflow must be converted to
a pulse data sequence. The time interval is Af = 0.5 h = 0.5 x 3600 s = 1800 s.
For each 0.5 h interval, the volume of streamflow is calculated by averaging the
streamflow rates at the ends of the interval and multiplying by At. The equivalent
depth over the watershed of incremental streamflow is then calculated by dividing
the streamflow volume by the watershed area, which is 7.03 mi2 = 7.03 x 52802

ft2 = 1.96 x 108 ft2.
For example, during the first time interval, between 0 and 0.5 h, the stream-

flows [Col.(4)] are 2(0) = 203 cfs and 2(0.5) = 246 cfs, so the incremental volume
in this interval is [(203 + 246)/2] x At = 224.5 x 1800 = 4.04 x 105 ft3. The
equivalent depth over the watershed is Q1 = 4.04 x 105/1.96 x 108 = 2.06 x 10 ~3

ft = 2.06 X 10~3 x 12 in = 0.02 in, as shown in column 5.
The incremental precipitation I\ for the same time interval is 0.15 in, so the

incremental change in storage is found from Eq. (2.3.2) withy = 1:

AS1 = h-Qi

= 0.15-0.02

= 0.13 in

as shown in column 6. The cumulative storage on the watershed is found from
(2.3.3) with j = 1 and initial storage S0 ~ 0:

S1= S0 + ASi

= 0 + 0.13

= 0.13 in

as shown in column 7. The calculations for succeeding time intervals are similar.
Table 2.3.1 shows that of the 6.31 in total precipitation, 5.45 in, or 86 percent,
appeared as streamflow at the watershed outlet in the eight hours after precipitation
began. The remaining 0.86 in was retained in storage on the watershed. In columns
5 and 6 it can be seen that after precipitation ceased, all streamflow was drawn
directly from storage.

The values of incremental precipitation and streamflow, change in storage,
and cumulative storage are plotted in Fig. 2.3.2. The critical time is t = 2.5 h,
when the maximum storage occurs. Before 2.5 h, precipitation exceeds streamflow
and there is a gain in storage; after 2.5 h, the reverse occurs and there is a loss in
storage.

2.4 MOMENTUM EQUATIONS

When the Reynolds transport theorem is applied to fluid momentum, the extensive
property is B = raV, and P = dB/dm = V. By Newton's second law, the time rate
of change of momentum is equal to the net force applied in a given direction,
so dB/dt = d(m\)/dt = 2 F. Substituting into the Reynolds transport theorem
(2.1.9), results in



TABLE 2.3.1
The time distribution of storage on a watershed calculated using the
discrete-time continuity equation (Example 2.3.1)

1 2 3 4 5 6 7
Time Time Incremental Instantaneous Incremental Incremental Cumulative
interval precipitation streamflow streamflow storage storage
j t Ij Q(t) Qj ASj Sj

(h) (in) (cfs) (in) (in) (in)

0.0 203 0.00
1 0.5 0.15 246 0.02 0.13 0.13
2 1.0 0.26 283 0.03 0.23 0.36
3 1.5 1.33 828 0.06 1.27 1.62
4 2.0 2.20 2323 0.17 2.03 3.65
5 2.5 2.08 5697 0.44 1.64 5.29
6 3.0 0.20 9531 0.84 -0.64 4.65
7 3.5 0.09 11025 1.13 -1.04 3.61
8 4.0 8234 1.06 -1.06 2.55
9 4.5 4321 0.69 -0 .69 1.85

10 5.0 2246 0.36 -0.36 1.49
11 5.5 1802 0.22 -0.22 1.27
12 6.0 1230 0.17 -0.17 1.10
13 6.5 713 0.11 -0 .11 1.00
14 7.0 394 0.06 -0.06 0.93
15 7.5 354 0.04 -0.04 0.89
16 8.0 303 0.04 -0.04 0.86

Total 6.31 5.45

Z F = JtJJJWf)dV+ J J vPv-dA (2.4.1)
CV. CS.

the integral momentum equation for an unsteady, nonuniform flow. A nonuniform
flow is one in which the velocity does vary in space; in a uniform flow there is
no spatial variation.

If a nonuniform flow is steady (in time), the time derivative in Eq. (2.4.1)
drops out, leaving

]T F = J J VpV-dA (2.4.2)
CS.

For a steady uniform flow the velocity is the same at all points on the control
surface, and therefore the integral over the control surface is zero and the forces
applied to the system are in equilibrium:

X F = O (2.4.3)



FIGURE 2.3.2
The time distribution of storage on a watershed calculated using the discrete-time continuity equation
(Example 2.3.1).
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Steady Uniform Flow in an Open Channel

In this section, the momentum equation is applied to steady uniform flow in an
open channel. The more complex case of unsteady nonuniform flow is treated
in Sec. 9.1. Figure 2.4.1 shows a steady flow in a uniform channel, that is, a
channel whose cross section, slope, and boundary roughness do not change along
its length. The continuity, momentum, and energy equations can be applied to
the control volume between sections 1 and 2.

Continuity. For steady flow, Eq. (2.2.5) holds and Q1 = Q2, for uniform flow,
the velocity is the same everywhere in the flow, so V1 = V2. Hence, cross-sectional
area Ai = Q\IV\ = Q2IV2 = A2, and since the channel is uniform, it follows that
the depths are also equal, y\ = y2.

Energy. The energy equation from fluid mechanics (Roberson and Crowe, 1985)
is written for sections 1 and 2 as

Z1 + y{ + V\l2g = z2+y2 + Vlllg + hf (2.4.4)

where z is the bed elevation, g is the acceleration due to gravity, and hf is the
head loss between the two sections. Head loss is the energy lost due to friction
effects per unit weight of fluid. With V1 = V2 and y\ = y2, (2.4.4) reduces to

Hf = Z1-Z2 (2.4.5)

Dividing both sides by L, the length of the channel, the following is obtained.

* - ^ ( , 4 . 6 )

The bed slope S0 = tan 6 where 8 is the angle of inclination of the channel
bed. If 6 is small (< 10°), then tan 6 « sin 6 = (z\ - Z2)IL. In this case, the

Energy grade line

Control volume

FIGURE 2.4.1
Steady uniform flow in an open channel.

Datum



friction slope, Sf = hf/L, is equal to the bed slope S0- It is assumed in this analysis
that the only source of energy loss is friction between the flow and the channel
wall. In general, energy can also be lost because of such factors as wind shear on
the surface and eddy motion arising from abrupt changes in the channel geometry,
but these effects will not be discussed until Chap. 9. When wall friction is the
only source of energy loss, the slope of the energy grade line is equal to the
friction slope Sf, as shown in Fig. 2.4.1.

Momentum. There are three forces acting on the fluid control volume: friction,
gravity, and pressure. Of these, the pressure forces at the two ends of the section
are equal and cancel each other for uniform flow (because y \ = ;y 2). So the friction
and gravity forces must be balanced, because, with the flow steady and uniform,
Eq. (2.4.3) applies ( 2 F = O). The friction force F / is equal to the product of the
wall shear stress To and the area over which it acts, PL, where P is the wetted
perimeter of the cross section; that is, Fy = —T$PL, where the negative sign
indicates that the friction force acts opposite to the direction of flow. The weight
of fluid in the control volume is yAL, where y is the specific weight of the fluid
(weight per unit volume); the gravity force on the fluid, ¥g, is the component of
the weight acting in the direction of flow, that is, Fg = yAL sin d. Hence

^ F = O = -T0PL + yAL sin 6 (2.4.7)

When 6 is small, sin 6 ~ So, so the approximation is made that

yALSp

(2.4.8)
= yRS0

where R = AIP is the hydraulic radius. For a steady uniform flow, So = Sf, so

T0 = yRSf (2.4.9)

By a similar analysis, Henderson (1966) showed that (2.4.9) is also valid
for nonuniform flow, although the bed slope So and friction slope 5 / are no
longer equal. Equation (2.4.9) expresses a linkage between the momentum and
energy principles in that the effects of friction are represented from the momentum
viewpoint as the wall shear stress TQ and from the energy viewpoint as a rate of
energy dissipation Sf.

2.5 OPEN CHANNEL FLOW

Open channel flow is channel flow with a free surface, such as flow in a river
or in a partially full pipe. In this section the Manning equation to determine the
velocity of open channel flow is derived, on the basis of the Darcy-Weisbach
equation for head losses due to wall friction.

In fluid mechanics, the head loss hf over a length L of pipe of diameter D
for a flow with velocity V is given by the Darcy-Weisbach equation



hf=f^g (2.5.1)

where J is the Darcy-Weisbach friction factor and g is the acceleration due
to gravity (Roberson and Crowe, 1985). Using the definition of friction slope,
5/ = hf/L, (2.5.1) can be solved for V:

V = JjDSf (2.5.2)

The hydraulic radius R of a circular pipe is R = AIP = (7rD2/4)/7rD = DIA, so
the pipe diameter D can be replaced in (2.5.2) by

D = AR (2.5.3)

to give the Darcy-Weisbach equation:

V = M-RSf (2.5.4)

The Chezy C is defined as C = /Sg/ f; using this symbol, (2.5.4) is rewritten

V=C^/RS} (2.5.5)

which is Chezy's equation for open channel flow. Manning's equation is produced
from Chezy's equation by setting C = R116In, where n is the Manning roughness
coefficient:

R213S1'2

V= (2.5.6)
n

Manning's equation (2.5.6) is valid for SI units, with R in meters and V in meters
per second (Sf is dimensionless). Values of Manning's n for various surfaces are
listed in Table 2.5.1. For V in feet per second and R in feet, Manning's equation
is rewritten

V = - 1 ^ 3 S i ' 2 (2.5.7)
n J

[1.49 = (3.281)1/3 and 3.281 ft = 1 m]. By comparing Eqs. (2.5.4) and (2.5.6),
Manning's n can be expressed in terms of the Darcy-Weisbach friction factor f,
as follows:

n = JlgR^ (2.5.8)
with all values in SI units.

Manning's equation is valid fox fully turbulent flow, in which the Darcy-
Weisbach friction factor f is independent of the Reynolds number Re. Henderson
(1966) gives the following criterion for fully turbulent flow:



TABLE 2.5.1
Manning roughness coefficients for various open channel
surfaces

Typical
Manning roughness

Material coefficient

Concrete 0.012

Gravel bottom with sides — concrete 0.020
— mortared stone 0.023
— riprap 0.033

Natural stream channels
Clean, straight stream 0.030
Clean, winding stream 0.040
Winding with weeds and pools 0.050
With heavy brush and timber 0.100

Flood Plains
Pasture 0.035
Field crops 0.040
Light brush and weeds 0.050
Dense brush 0.070
Dense trees 0.100

Source: Chow, 1959.

H6^jRSf > 1.9 x 10"1 3 with R in feet (2.5.9«)

or

U6^[RSf > 1.1 x 10~13 with R in meters (2.5.9b)

Example 2.5.1 There is uniform flow in a 200-ft wide rectangular channel with
bed slope 0.03 percent and Manning's n is 0.015. If the depth is 5 ft, calculate the
velocity and flow rate, and verify that the flow is fully turbulent so that Manning's
equation applies.

Solution. The wetted perimeter in the channel is P = 200 + 2 x 5 = 210 ft. The
hydraulic radius is R = AIP = 200 X 5/210 = 4.76 ft. The flow velocity is given
by Manning's equation with n = 0.015 and Sf= S0 (for uniform flow) = 0.03% =
0.0003.

V = — R213S)12

n J

1 49
= ^^(4.76)2/3(0.0003)1/2

= 4.87 ft/s

The flow rate is Q = VA = 4.87 x 200 x 5 = 4870 cfs. The criterion for fully
turbulent flow is calculated from (2.5.9a):



n6JRS} = (0.0l5)6(4J6 X O.OOO3)172

= 4.3 x 10~13

which is greater than 1.9 x 10"13 so the criterion is satisfied and Manning's equation
is applicable.

In the event that the flow is not fully turbulent, the flow velocity may
be computed with the Darcy-Weisbach equation (2.5.4), calculating the friction
factor f as a function of the Reynolds number Re and the boundary roughness.
Figure (2.5.1) shows a modified form of the Moody diagram for pipe flow; the
pipe diameter D is replaced by AR. The Reynolds number is given by

Re = — (2.5.10)
v

where v is the kinematic viscosity of water, given in Table 2.5.2 as a function of
temperature. The relative roughness e is defined by

where ks is the size of sand grains resulting in a surface resistance equivalent to
that observed in the channel.

Figure 2.5.1 for open channel flow was constructed from equations pre-
sented by Chow (1959) and Henderson (1966). For Reynolds number less than
2000, the flow is laminar, and

f = f (2.5.12)

where Ci~ 96 for a smooth-surfaced channel of infinite width and larger if the
surface is rough (Chow, 1959; Emmett, 1978). As the Reynolds number increases
past 2000, the flow enters a region where both laminar and turbulent effects
govern friction losses and the friction factor is given by a modified form of the
Colebrook-White equation (Henderson, 1966):

-7= = - 2 1 o § i o - ^ + - ^ z

Jf [l2R ReJf
I I (2.5.13)

= -21og10 - + ~ ^ -

For large Reynolds numbers, that is, in the upper right region of the Moody
diagram, the flow is fully turbulent, and the friction factor is a function of the
relative roughness alone. Eq. (2.5.13) reduces to

-Jz = -21og10 ( | ) (2.5.14)



FIGURE 2.5.1
Moody diagram for open channel flow.
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TABLE 2.5.2
Physical properties of water at standard atmospheric pressure

Specific Dynamic Kinematic Vapor

Temperature Density weight viscosity viscosity pressure

kg/m3 N/m3 N-s/m2 m2/s N/m2 abs.

O0C 1000 9810 1.79 x 10"3 1.79 x 10"6 611

50C 1000 9810 1.51 x 10"3 1.51 x 10~6 872
100C 1000 9810 1.31 x 10~3 1.31 x KT 6 1230
15°C 999 9800 1.14 x KT3 1.14 x 10"6 1700
200C 998 9790 1.00 x 10"3 1.00 x 10~6 2340
25°C 997 9781 8.91 x 10~4 8.94 x KT 7 3170
300C 996 9771 7.96 x KT4 7.99 x 10"7 4250
35°C 994 9751 7.20 x 10"4 7.24 x 10~7 5630
40°C 992 9732 6.53 x KT4 6.58 x 10~7 7380
500C 988 9693 5.47 x 10~4 5.54 x KT 7 12,300
600C 983 9643 4.66 x KT4 4.74 x KT 7 20,000
700C 978 9594 4.04 x 10"4 4.13 x 10~7 31,200
800C 972 9535 3.54 x 10~4 3.64 x 10~7 47,400
900C 965 9467 3.15 x 10~4 3.26 x 10~7 70,100

1000C 958 9398 2.82 x 10~4 2.94 x KT 7 101,300

slugs/ft3 lb/ft3 lb-sec/ft2 ftVsec psia

400F 1.94 62.43 3.23 x HT5 1.66 x HT5 0.122
500F 1.94 62.40 2.73 x KT5 1.41X10-5 0.178
600F 1.94 62.37 2.36 x 10"5 1.22 x 10"5 0.256
70° F 1.94 62.30 2.05 x 10~5 1.06 X HT5 0.363
800F 1.93 62.22 1.80 x 10~5 0.930 x 10~5 0.506

10O0F 1.93 62.00 1.42 x HT5 0.739XlO-5 0.949
12O0F 1.92 61.72 1.17 x KT5 0.609 x 10~5 1.69
140° F 1.91 61.38 0.981 XlO"5 0.514 X KT5 2.89
160° F 1.90 61.00 0.838 x KT5 0.442 X KT5 4.74
1800F 1.88 60.58 0.726 x KT5 0.385 x KT5 7.51
20O0F 1.87 60.12 0.637 x KT5 0.341 x KT5 11.53
212° F 1.86 59.83 0.593 x 10~5 0.319 x KT5 14.70

Source: Roberson, J. A., and C T . Crowe, Engineering Fluid Mechanics, 2nd ed., Houghton Mifflin, Boston,
1980, Table A-5, p. 642. Used with permission.

For this case, the friction factor f can be eliminated between Eqs. (2.5.14) and
(2.5.8) to solve for the relative roughness e as a function of Manning's n and
hydraulic radius R:

€ = 3 X iO-4*m№j2i) ( 2 5 1 5 )

where </> = 1 for SI units and 1.49 for English units. To use the Moody diagram
given R and V, e is calculated using (2.5.15) with the given value of n, then
the Reynolds number is computed using (2.5.10) and the corresponding value of
f read from Fig. 2.5.1. An estimate of Vis obtained from Eq. (2.5.4), and the
process is repeated iteratively until the values for V converge.



The Moody diagram given here for open channel flow has some limitations.
First, it accounts for resistance due to friction elements randomly distributed
on the channel wall, but it does not account for form drag associated with
nonuniformities in the channel. Emmett (1978) found that the friction factor for
thin sheet flows on soil or grass surfaces could be as much as a factor of 10
greater than the value for friction drag alone. Also, the Moody diagram is valid
only for fixed bed channels, not for erodable ones. The shape of the cross section
(rectangular, triangular, circular, etc.) has some influence on the friction factor
but the effect is not large. Because of these limitations, the Moody diagram shown
should be applied only to lined channels with uniform cross section.

2.6 POROUS MEDIUM FLOW

A porous medium is an interconnected structure of tiny conduits of various shapes
and sizes. For steady uniform flow in a circular pipe of diameter D, (2.4.9)
remains valid:

T0 = yRSf (2.6.1)

with the hydraulic radius R = DIA. For laminar flow in a circular conduit, the
wall shear stress is given by

*=*-§ (2.6.2)

where /x. is the dynamic viscosity of the fluid. Combining (2.6.1) and (2.6.2)
gives

(yD2\v=[k)Sf (2-6-3)
which is the Hagen-Poiseulle equation for laminar flow in a circular conduit.

For flow in a porous medium, part of the cross-sectional area A is occupied
by soil or rock strata, so the ratio QlA does not equal the actual fluid velocity,
but defines a volumetric flux q called the Darcy flux. Darcy's law for flow in a
porous medium is written from (2.6.3) as

2=q = KSf (2.6.4)

where K is the hydraulic conductivity of the medium, K = yD2/32/ji. Values of
the hydraulic conductivity for various porous media are shown in Table 2.6.1
along with values of the porosity 17, the ratio of the volume of voids to the total
volume of the medium. The actual average fluid velocity in the medium is

Va = 1 (2.6.5)
V

Darcy's law is valid so long as flow is laminar. Flow in a circular conduit
is laminar when its Reynolds number



TABLE 2.6.1
Hydraulic conductivity and porosity of
unconsolidated porous media

Hydraulic
conductivity Porosity

Material K (cm/s) rj (%)

Gravel KT M o 2 25^0
Sand 10~5-l 25-50
Silt 10~7-10"3 35-50
Clay 10~9-10~5 40-70

Source: Freeze and Cherry, 1979.

Re = — (2.6.6)
v

is less than 2000, a condition satisfied by almost all naturally occurring flows in
porous media.

Example 2.6.1 Water is percolating through a fine sand aquifer with hydraulic
conductivity 10~2 cm/s and porosity 0.4 toward a stream 100 m away. If the slope
of the water table is 1 percent, calculate the travel time of water to the stream.

Solution. The Darcy flux q is calculated by (2.6.4) with K = 0.01 cm/sec =
8.64 m/day and Sf = 1% = 0.01; hence q = KSf = 8.64x0.01 = 0.086 m/day.
The water velocity Va is given by (2.6.5): Va = qlr\ = 0.086/0.4 = 0.216 m/day.
The travel time to the stream 100 m away is 100/V^ = 100/0.216 = 463 days =
1.3 years.

2,7 ENERGY BALANCE

The energy balance of a hydrologic system is an accounting of all inputs and
outputs of energy to and from a system, taking the difference between the rates
of input and output as the rate of change of storage, as was done for the continuity
or mass balance equation in Sec. 2.2. In the basic Reynolds transport theorem,
Eq. (2.1.9), the extensive property is now taken as B = E, the amount of energy
in the fluid system, which is the sum of internal energy Eu, kinetic energy \mV2,
and potential energy mgz (z represents elevation):

B = E = Eu+ KnV2 + mgz (2.7.1)

Hence,

. * = £ = e - + \ y 2 + g z (2-7-2)
where eu is the internal energy per unit mass. By the first law of thermodynamics,



Temperature (° C)

FIGURE 2.7.1
Specific and latent heats for water. Latent heat is absorbed or given up when water changes its state
of being solid, liquid, or gas.

the net rate of energy transfer into the fluid, dEldt, is equal to the rate at which
heat is transferred into the fluid, dHldt, less the rate at which the fluid does work
on its surroundings, dW/dt:

dB_dE_dH_dW
dt dt dt dt (-L5)

Substituting for dBldt and /3 in the Reynolds transport theorem

? ~ ^ " = l l I I (e» + \vl +8Z)PdV+\ j\eu+
l-V2 + gz)p\-Ak {2.1 A)

CV. CS.

This is the energy balance equation for an unsteady variable-density flow.

Internal Energy

Sensible heat. Sensible heat is that part of the internal energy of a substance
that is proportional to the substance's temperature. Temperature changes produce
proportional changes in internal energy, the coefficient of proportionality being
the specific heat Cp

deu = CpdT (2.7.5)

The subscript p denotes that the specific heat is measured at constant pressure.

Latent heat. When a substance changes phase (solid, liquid, or gaseous state)
it gives up or absorbs latent heat. The three latent heats of interest are those
for fusion, or melting, of ice to water; for vaporization of liquid water to water
vapor; and for sublimation, or direct conversion, of ice to water vapor. Figure
2.7.1 shows how the internal energy of water varies as the result of sensible
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and latent heat transfer Latent heat transfers at phase changes are indicated by
the vertical jumps in internal energy at melting and vaporization. Internal energy
changes due to sensible heat transfer are shown by the sloping lines.

Phase changes can occur at temperatures other than the normal ones of 00C
for melting and 1000C for boiling. Evaporation, for example, can occur at any
temperature below the boiling point. At any given temperature, the latent heat of
sublimation (solid to gas) equals the sum of the latent heats of fusion (solid to
liquid) and vaporization (liquid to gas).

Latent heat transfers are the dominant cause of internal energy changes for
water in most hydrologic applications; the amount of latent heat involved is much
larger than the sensible heat transfer for a change in temperature of a few degrees,
which is the usual case in hydrologic processes. The latent heat of vaporization
lv varies slightly with temperature according to

lv = 2.501 x 106 - 23707 (J/kg) (2.7.6)

where T is temperature in 0C and lv is given in joules (J) per kilogram (Raudkivi,
1979). A joule is an SI unit representing the amount of energy required to exert
a force of 1 newton through a distance of 1 meter.

2.8 TRANSPORT PROCESSES

Heat energy transport takes place in three ways: conduction, convection, and
radiation. Conduction results from random molecular motion in substances; heat
is transferred as molecules in higher temperature zones collide with and transfer
energy to molecules in lower temperature zones, as in the gradual warming along
an iron bar when one end is placed in a fire. Convection is the transport of heat
energy associated with mass motion of a fluid, such as eddy motion in a fluid
stream. Convection transports heat on a much larger scale than conduction in
fluids, but its extent depends on fluid turbulence so it cannot be characterized as
precisely. Radiation is the direct transfer of energy by means of electromagnetic
waves, and can take place in a vacuum.

The conduction and convection processes that transfer heat energy also
transport mass and momentum (Bird, Stewart, and Lightfoot, 1960; Fahien,
1983). For each of the extensive properties mass, momentum, and energy, the
rate of flow of extensive property per unit area of surface through which it passes
is called the flux. For example, in Darcy's law, volumetric flow rate is Q across
area A, so the volumetric flux is q = QIA; the corresponding mass flow rate
is m = pQ, so the mass flux is pQ/A. By analogy the momentum flow rate is
mV= pgVand the momentum flux is mVIA = pQV/A = pV2. The corresponding
energy flow rate is dE/dt and the energy flux is {dEldt)IA, measured in watts per
meter squared in the SI system; a watt (W) is one joule per second. In general,
a flux is given by

H | l x =f lowrate
area



Conduction

In conduction the flux is directly proportional to the gradient of a potential
(Fahien, 1983). For example, the lateral transfer of momentum in a laminar flow
is described by Newton's law of viscosity, in which the potential is the flow
velocity:

dz

Here r is momentum flux, ^ is a proportionality coefficient called the dynamic
viscosity (measured in lb-s/ft2 or N-s/m2), and duldz is the gradient of the velocity
u as a function of distance z from the boundary. The symbol r is usually used to
represent a shear stress, but it can be shown that the dimensions of shear stress and
momentum flux are the same, and T can be thought of as the lateral momentum
flux in a fluid flow occurring through the action of shear stress between elements
of fluid having different velocities, as shown in Fig. 2.8.1.

Analogous to Newton's law of viscosity for momentum, the laws of con-
duction for mass and energy are Fick's law of diffusion, and Fourier's law of
heat conduction, respectively (Carslaw and Jaeger, 1959). Their governing equa-
tions have the same form as (2.8.2), as shown in Table 2.8.1. The measure of
potential for mass conduction is the mass concentration C of the substance being
transported. In Chap. 4, for example, when the transport of water vapor in air is
described, C is the mass of water vapor per unit mass of moist air. The propor-
tionality constant for mass conduction is the diffusion coefficient D. The measure
of potential for heat energy transport is the temperature T and the proportionality
constant is the heat conductivity k of the substance.

The proportionality constant can also be written in a kinematic form. For
example, the dynamic viscosity /JL and the kinematic viscosity v are related by

fi = pv (2.8.3)

FIGURE 2.8.1
The relationship between the momentum flux and the velocity gradient in a free surface flow.
Momentum is transferred between the wall and the interior of the flow through molecular and
turbulent eddy motion. The shear stress in the interior of the flow is the same as the momentum flux
through a unit area (dashed line) parallel to the boundary.

Momentum flux
Area A

Wall shear
stress T0



so Eq. (2.8.2) can be rewritten

T = pvy- (2.8.4)
ClZ

The dimensions of v are [L2/T].

Convection

For convection, transport occurs through the action of turbulent eddies, or the
mass movement of elements of fluid with different velocities, rather than through
the movement of individual molecules as in conduction. Convection requires a
flowing fluid, while conduction does not. The momentum flux in a turbulent flow
is not governed by Newton's law of viscosity but is related to the instantaneous
departures of the turbulent velocity from its time-averaged value. It is convenient,
however, to write equations describing convection in the same form as those for
conduction. For momentum transfer, the flux in a turbulent flow is written as

du
Tturb = pKm-r (2.8.5)

UZ

TABLE 2.8.1

Laws of conduction and corresponding equations for convection of mass,
momentum, and heat energy in a fluid

Extensive property transported

Mass Momentum Heat energy

Conduction:
Name of law Fick's Newton's Fourier's

dC du dT
Equation fm = -D — T= fi— fh = -k—

dz dz dz
Flux fm T fh

Constant of
proportionality D JJL k

(diffusion coeff.) (viscosity) (heat conductivity)
dC du dT

Potential gradient — — —
dz dz dz

(concentration) (velocity) (temperature)
Convection:

Equation fm = - pKw — r = pKm— fh = -pCpKh —
dz dz dz

Diffusivity [L2/T] Kw Km Kh



where Km is the momentum diffusivity, or eddy viscosity, with dimensions [L2/T].
Km is four to six orders of magnitude greater than v (Priestley, 1959), and
turbulent momentum flux is the dominant form of momentum transfer in surface
water flow and in air flow over the land surface. Equations analogous to (2.8.5)
can be written for mass and energy transport as shown in Table 2.8.1.

It should be noted that the direction of transport of extensive properties
described by the equations in Table 2.8.1 is transverse to the direction of flow.
For example, in Fig. 2.8.1, the flow is horizontal while the transport process
is vertical through the dashed area shown. Extensive property transport in the
direction of motion is called advection and is described by the term ///3p V d A
in the Reynolds transport theorem, Eq. (2.1.9).

Velocity Profile

Determination of the rates of conduction and convection of momentum requires
knowledge of the velocity profile in the boundary layer. For flow of air over land
or water, the logarithmic velocity profile is applicable (Priestley, 1959). The wind
velocity u is given as a function of the elevation z by

S-1M-) (2-8-6)
U k \Zo)

where the shear velocity w* = VTo/p (̂ o is the boundary shear stress and p is
the fluid density), k is von Karman's constant (~ 0.4), and Zo is the roughness
height of the surface. Table 2.8.2 gives values of the roughness height for some
surfaces. By differentiating (2.8.6), the velocity gradient is found to be

f = T (2-8-7)
dz kz

This equation can be used to determine the laminar and turbulent momentum
fluxes at various elevations.

TABLE 2.8.2
Approximate values of the roughness height of
natural surfaces

Roughness height Z0

Surface (cm)

Ice, mud flats 0.001
Water 0.01 - 0.06
Grass (up to 10 cm high) 0.1 - 2.0
Grass (10-50 cm high) 2 - 5
Vegetation (1 - 2 m high) 20
Trees (10 - 15 m high) 40 - 70

Source: Brutsaert, W., Evaporation into the atmosphere, D. Reidel, Dor-
drecht, Holland, 1982, Table 5.1, p. 114 (adapted).



Example 2.8.1 The wind speed has been measured at 3 m/s at a height of 2 m
above a short grass field (zo = 1 cm). Plot the velocity profile and calculate the rates
of laminar and turbulent momentum flux at 20 cm, and the turbulent momentum
flux at 2 m elevation. For air, p = 1.20 kg/m3, v= 1.51 x 10"5m2/s, and#m= 1.5
m2/s.

Solution. The shear velocity is calculated from Eq. (2.8.6) using the known velocity
u = 3 m/s at z = 2 m:

1 l I11 (
 2 )

u* 0.4 V 0.01/

Solving, u = 0.226 m/s.
The velocity profile is found by substituting values for z in (2.8.6); for example,

for z = 20 cm = 0.2 m, then

u = 1 / 0 . 2 \
0.226 0.4 n \0 .01 /

Solving, u — 1.7 m/s at z = 0.2 m. Similarly computed values for other values of
z are plotted in Fig. 2.8.2. The velocity gradient at z = 0.2 m is given by Eq.
(2.8.7):

d_u = u*_ = 0.226

dz kz 0.4 x 0.2

and the laminar momentum flux r is given by Newton's law of viscosity (2.8.4)
with air density p = 1.20 kg/m3 and the kinematic viscosity v = 1.51 X 10"5 m2/s.

du
T= pV—

dz

= 1.20 x 1.51 x 10"5x 2.83

= 5.1 x 10"5N/m2

at z = 0.2 m. The turbulent momentum flux is given by Eq. (2.8.5):
_ v du

dz

= 1.20 x 1.5 x 2.83

= 5.1 N/m2

at z = 0.2 m. The ratio Tturblr = KJv = 5.1/(5.1 x 10~5) = 105; hence, turbulent
momentum flux (convection by eddy diffusion) is the dominant transport mechanism
in this air stream. At z = 2 m, duldz = u*/kz = 0.226/(0.4 X 2) = 0.28 s"1 and
Tturt = pKm{duldz) = 1.20 x 1.50 x 0.28 = 0.51 N/m2. Note that the ratio of the
convective momentum fluxes at 0.2 and 2.0 m is 5.1/0.51 = 10; the momentum
flux (or shear stress) is inversely proportional to elevation in a logarithmic velocity
profile. The momentum flux, therefore, is largest near the ground surface and
diminishes as elevation increases.



Radiation

When radiation strikes a surface (see Fig. 2.8.3), it is either reflected or absorbed.
The fraction reflected is called the albedo a (0 < a < 1). For example, deep water
bodies absorb most of the radiation they receive, having a ~ 0.06, while fresh
snow reflects most of the incoming radiation, with a as high as 0.9 (Brutsaert,
1982). Radiation is also continuously emitted from all bodies at rates depending
on their surface temperatures. The net radiation Rn is the net input of radiation at
the surface at any instant; that is, the difference between the radiation absorbed,
Ri(I - a) (where Rt is the incident radiation), and that emitted, Re:

Rn= Ri(I -a) -Re (2.8.8)

Net radiation at the earth's surface is the major energy input for evaporation of
water.

Emission. Radiation emission is governed by the Stefan-Boltzmann law

Re = eaT4 (2.8.9)

where e is the emissivity of the surface, a is the Stefan-Boltzmann constant (5.67
XlO"8 W/m2-K4) and T is the absolute temperature of the surface in degrees
Kelvin (Giancoli, 1984); the Kelvin temperature equals the Celsius temperature
plus 273. For a perfect radiator, or black body, the emissivity is e = 1; for water
surfaces e —0.97. The wavelength A of emitted radiation is inversely proportional
to the surface temperature, as given by Wien's law:

2 90 x 10~3

A = T (2.8.10)

where T is in degrees Kelvin and A is in meters (Giancoli, 1984). As a

FIGURE 2.8.2
Logarithmic velocity profile for
roughness height z0 = 1 cm
and measured velocity 3 m/s at
height 2 m in a flow of air
(Example 2.8.1). The resulting
velocity gradient and shear stress
are inversely proportional to
elevation.Velocity u (m/s)
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consequence of Wien's law, the radiation emitted by the sun has a much shorter
wavelength than that emitted by the cooler earth.

Reflection and scattering. The albedo a in Eq. (2.8.8) measures the proportion
of incoming radiation that is reflected back into the atmosphere. The albedo varies
somewhat depending on the wavelength of the radiation and its angle of incidence,
but it is customary to adopt a single value typical of the type of surface.

When radiation strikes tiny particles in the atmosphere of a size on the
same order of magnitude as the radiation wavelength, the radiation is scattered
randomly in all directions. Small groups of molecules called aerosols scatter light
in this way. The addition of aerosols and dust particles to the atmosphere from
human activity in modern times has given rise to concern about the greenhouse
effect, in which some of the radiation emitted by the earth is scattered back
by the atmosphere; increased scattering results in a general warming of the
earth's surface. However, the precise magnitude of the earth's warming by this
mechanism is not yet known.

Net radiation at Earth's surface. The intensity of solar radiation arriving at the
top of the atmosphere is decreased by three effects before reaching a unit area
of the earth's surface: scattering in the atmosphere, absorption by clouds, and
the obliqueness of the earth's surface to the incoming radiation (a function of
latitude, season, and time of day). The intensity of solar radiation received per
unit area of the earth's surface is denoted by Rs. The atmosphere also acts as a
radiator, especially on cloudy days, emitting longer wave radiation than the sun
because its temperature is lower; the intensity of this radiation is denoted Ri. The
incoming radiation at the earth's surface is thus /J1- = R5 + Ri. The earth emits
radiation Re (of a wavelength close to that of the atmospheric radiation), and the
net radiation received at the earth's surface is

Rn = (R8 +R1)(I-a)-Re (2.8.11)

The interaction of radiation processes between the atmosphere and the
earth's surface is complex. Figure 2.8.4 presents a summary of relative values
for the various components of the annual average atmospheric and surface heat
balance. It can be seen that for 100 units of incoming solar radiation at the top of
the atmosphere, about half (51 units) reaches the earth's surface and is absorbed
there; of these 51 units, 21 are emitted as longwave radiation, leaving a net

FIGURE 2.8.3
Radiation balance at the surface
of a substance.
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FIGURE 2.8.4
Radiation and heat balance in the atmosphere and at the earth's surface. (Source: "Understanding
Climatic Change," p. 18, National Academy of Sciences, Washington, D . C , 1975. Used with
permission.)

radiation of 30 units at the earth's surface; 23 units of this energy input are used
to evaporate water, and thus returned to the atmosphere as latent heat flux; the
remaining 7 units go to heat the air overlying the earth's surface, as sensible heat
flux.
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PROBLEMS

2.2.1 A reservoir has the following inflows and outflows (in cubic meters) for the first
three months of the year. If the storage at the beginning of January is 60 m3,
determine the storage at the end of March.

Month Jan Feb Mar

Inflow 4 6 9
Outflow 8 11 5

2.2.2 Compute the constant draft from a 500-hectare reservoir for a 30-day period
during which the reservoir level dropped half a meter despite an average upstream
inflow of 200,000 m3/day. During the period, the total seepage loss was 2 cm,
the total precipitation was 10.5 cm, and the total evaporation was 8.5 cm. (1
hectare = 104 m2).

2.2.3 Solve Prob. 2.2.2 if the reservoir area is 1200 acres, the drop in level 2 ft, the
inflow 25 ft3/s, the seepage loss 1 in, the precipitation 4 in and the evaporation
3 in (1 acre = 43,560 ft2).

2.2.4 From the hydrologic records of over 50 years on a drainage basin of area 500
km2, the average annual rainfall is estimated as 90 cm and the average annual
runoff as 33 cm. A reservoir in the basin, having an average surface area of 1700
hectares, is planned at the basin outlet to collect available runoff for supplying
water to a nearby community. The annual evaporation over the reservoir surface
is estimated as 130 cm. There is no groundwater leakage or inflow to the basin.
Determine the available average annual withdrawal from the reservoir for water
supply.

2.2.5 Solve Prob. 2.2.4 if the drainage basin area is 200 mi2, annual rainfall 35 in2,
runoff 13 in, reservoir area 4200 acres, and evaporation 50 in.

2.2.6 The consecutive monthly flows into and out of a reservoir in a given year are the
following, in relative units:

Month J F M A M J J A S O N D

Inflow 3 5 4 3 4 10 30 15 6 4 2 1
Outflow 6 8 7 10 6 8 20 1 3 4 5 7 8

The reservoir contains 60 units at the beginning of the year. How many units of
water are in the reservoir at the middle of August? At the end of the year?

2.3.1 Specify whether the following variables are usually recorded as sample data or
pulse data: (a) daily maximum air temperature, (b) daily precipitation, (c) daily
wind speed, (d) annual precipitation, (e) annual maximum discharge.



2.3.2 The precipitation and streamflow for the storm of May 12, 1980, on Shoal
Creek at Northwest Park in Austin, Texas, are shown below. Calculate the time
distribution of storage on the watershed assuming that the initial storage is 0.
Compute the total depth of precipitation and the equivalent depth of streamflow
which occurred during the 8-hour period. How much storage remained in the
watershed at the end of the period? What percent of the precipitation appeared
as streamflow during this period? What was the maximum storage? Plot the
time distribution of incremental precipitation, streamflow, change in storage, and
cumulative storage. The watershed area is 7.03 mi2.

Time(h) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Incremental Precipitation (in) 0.18 0.42 0.21 0.16
Instantaneous Streamflow (cfs) 25 27 38 109 310 655 949 1060

Time 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Instantaneous Streamflow (cfs) 968 1030 826 655 466 321 227 175 160

2.5.1 Calculate the velocity and flow rate of a uniform flow 3 ft deep in a 100-ft-
wide stream with approximately rectangular cross section, bed slope 1 percent,
and Manning's n of 0.035. Check that the criterion for fully turbulent flow is
satisfied.

2.5.2 Solve Prob. 2.5.1 for a channel 30 m wide with flow 1 m deep.
2.5.3 Solve Prob. 2.5.1 for a stream channel with approximately trapezoidal cross

section with 100-ft bottom width and sides of slope 3 horizontal : 1 vertical.
2.5.4 Solve Prob. 2.5.3 if the bottom width is 30 m and the depth 1 m.
2.5.5 Water is flowing over an asphalt parking lot with slope 0.5 percent and Manning's

n is 0.015. Calculate the velocity and flow rate if the flow is 1 in deep. Check
that the criterion for fully turbulent flow is satisfied.

2.5.6 Solve Prob. 2.5.5 if the flow depth is 1 cm. Assume kinematic viscosity is
1 x 10~6 m2/s.

2.5.7 Solve Prob. 2.5.5 for a flow depth of 0.5 in. Show that the criterion for fully
turbulent flow is not satisfied, and compute the velocity and flow rate using the
Darcy-Weisbach equation and the Moody diagram. By what percent is the velocity
obtained from this procedure different from what would have been obtained if
Manning's equation had been used? Assume kinematic viscosity is 1 x 10 " 5 ft2/s.

2.5.8 Solve Prob. 2.5.7 if the flow depth is 1 mm.
2.5.9 For a steady uniform flow in a circular conduit of diameter Z), show that the wall

shear stress To is given by

yDhf
T°-ir

where y is the specific weight of the fluid and hf is the head loss over a length
L of the conduit.

2.5.10 For laminar flow in a circular conduit use Newton's law of viscosity, To= JJL duldy,
where u is the fluid velocity at distance y from the wall, to establish that the
velocity distribution in the conduit is given by u = umax(l — r2//?2), where r is
the distance from the center of a pipe of radius R and umax is the velocity at the
pipe center.



2.5.11 Use the parabolic velocity distribution formula for laminar flow in a circular
conduit, given in Prob. 2.5.10, to establish that the wall shear stress is T0 =
8/JLV/D, in which Vis the average pipe velocity.

2.5.12 A rectangular open channel 12 m wide and 1 m deep has a slope of 0.001 and is
lined with cemented rubble (n =0.025). Determine (a) its maximum discharge
capacity, and (b) the maximum discharge obtainable by changing the cross-
sectional dimensions without changing the rectangular form of the section, the
slope, and the volume of excavation. Hint: the best hydraulic rectangular section
has a minimum wetted perimeter or a width-depth ratio of 2.

2.5.13 Solve Prob. 2.5.12 if the channel is 30 ft wide and 4 ft deep.
2.6.1 Water is flowing with a friction slope Sf = 0.01. Determine (a) the velocity

of flow in a thin capillary tube of diameter 1 mm (v =1.00 x 10 ~6 m2/s), (b)
the Darcy flux QIA and the actual velocity of flow through a fine sand and (c)
gravel.

2.6.2 Compute the rate of flow of water at 200C through a 10-m-long conduit filled
with fine sand of effective diameter 0.01 mm under a pressure head difference of
0.5 m between the ends of the conduit. The cross-sectional area of the conduit
is 2.0 m2.

2.6.3 Solve Example 2.6.1 in the text if the water is flowing through: (a) gravel with
a hydraulic conductivity of 10 cm/s and a porosity of 30 percent, (Z?) silt with a
hydraulic conductivity of 10~4 cm/s and a porosity of 45 percent, and (c) clay
with a hydraulic conductivity of 10 ~7 cm/s and a porosity of 50 percent. Compare
your answers with that obtained in the example.

2.8.1 Air is flowing over a short grass surface, and the velocity measured at 2 m
elevation is 1 m/s. Calculate the shear velocity and plot the velocity profile from
the surface to height 4 m. Assume zo — 1 cm. Calculate the turbulent momentum
flux at heights 20 cm and 2 m and compare the values. Assume Km = 0.07 m2/s
and p = 1.20 kg/m3 for air.

2.8.2 Solve Prob. 2.8.1 if the fluid is water. Assume Km =0.15 m2/s and p =1000
kg/m3. Calculate and compare the laminar and turbulent momentum fluxes at 20
cm elevation if v = 1.51 x 10 ~6 m2/s for water.

2.8.3 Assuming the sun to be a black body radiator with a surface temperature of 6000
K, calculate the intensity and wavelength of its emitted radiation.

2.8.4 Solve Prob. 2.8.3 for the earth and compare the intensity and wavelength of the
earth's radiation with that emitted by the sun. Assume the earth has a surface
temperature of 300 K.

2.8.5 The incoming radiation intensity on a lake is 200 W/m2. Calculate the net radiation
into the lake if the albedo is a = 0.06, the surface temperature is 300C, and the
emissivity is 0.97.

2.8.6 Solve Prob. 2.8.5 for fresh snow if the albedo is a =0.8, the emissivity is 0.97,
and the surface temperature is 00C.

2.8.7 Solve Prob. 2.8.5 for a grassy field with albedo a = 0.2, emissivity 0.97, and
surface temperature 300C.



ATMOSPHERIC
WATER

Of the many meteorological processes occurring continuously within the atmo-
sphere, the processes of precipitation and evaporation, in which the atmosphere
interacts with surface water, are the most important for hydrology. Much of the
water precipitated on the land surface is derived from moisture evaporated from
the oceans and transported long distances by atmospheric circulation. The two
basic driving forces of atmospheric circulation result from the rotation of the
earth and the transfer of heat energy between the equator and the poles.

3.1 ATMOSPHERIC CIRCULATION

The earth constantly receives heat from the sun through solar radiation and emits
heat through re-radiation, or back radiation into space. These processes are in
balance at an average rate of approximately 210 W/m2. The heating of the earth
is uneven; near the equator, the incoming radiation is almost perpendicular to
the land surface and averages about 270 W/m2, while near the poles, it strikes
the earth at a more oblique angle at a rate of about 90 W/m2. Because the rate
of radiation is proportional to the absolute temperature at the earth's surface,
which does not vary greatly between the equator and the poles, the earth's
emitted radiation is more uniform than the incoming radiation. In response to this
imbalance, the atmosphere functions as a vast heat engine, transferring energy
from the equator toward the poles at an average rate of about 4 x 109 MW.

If the earth were a nonrotating sphere, atmospheric circulation would appear
as in Fig. 3.1.1. Air would rise near the equator and travel in the upper atmosphere
toward the poles, then cool, descend into the lower atmosphere, and return toward
the equator. This is called Hadley circulation.

CHAPTER

3



The rotation of the earth from west to east changes the circulation pattern.
As a ring of air about the earth's axis moves toward the poles, its radius decreases.
In order to maintain angular momentum, the velocity of air increases with respect
to the land surface, thus producing a westerly air flow. The converse is true for
a ring of air moving toward the equator—it forms an easterly air flow. The effect
producing these changes in wind direction and velocity is known as the Coriolis
force.

The actual pattern of atmospheric circulation has three cells in each hemi-
sphere, as shown in Fig. 3.1.2. In the tropical cell, heated air ascends at the equa-
tor, proceeds toward the poles at upper levels, loses heat and descends toward the
ground at latitude 30°. Near the ground, it branches, one branch moving toward
the equator and the other toward the pole. In the polar cell, air rises at 60° and
flows toward the poles at upper levels, then cools and flows back to 60° near
the earth's surface. The middle cell is driven frictionally by the other two; its
surface air flows toward the pole, producing prevailing westerly air flow in the
mid-latitudes.

The uneven distribution of ocean and land on the earth's surface, coupled
with their different thermal properties, creates additional spatial variation in atmo-
spheric circulation. The annual shifting of the thermal equator due to the earth's
revolution around the sun causes a corresponding oscillation of the three-cell
circulation pattern. With a larger oscillation, exchanges of air between adjacent
cells can be more frequent and complete, possibly resulting in many flood years.
Also, monsoons may advance deeper into such countries as India and Australia.
With a smaller oscillation, intense high pressure may build up around 30° lati-
tude, thus creating extended dry periods. Since the atmospheric circulation is very
complicated, only the general pattern can be identified.

The atmosphere is divided vertically into various zones. The atmospheric
circulation described above occurs in the troposphere, which ranges in height
from about 8 km at the poles to 16 km at the equator. The temperature in the
troposphere decreases with altitude at a rate varying with the moisture content of

FIGURE 3.1.1
One-cell atmospheric circulation pattern for
a nonrotating planet.
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FIGURE 3.1.2
Latitudinal cross section of the general atmospheric circulation.

the atmosphere. For dry air the rate of decrease is called the dry adiabatic lapse
rate and is approximately 9.8°C/km (Brutsaert,1982). The saturated adiabatic
lapse rate is less, about 6.5°C/km, because some of the vapor in the air condenses
as it rises and cools, releasing heat into the surrounding air. These are average
figures for lapse rates that can vary considerably with altitude. The tropopause
separates the troposphere from the stratosphere above. Near the tropopause, sharp
changes in temperature and pressure produce strong narrow air currents known
as jet streams with speeds ranging from 15 to 50 m/s (30 to 100 mi/h). They
flow for thousands of kilometers and have an important influence on air mass
movement.

An air mass in the general circulation is a large body of air that is fairly uni-
form horizontally in properties such as temperature and moisture content. When
an air mass moves slowly over land or sea areas, its characteristics reflect those of
the underlying surface. The region where an air mass acquires its characteristics
is its source region; the tropics and the poles are two source regions. Where a
warm air mass meets a cold air mass, instead of their simply mixing, a definite
surface of discontinuity appears between them, called a front. Cold air, being
heavier, underlies warm air. If the cold air is advancing toward the warm air, the
leading edge of the cold air mass is a cold front and is nearly vertical in slope. If
the warm air is advancing toward the cold air, the leading edge is a warm front,
which has a very flat slope, the warm air flowing up and over the cold air.

A cyclone is a region of low pressure around which air flows in a coun-
terclockwise direction in the northern hemisphere, clockwise in the southern
hemisphere. Tropical cyclones form at low latitudes and may develop into
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FIGURE 3.1.3
A plan view of the life cycle of a Northern Hemisphere frontal cyclone: (a) surface front between cold
and warm air; (b) wave beginning to form; (c) cyclonic circulation and wave have developed; (d) faster-
moving cold front is overtaking retreating warm front and reducing warm sector; (e) warm sector has
been eliminated and (/) cyclone is dissipating.

hurricanes or typhoons. Extratropical cyclones are formed when warm and cold J
air masses, initially flowing in opposite directions adjacent to one another, begin
to interact and whirl together in a circular motion, creating both a warm front
and a cold front centered on a low pressure zone (Fig. 3.1.3). An anticyclone
is a region of high pressure around which air flows clockwise in the northern
hemisphere, counterclockwise in the Southern hemisphere. When air masses
are lifted in atmospheric motion, their water vapor can condense and produce
precipitation.

3.2 WATERVAPOR

Atmospheric water mostly exists as a gas, or vapor, but briefly and locally it
becomes a liquid in rainfall and in water droplets in clouds, or it becomes a solid
in snowfall, in hail, and in ice crystals in clouds. The amount of water vapor in
the atmosphere is less than 1 part in 100,000 of all the waters of the earth, but it
plays a vital role in the hydrologic cycle.

Vapor transport in air through a hydrologic system can be described by the
Reynolds transport theorem [Eq. (2.1.9)] letting the extensive property B be the
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mass of water vapor. The intensive property /3 = dBldm is the mass of water
vapor per unit mass of moist air; this is called the specific humidity qv, and equals
the ratio of the densities of water vapor (pv) and moist air (pa):

qv=~ (3.2.1)
Pa

By the law of conservation of mass, dBldt = mv, the rate at which water
vapor is being added to the system. For evaporation from a water surface, mv

is positive and represents the mass flow rate of evaporation; conversely, for
condensation, mv is negative and represents the rate at which vapor is being
removed from the system. The Reynolds transport equation for this system is the
continuity equation for water vapor transport:

mv = I J J J qvPa dV + J J qvPa V-dA (3.2.2)
CV. CS.

Vapor Pressure

Dalton's law of partial pressures states that the pressure exerted by a gas (its
vapor pressure) is independent of the presence of other gases; the vapor pressure
e of the water vapor is given by the ideal gas law as

e = pvRvT (3.2.3)

where T is the absolute temperature in K, and Rv is the gas constant for water
vapor. If the total pressure exerted by the moist air is /?, then p — e is the partial
pressure due to the dry air, and

p-e=pdRdT (3.2.4)

where pd is the density of dry air and Rd is the gas constant for dry air (287
J/kg-K). The density of moist air pa is the sum of the densities of dry air and
water vapor, that is, pa — Pd + Pv> and the gas constant for water vapor is
Rv = Rj/0.622, where 0.622 is the ratio of the molecular weight of water vapor
to the average molecular weight of dry air. Combining (3.2.3) and (3.2.4) using
the above definitions gives

By taking the ratio of Eqs. (3.2.3) and (3.2.5), the specific humidity qv is
approximated by

qv = 0 .622- (3.2.6)
P

Also, (3.2.5) can be rewritten in terms of the gas constant for moist air, Ra, as

P = PaRaT (3.2.7)



The relationship between the gas constants for moist air and dry air is given by

Ra=Rd(l + 0.608<7v)
(3.2.8)

= 287(1 + 0.60Sqv) J/kg-K

The gas constant of moist air increases with specific humidity, but even for
a large specific humidity (e.g., qv = 0.03 kg water/kg of moist air), the difference
between the gas constants for moist and dry air is only about 2 percent.

For a given air temperature, there is a maximum moisture content the air
can hold, and the corresponding vapor pressure is called the saturation vapor
pressure es. At this vapor pressure, the rates of evaporation and condensation
are equal. Over a water surface the saturation vapor pressure is related to the air
temperature as shown in Fig. 3.2.1; an approximate equation is:

e< = 6n^{£jTi) (3-2-9)
where es is in pascals (P& = N/m2) and T is in degrees Celsius (Raudkivi, 1979).
Some values of the saturation vapor pressure of water are listed in Table 3.2.1.

The gradient A = desldT of the saturated vapor pressure curve is found by
differentiating (3.2.9):

where A is the gradient in pascals per degree Celsius.
The relative humidity Rh is the ratio of the actual vapor pressure to its

saturation value at a given air temperature (see Fig. 3.2.1):

Rh = - (3.2.11)
es

The temperature at which air would just become saturated at a given specific
humidity is its dew-point temperature Tj.

Example 3.2.1 At a climate station, air pressure is measured as 100 kP&, air tem-
perature as 200C, and the wet-bulb, or dew-point, temperature as 16°C. Calculate

FIGURE 3.2.1
Saturated vapor pressure as a function of
temperature over water. Point C has vapor
pressure e and temperature T, for which the
saturated vapor pressure is es. The relative
humidity is Rh = eles. The temperature at
which the air is saturated for vapor pressure e
is the dew-point temperature Td.Temperature (0C)
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the corresponding vapor pressure, relative humidity, specific humidity, and air
density.

Solution. The saturated vapor pressure at T = 200C is given by Eq. (3.2.9)

*i i ( 1 7 ' 2 7 r ^
es=6Uex*(mJTl)

/17.27 x 20\
= 6 1 1 C X P 1 2 3 7 . 3 + 20J
= 2339 Pa

and the actual vapor pressure £ is calculated by the same method substituting the
dew-point temperature Td = 16°C:

= 1819 Pa

The relative humidity from (3.2.11) is

_ 1819

~2339

= 0.78

= 78%

TABLE 3.2.1
Saturated vapor pressure of water
vapor over liquid water

Temperature Saturated Vapor Pressure
0C Pa

-20 125
-10 286
0 611
5 872
10 1227
15 1704
20 2337
25 3167
30 4243
35 5624
40 7378

Source: Brutsaert, 1982, Table 3.4, p. 41. Used with per-
mission.



and the specific humidity is given by (3.2.6) with p = 100 kPa = 100 x 103 Pa:

^v = 0.622-

= 0.0113 kg water/kg moist air

The air density is calculated from the ideal gas law (3.2.7). The gas constant Ra

is given by (3.2.8) with qv = 0.0113 kg/kg as Ra = 287(1 + 0.608#v) = 287(1 +
0.608 x 0.0113) = 289 J/kg-K, and T = 200C = (20 + 273) K = 293 K, so that

_ 100 X IQ3

~~ 289 x 293

= 1.18kg/m3

Water Vapor in a Static Atmospheric Column

Two laws govern the properties of water vapor in a static column, the ideal gas
law

P = PaRaT (3.2.12)

and the hydrostatic pressure law

j z = -Pag (3.2.13)

The variation of air temperature with altitude is described by

TT = - « (3.2.14)
dz

where a is the lapse rate. As shown in Fig. 3.2.2, a linear temperature variation
combined with the two physical laws yields a nonlinear variation of pressure with
altitude. Density and specific humidity also vary nonlinearly with altitude. From
(3.2.12), pa = p/RaT, and substituting this into (3.2.13) yields

dp = ^Pi

dz RaT

or

P ~ [RaT) ^

Substituting dz = -dTla from (3.2.14):



Pressure p Temperature T

FIGURE 3.2.2
Pressure and temperature variation in an atmospheric column.

P [ORJ T
and integrating both sides between two levels 1 and 2 in the atmosphere gives

or

Pi = PIIY) (3.2.15)

From (3.2.14) the temperature variation between altitudes z\ and z2 is

T2 = Tx-CCiZ2-Zi) (3.2.16)

Precipitable Water

The amount of moisture in an atmospheric column is called its precipitable water.
Consider an element of height dz in a column of horizontal cross-sectional area
A (Fig. 3.2.2). The mass of air in the element is paAdz and the mass of water
contained in the air is qvpaA dz. The total mass of precipitable water in the column
between elevations z\ and z2 is

mp = qvpaAdz (3.2.17)
J Zi

Area A

Element

Elevation

Column

Elevation



The integral (3.2.17) is calculated using intervals of height Az, each with
an incremental mass of precipitable water

Amp = qvpaAAz (3.2.18)

where qv and J)a are the average values of specific humidity and air density over
the interval. The mass increments are summed over the column to give the total
precipitable water.

Example 3.2.2. Calculate the precipitable water in a saturated air column 10 km
high above 1 m2 of ground surface. The surface pressure is 101.3 kPa, the surface
air temperature is 300C, and the lapse rate is 6.5°C/km.

Solution, The results of the calculation are summarized in Table 3.2.2. The incre-
ment in elevation is taken as Az = 2 km = 2000 m. For the first increment, at
Z1 = 0 m, T1 = 300C = (30 + 273) K = 303 K; at z2 = 2000 m, by Eq. (3.2.16)
using a = 6.5°C/km = 0.0065°C/m,

T2 = T1- a(z2 - Z i )

= 30-0.0065(2000-0)

= 17°C

TABLE 3.2.2
Calculation of precipitable water in a saturated air column (Example 3.2.2)

Column 1 2 3 4 5 6
Elevation Temperature Air Density Vapor

pressure pressure
z P Pa e
(km) (0C) (0K) (kPa) (kg/m3) (kPa)

0 30 303 101.3 1.16 4.24
2 17 290 80.4 0.97 1.94
4 4 277 63.2 0.79 0.81
6 -9 264 49.1 0.65 0.31
8 -22 251 37.6 0.52 0.10

10 -35 238 28.5 0.42 0.03

Column 7 8 9 10 11
Specific Average over Incremental % of
humidity increment mass total
qv qv ~pa Am mass
(kg/kg) (kg/kg) (kg/m3) (kg)

0.0261
Q 0 1 5 0 0.0205 1.07 43.7 57
0 0080 ° - 0 1 1 5 ° - 8 8 2 0-2 2 6

0 0039 0-0060 °-72 8-6 U

0'0017 0.0028 0.59 3.3 4
0 0007 0.0012 0.47 1.1 2

77.0



= (17 + 273) K

= 290 K

as shown in column 3 of the table. The gas constant Ra can be taken as 287 J/kg-K in
this example because its variation with specific humidity is small [see Eq. (3.2.8)].
The air pressure at 2000 m is then given by (3.2.15) with glaRa = 9.81/(0.0065 x
287) = 5.26, as

P2=p\%)

= 80.4 kPa

as shown in column 4.
The air density at the ground is calculated from (3.2.12):

_ 101.3 X IQ3

~ (287 x 303)

= 1.16kg/m3

and a similar calculation yields the air density of 0.97 kg/m3 at 2000 m. The average
density over the 2 km increment is therefore pa = (1.16 + 0.91)12 = 1.07 kg/m3

(see columns 5 and 9).
The saturated vapor pressure at the ground is determined using (3.2.9):

*= 6 1 1 e X P l237JT^)

^11 /17.27 x 30 \= 6 1 1 e x pfey^o)
= 4244 Pa

= 4.24 kPa
The corresponding value at 2000 m where T = 17°C, is e = 1.94 kPa (column 6).
The specific humidity at the ground surface is calculated by Eq. (3.2.6):

0V = 0.622-
P

4 24

=°-622x^o
= 0.026 kg/kg

At 2000 m qv = 0.015 kg/kg. The average value of specific humidity over the 2-
km increment is therefore qv = (0.026 + 0.015)/2 = 0.0205 kg/kg (column 8).
Substituting into (3.2.18), the mass of precipitable water in the first 2-km increment is



Amp = qvpaA Az

= 0.0205 x 1.07 x 1 x 2000

= 43.7 kg

By adding the incremental masses, the total mass of precipitable water in the column
is found to be mp = 77 kg (column 10). The equivalent depth of liquid water is
mp IPWA = 77/(1000 x 1) = 0.077 m = 77 mm.

The numbers in column 11 of Table 3.2.2 for percent of total mass in each
increment show that more than half of the precipitable water is located in the first
2 km above the land surface in this example. There is only a very small amount
of precipitable water above 10 km elevation. The depth of precipitable water in
this column is sufficient to produce a small storm, but a large storm would require
inflow of moisture from surrounding areas to sustain the precipitation.

3.3 PRECIPITATION

Precipitation includes rainfall, snowfall, and other processes by which water falls
to the land surface, such as hail and sleet. The formation of precipitation requires
the lifting of an air mass in the atmosphere so that it cools and some of its
moisture condenses. The three main mechanisms of air mass lifting are fron-
tal lifting, where warm air is lifted over cooler air by frontal passage; orographic
lifting, in which an air mass rises to pass over a mountain range; and convective
lifting, where air is drawn upwards by convective action, such as in the center
of a thunderstorm cell. Convective cells are initiated by surface heating, which
causes a vertical instability of moist air, and are sustained by the latent heat of
vaporization given up as water vapor rises and condenses.

The formation of precipitation in clouds is illustrated in Fig. 3.3.1. As
air rises and cools, water condenses from the vapor to the liquid state. If the
temperature is below the freezing point, then ice crystals are formed instead.
Condensation requires a seed called a condensation nucleus around which the
water molecules can attach or nucleate themselves. Particles of dust floating in
air can act as condensation nuclei; particles containing ions are effective nuclei
because the ions electrostatically attract the polar-bonded water molecules. Ions
in the atmosphere include particles of salt derived from evaporated sea spray,
and sulphur and nitrogen compounds resulting from combustion. The diameters of
these particles range from 10~3 to 10 /mm and the particles are known as aerosols.
For comparison, the size of an atom is about 10"4^m, so the smallest aerosols
may be composed of just a few hundred atoms.

The tiny droplets grow by condensation and impact with their neighbors
as they are carried by turbulent air motion, until they become large enough
so that the force of gravity overcomes that of friction and they begin to fall, further
increasing in size as they hit other droplets in the fall path. However, as the drop
falls, water evaporates from its surface and the drop size diminishes, so the drop
may be reduced to the size of an aerosol again and be carried upwards in the



FIGURE 3.3.1
Water droplets in clouds are formed by nucleation of vapor on aerosols, then go through many
condensation-evaporation cycles as they circulate in the cloud, until they aggregate into large enough
drops to fall through the cloud base.

cloud through turbulent action. An upward current of only 0.5 cm/s is sufficient to
carry a 10 /mi droplet. Ice crystals of the same weight, because of their shape and
larger size, can be supported by even lower velocities. The cycle of condensation,
falling, evaporation, and rising occurs on average about ten times before the drop
reaches a critical size of about 0.1 mm, which is large enough to fall through the
bottom of the cloud.

Up to about 1 mm in diameter, the droplets remain spherical in shape, but
beyond this size they begin to flatten out on the bottom until they are no longer
stable falling through air and break up into small raindrops and droplets. Normal
raindrops falling through the cloud base are 0.1 to 3 mm in diameter.

Observations indicate that water droplets may exist in clouds at subfreezing
temperatures down to -35°C. At this temperature, the supercooled droplets will
freeze even without freezing nuclei. The saturation vapor pressure of water vapor
is lower over ice than over liquid water, so if ice particles are mixed with
water droplets, the ice particles will grow by evaporation from the droplets
and condensation on the ice crystals. By collision and coalescence, ice crystals
typically form clusters and fall as snow flakes. However, single ice crystals may
grow so large that they fall directly to the earth as hail or sleet.

Rain Drops
(0.1 - 3 mm)

Water vapor

Droplets increase
in size by

condensation

Many droplets
decrease in size
by evaporation

Some droplets
increase in size
by impact and

aggregation

Larger drops
break up

( 3 - 5 mm)

Droplets become heavy
enough to fall

(-0.1 mm)

Droplets form
by nucleation — condensing

of vapor on tiny solid particles
called aerosols (0.001 - 10 urn)



Cloud seeding is a process of artificially nucleating clouds to induce
precipitation. Silver iodide is a common nucleating agent and is spread from
aircraft in which a silver iodide solution is evaporated with a propane flame to
produce particles. While there have been many experiments wherein cloud seed-
ing was considered to have induced precipitation, the great variability of meteo-
rological processes involved in producing precipitation make it difficult to achieve
consistent results.

Terminal Velocity

Three forces act on a falling raindrop (Fig. 3.3.2): a gravity force Fg due to its
weight, a buoyancy force Fb due to the displacement of air by the drop, and a
drag force Fj due to friction between the drop and the surrounding air. If the
drop is a sphere of diameter Z), its volume is (TT/6)D3 SO the weight force is

F8 = p J^] D3 (3.3.1)

and the bouyancy force is

Fb = paglfjD3 (3.3.2)

where pw and pa and are the densities of water and air, respectively. The friction
drag force is given by

Fd = Qp 1 1 Ay (3.3.3)

where Q is a dimensionless drag coefficient, A = (TT/4)D2 is the cross-sectional
area of the drop, and Vis the fall velocity.

If the drop is released from rest, it will accelerate until it reaches its terminal
velocity Vt, at which the three forces are balanced. In this condition,

Fd = Fg - Fb

Hence, letting V = Vt in Eqs. (3.3.1-3),

FIGURE 3.3.2
Forces on a falling raindrop: Fg = weight; Fb = buoyancy; Fd =
drag force of surrounding air.



C^(f)f- «(f)l>'- «(f) »>
which, solved for Vr, is:

v,.te(&-.)r
L3C</\pfl /J

The assumption of a spherical raindrop shape is valid for drops up to 1 mm
in diameter. Beyond this size, the drops become flattened on the bottom and more
oval in cross section; then they are characterized by the equivalent diameter of
a spherical raindrop having the same volume as the actual drop (Pruppacher and
Klett, 1978). Raindrops can range up to 6 mm in diameter, but drops larger than
3 mm are unusual, especially in low-intensity rainfall.

For tiny droplets in clouds, up to 0.1 mm diameter, the drag force is
specified by Stokes' law for which the drag coefficient is Cd = 24/Re, where Re is
the Reynolds number paVD//jLa with /jua being the air viscosity. Falling raindrops
are beyond the range of Stokes' law; values of Cd developed experimentally by
observation of raindrops are given in Table 3.3.1.

Example 3.3.1. Calculate the terminal velocity of a 1-mm-diameter raindrop falling
in still air at standard atmospheric pressure (101.3 kP&) and temperature 200C.

Solution. The terminal velocity is given by Eq. (3.3.4) with Cd= 0.671 from
Table 3.3.1. At 200C, pw = 998 kg/m3, and pa = 1.20 kg/m3 at pressure 101.3
kPa:

Vt~bcd[Pa
 1JJ

U x 9.81 x 0,001/998 \~|1/2

~|_ 3x0.671 11.20 /J

= 4.02 m/s

Values of Vt similarly computed for various diameters are plotted in Fig.
3.3.3. It can be seen that the terminal velocity increases with drop size up to
a plateau level of about 5 mm drop size, for which the terminal velocity is
approximately 9 m/s.

TABLE 3.3.1
Drag coefficients for spherical raindrops of diameter
D9 at standard atmospheric pressure (101.3 kPa) and
200C air temperature

Drop diameter D (mm) 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 5.0

Drag coefficient Cd 4.2 1.66 1.07 0.815 0.671 0.517 0.503 0.559 0.660

Source: Mason, 1957, Table 8.2, p. 436.



The preceding computations are for sea level conditions. Higher in the
atmosphere, the air density pa decreases, and Eq. (3.3.4) shows that there will be
a corresponding increase in Vt\ raindrops fall faster in thinner air. At air pressure
50 kP& and temperature -100C, the plateau velocity of large drops increases from
9 m/s to a little more than 12 m/s.

Thunderstorm Cell Model

The mechanisms underlying air mass lifting and precipitation are illustrated by
considering a schematic model of a thunderstorm cell, as shown in Fig. 3.3.4.
The thunderstorm is visualized as a vertical column made up of three parts, an
inflow region near the ground where warm, moist air is drawn into the cell,
an uplift region in the middle where moisture condenses as air rises, producing
precipitation, and an outflow region in the upper atmosphere where outflow of
cooler, dryer air occurs. Outside the cell column, the outflow air may descend
over a wide area, pick up more moisture, and reenter the cell at the bottom. This
entire pattern, called convective cell circulation, is driven by the vast amount of

FIGURE 3.3.3
Terminal velocity of raindrops as calculated
from Eq. (3.3.4) using drag coefficients
in Table (3.3.1). Results are for standard
atmospheric conditions at sea level.Raindrop size (mm)

FIGURE 3.3.4
A convective thunderstorm cell visualized
as a cylindrical column of diameter
D having inflow, uplift, and outflow
regions.
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heat energy released by the condensing moisture in the uplift region. Observations
of cumulonimbus clouds producing thunderstorms indicate that the elevation of
the top of the convective cell ranges from 8 km to 16 km (5 to 10 mi) in the
atmosphere (Wiesner, 1970), and at times the tops of these clouds may even
penetrate through the tropopause into the stratosphere.

The thunderstorm is analyzed using the continuity equation for water vapor:

kv = JtJ J J qvPa dV+\\ qvPa V'dA (33'5)
CV. CS.

If precipitation of intensity / (in/h or cm/h) is falling on an area A beneath the
storm cell, the mass flow rate of water leaving the cell is mv = —pwiA, where
pw is the density of liquid water. Under the assumption of steady flow, the time
derivative term in (3.3.5) is zero, and the mass flow rate of precipitation is equal
to the difference between the mass flow rates of water vapor entering the cell (1)
and leaving (2) (see Fig. 3.3.4), so

-PwiA = J J qvPa\'dA + J J 4vPaV-dA (3.3.6)
2 1

The cell is a cylinder of diameter D, and air enters through height increment
Az i and leaves through height increment Az2- If air density and specific humidity
are assumed constant within each increment (in the manner shown in Example
3.2.2), then

pJA = ^PaV)1TTDAZi - (qvpaV)27TDAz2 (3.3.7)

A continuity equation may be written similarly for the dry air carrying the vapor:

0 = J J p^V-dA (3.3.8)
CS.

where pj is the density of dry air, which may be expressed using Eq. (3.2.1) as
Pd = Pa(I ~~ Qv)- Substituting into (3.3.8):

0 = [pa(l - ^)VAz]2TrD - [pa(l - ^)VAz]1TrD

or

(P^VAz)2 = (PaVAz)1 \\—^\ (3.3.9)

Substituting (3.3.9) into (3.3.7) and noting that the area on which precipitation
is falling is A = (TT/4)D2 , it follows that

pwD \ 1 - qV21

Example 3.3.2 A thunderstorm cell 5 km in diameter has a cloud base of 1.5 km,
and surface conditions recorded nearby indicate saturated air conditions with air



temperature 300C, pressure 101.3 kPa, and wind speed 1 m/s. Assuming a lapse rate
of 7.5°C/km and an average outflow elevation of 10 km, calculate the precipitation
intensity from this storm. Also determine what proportion of the incoming moisture
is precipitated as air passes through the storm cell and calculate the rate of release
of latent heat through moisture condensation in the column.

Solution. The precipitation intensity is given by (3.3.10) where V\ = 1 m/s, Az i =
1500 m,pw — 1000 kg/m3, and D = 5000 m. The quantities p f l l,#Vl,and qV2 are
found by the method outlined in Ex. 3.2.2 using a = 0.0075°C/m for the lapse rate.
A table may be set up for the required values at z = 0 , 1.5, and 10 km.

Elevation Temperature Air Air Vapor Specific
Pressure Density Pressure Humidity

(km) (0C) (K) (kPa) (kg/m3) (kPa) (kg/kg)

0 30 303 101.3 1.16 4.24 0.0261

1.5 19 292 85.6 1.02 2.20 0.0160

10 -45 228 27.7 0.42 0.01 0.0002

From the table, qV2 = 0.0002 kg/kg; the values for pa,and qV{ are taken
as averages between 0 and 1.5 km: pai = (1.16 + 1.02)/2 = 1.09 kg/m3, and
qVl = (0.0261 + 0.0160)/2 = 0.021 kg/kg. Substituting into (3.3.10):

^4Pa1V1AzJqV1 -tfv2\

PwD \ l - 4 v j
4 x 1.09 x 1 x 1500/0.0210 - 0.0002\

1000 x 5000 I 1 - 0.0002 /

= 2.72 x 10"5 m/s

= 9.8 cm/h

The mass flow rate of precipitation is given by mp = pwiA, where A =
(IT/4)D2 = (TT/4) X 50002 = 1.96 x 107 m2 and pw = 1000 kg/m3; mp = 1000 x
2.72 x 10"5 x 1.96 x 107 = 5.34 x 105 kg/s.

The mass flow rate of incoming moisture is given by

Wv1=(P^vVAz)ITrD

= 1.09 x 0.021 x 1.00 x 1500 X T T X 5000

= 5.39 x 105 kg/s

The proportion of the incoming moisture precipitated is mp/mVl = (5.34 x
105)/(5.39 x 105) = 0.99!

The rate of release of latent heat due to moisture condensation is / vmp, where
lv is the latent heat of vaporization of water, 2.5 x 106 J/kg:

Zvrop = 2.5 x 10 6 x 5.34 x 105

= 1.335 x 101 2W



= 1,335,000 MW

This heat energy can be compared to large thermal power plants, which may have
a capacity of 3000 MW. It can be seen that the energy released in thunderstorms
is immense.

Variability of Precipitation

Precipitation varies in space and time according to the general pattern of atmo-
spheric circulation and according to local factors. The average over a number
of years of observations of a weather variable is called its normal value. Figure
3.3.5 shows the normal monthly precipitation for a number of locations in the
United States. Higher precipitation occurs near the coasts than inland because the
oceans supply the bulk of the atmospheric moisture for precipitation. Areas to
the east of the Cascade mountains (e.g., Boise, Idaho) have lower precipitation
than those to the west (e.g., Seattle, Washington) because much of the moisture
in the predominantly westerly air flow in the mid-latitudes is extracted as the air
rises over the mountains.

Pronounced seasonal variation in precipitation occurs where the annual
oscillation in the atmospheric circulation changes the amount of moisture inflow
over those regions (e.g., San Francisco and Miami). This pattern is illustrated in
Fig. 3.3.6, which shows the normal monthly precipitation for various locations in
the United States. Precipitation is very variable in the mountain states in the west
where orographic effects influence precipitation. Precipitation increases going east
across the great plains and is spatially more uniform in the east than in the west.
Precipitation variability for the world is shown in Fig. 3.3.7. The average annual
precipitation on the land surface of the earth is about 800 mm (32 in), but great
variability exists, from Arica, Chile, with an annual average of 0.5 mm (0.02
in) to Mt. Waialeale, Hawaii, which receives 11,680 mm (460 in) per year on
average.

3.4 RAINFALL

Rainstorms vary greatly in space and time. They can be represented by isohyetal
maps; an isohyet is a contour of constant rainfall. Figure 3.4.1 shows an isohyetal
map of total rainfall depth measured for two storms: one a storm of May 30-June
1, 1889, which caused about 2000 deaths in Johnstown, Pennsylvania, following
a dam failure, and the other a storm of May 24-25, 1981, in Austin, Texas, which
caused 13 deaths and $35 million in property damage (Moore, et al., 1982). The
Johnstown storm is plotted on a scale 50 times larger than the Austin storm. The
maximum depth of precipitation in both storms is nearly the same (~ 10 in), but
the Austin storm was briefer and more localized than the Johnstown storm. The
Austin storm was caused by a convective cell thunderstorm of the type analyzed
in Example 3.3.2.

Isohyetal maps are prepared by interpolating rainfall data recorded at gaged
points. A rain gage record consists of a set of rainfall depths recorded for



FIGURE 3.3.5
Mean annual precipitation in the U.S.A. in inches (1 in = 25.4 mm). (Adapted from Climatic Atlas of the U.S., U.S. Environmental
Data Service, U.S.G.P.O., pp. 43-44, June, 1968.)
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FIGURE 3.3.6
Normal monthly distribution of precipitation in the U. S. A. in inches (1 in = 25.4 mm). (Adapted from Climatic Atlas of the U.S., U.S.
Environmental Data Service, U.S.G.P.O., pp. 43^44, June, 1968.)
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FIGURE 3.3.7
Mean annual precipitation of the world in millimeters (lmm = 0.04 in ). (Sheet 1/2 from the Atlas of the World Water Balance.
copyright UNESCO, 1977)



FIGURE 3.4.1
Isohyetal maps for two storms. The storms have about the same maximum depth of point rainfall,
but the Johnstown storm covered a much larger area and had a longer duration than did the Austin
storm.

successive increments in time, as shown in Table 3.4.1 for the data in 5-minute
increments from gage 1-Bee in the Austin storm. A rainfall hyetograph is a plot of
rainfall depth or intensity as a function of time, shown in the form of a histogram
in Fig. 3.4.2(a) for the 1-Bee data. By summing the rainfall increments through
time, a cumulative rainfall hyetograph, or rainfall mass curve, is produced, as
shown in Table 3.4.1 and Fig. 3.4.2(Z?).

The maximum rainfall depth, or intensity, (depth/time) recorded in a given
time interval in a storm is found by computing a series of running totals of rainfall
depth for that time interval starting at various points in the storm, then selecting
the maximum value of this series. For example, for a 30-minute time interval,
Table 3.4.1 shows running totals beginning with 1.17 inches recorded in the first

{b) Storm of May 24—25, 1981, in Austin, Texas.
Maximum rainfall of 11 in. recorded over 3 hours.
Isohyets are in inches depth of total rainfall in the
storm. {Source: Massey, Reeves, and Lear, 1982.)

(a) Storm of May 30—June 1, 1889, which
produced the Johnstown flood in Pennsylvania.
Maximum rainfall of 9.8 in. recorded over 18 hour
period at Wellsboro, Pennsylvania. Isohyets are in
inches depth of total rainfall in the storm. (Source:
U.S. Army Corps of Engineers, 1943.)
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TABLE 3.4.1
Computation of rainfall depth and intensity at a point

Running Totals
Time Rainfall Cumulative
(min) (in) rainfall 30 min Ih 2 h

0 0.00
5 0.02 0.02
10 0.34 0.36
15 0.10 0.46
20 0.04 0.50
25 0.19 0.69
30 0.48 1.17 1.17
35 0.50 1.67 1.65
40 0.50 2.17 1.81
45 0.51 2.68 2.22
50 0.16 2.84 2.34
55 0.31 3.15 2.46
60 0.66 3.81 2.64 3.81
65 0.36 4.17 2.50 4.15
70 0.39 4.56 2.39 4.20
75 0.36 4.92 2.24 4.46
80 0.54 5.46 2.62 4.96
85 0.76 6.22 3.07 5.53
90 0.51 6.73 2.92 5.56
95 0.44 7.17 3.00 5.50
100 0.25 7.42 2.86 5.25
105 0.25 7.67 2.75 4.99
110 0.22 7.89 2.43 5.05
115 0.15 8.04 1.82 4.89
120 0.09 8.13 1.40 4.32 8.13
125 0.09 8.22 1.05 4.05 8.20
130 0.12 8.34 0.92 3.78 7.98
135 0.03 8.37 0.70 3.45 7.91
140 0.01 8.38 0.49 2.92 7.88
145 0.02 8.40 0.36 2.18 7.71
150 0.01 8.41 0.28 1.68 7.24

Max. depth 0.76 3.07 5.56 8.20
Max. intensity

(in/h) 9.12 6.14 5.56 4.10

30 minutes, 1.65 inches from 5 min to 35 min, 1.81 inches from 10 min to 40
min, and so on. The maximum 30 minute recorded depth is 3.07 inches recorded
between 55 min and 85 min, corresponding to an average intensity of 3.07 in/0.5
h = 6.14 in/h over this interval. Table 3.4.1 shows similarly computed maximum
depths and intensities for one and two-hour intervals. It can be seen that as the
time period increases, the average intensity sustained by the storm decreases (5.56
in/h for one hour, 4.10 in/h for two hours), just as the average intensity over
an area decreases as the area increases, as shown in Fig. 3.4.1. Computations



Time in minutes

(b)
FIGURE 3.4.2
Incremental and cumulative rainfall hyetographs at gage 1-Bee for storm of May 24-25, 1981 in
Austin, Texas.

of maximum rainfall depth and intensity performed in this way give an index
of how severe a particular storm is, compared to other storms recorded at the
same location, and they provide useful data for design of flow control structures.
An important fact to be determined from historical rainfall records is the average
depth of rainfall over an area such as a watershed.
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Areal Rainfall

The arithmetic-mean method is the simplest method of determining areal average
rainfall. It involves averaging the rainfall depths recorded at a number of gages
[Fig. 3.4.3(<z)]. This method is satisfactory if the gages are uniformly distributed
over the area and the individual gage measurements do not vary greatly about the
mean.

If some gages are considered more representative of the area in question
than others, then relative weights may be assigned to the gages in computing the
areal average. The Thiessen method assumes that at any point in the watershed
the rainfall is the same as that at the nearest gage so the depth recorded at a given
gage is applied out to a distance halfway to the next station in any direction.
The relative weights for each gage are determined from the corresponding areas
of application in a Thiessen polygon network, the boundaries of the polygons
being formed by the perpendicular bisectors of the lines joining adjacent gages
[Fig. 3.4.3(6)]. If there are / gages, and the area within the watershed assigned
to each is Aj9 and Pj is the rainfall recorded at the 7th gage, the areal average
precipitation for the watershed is

P=7l¥i (3.4.1)
Aj = i

where the watershed area A = S j=lAj. The Thiessen method is generally more

• Pi

Station Observed rainfall within
or close to the area

(mm or in)

P 2 20.0

P 3 30.0

P 4 40.0

P 5 50.0

140.0

Average rainfall = 140.0/4 = 35.0 mm or in

FIGURE 3.4.3(a)
Computation of areal average rainfall by the arithmetic-mean method.



accurate than the arithmetic mean method, but it is inflexible, because a new
Thiessen network must be constructed each time there is a change in the gage
network, such as when data is missing from one of the gages. Also, the Thiessen
method does not directly account for orographic influences on rainfall.

The isohyetal method overcomes some of these difficulties by constructing
isohyets, using observed depths at rain gages and interpolation between adjacent
gages [Fig. 3.4.3(c)]. Where there is a dense network of raingages, isohyetal
maps can be constructed using computer programs for automated contouring.
Once the isohyetal map is constructed, the area Aj between each pair of isohyets,
within the watershed, is measured and multiplied by the average Pj of the rainfall
depths of the two boundary isohyets to compute the areal average precipitation by
Eq. (3.4.1). The isohyetal method is flexible, and knowledge of the storm pattern
can influence the drawing of the isohyets, but a fairly dense network of gages is
needed to correctly construct the isohyetal map from a complex storm.

Other methods of weighting rain gage records have been proposed, such
as the reciprocal-distance-squared method in which the influence of the rainfall
at a gaged point on the computation of rainfall at an ungaged point is inversely
proportional to the distance between the two points (Wei and McGuinness, 1973).
Singh and Chowdhury (1986) studied the various methods for calculating areal
average precipitation, including the ones described here, and concluded that all
the methods give comparable results, especially when the time period is long;

Observed Weighted
Station rainfall Area rainfall

(mm or in) (km2or mi2) (mm or in)

P 1 10.0 0.22 2.2

P 2 20.0 4.02 80.4

P 3 30.0 1.35 40.5

P 4 40.0 1.60 64.0

P 5 50.0 1.95 97.5

9.14 284.6

Average rainfall = 284.6/9.14 = 31.1 mm or in

FIGURE 3.4.3(fc)
Computation of areal average rainfall by the Thiessen method.



Isohyets Area Average Rainfall
enclosed rainfall volume

(mm or in) (km2or mi2) (mm or in)

0.88 5* 4.4
10

1.59 15 23.9
20

2.24 25 56.0
30

3.01 35 105.4
40

1.22 45 54.9
50

0.20 53* 10.6

9.14 255.2

*Estimated.

Average rainfall = 255.2 / 9.14 = 27.9 mm or in

FIGURE 3.4.3(c)
Computation of areal average rainfall by the isohyetal method.

that is, the different methods vary more from one to another when applied to
daily rainfall data than when applied to annual data.

3.5 EVAPORATION

The two main factors influencing evaporation from an open water surface are
the supply of energy to provide the latent heat of vaporization and the ability to
transport the vapor away from the evaporative surface. Solar radiation is the main
source of heat energy. The ability to transport vapor away from the evaporative
surface depends on the wind velocity over the surface and the specific humidity
gradient in the air above it.

Evaporation from the land surface comprises evaporation directly from the
soil and vegetation surface, and transpiration through plant leaves, in which
water is extracted by the plant's roots, transported upwards through its stem,
and diffused into the atmosphere through tiny openings in the leaves called
stomata. The processes of evaporation from the land surface and transpiration
from vegetation are collectively termed evapotranspiration. Evapotranspiration is



FIGURE 3.5.1
Control volume defined for continuity
and energy equation development for an
evaporation pan.

influenced by the two factors described previously for open water evaporation, and
also by a third factor, the supply of moisture at the evaporative surface. The
potential evapotranspiration is the evapotranspiration that would occur from a
well vegetated surface when moisture supply is not limiting, and this is calculated

, in a way similar to that for open water evaporation. Actual evapotranspiration
drops below its potential level as the soil dries out.

Energy Balance Method

To develop the continuity and energy equations applicable for evaporation, con-
sider evaporation from an evaporation pan as shown in Fig. 3.5.1. An evapora-
tion pan is a circular tank containing water, in which the rate of evaporation is
measured by the rate of fall of the water surface. A control surface is drawn
around the pan enclosing both the water in the pan and the air above it.

Continuity. Because the control volume contains water in both the liquid and
vapor phases, the integral continuity equation must be written separately for the
two phases. For the liquid phase, the extensive property is B = mass of liquid
water; /3 = l , p = pw (the density of water), and dBldt = - w v , which is the mass
flow rate of evaporation . The continuity equation for the liquid phase is

-mv = I J J J PwdV + J J PwV-dA (3.5.1)
CV. CS.

The pan has impermeable sides, so there is no flow of liquid water across
the control surface and J/pwV-dA = 0. The rate of change of storage within the

Heat conducted to ground

AreaA

Control
surface

Vapor flow rate
m v = PWAE

Net radiation
Rn

Sensible
heat to air

Hs



system is given by (d/dt) JffpwdV — PwA dh/dt, where A is the cross-sectional
area of the pan and h is the depth of water in it. Substituting into (3.5.1):

tdh\

or

mv = PwAE (3.5.2)

where E = —dhldt is the evaporation rate.
For the vapor phase, B = mass of water vapor; /3 = qv, the specific humidity,

p — pa, the air density, and dBldt = mv, so the continuity equation for this phase
is

mv = j-J J J qvPadV + J J qvPaV-dA (3.5.3)
CV. CS.

For a steady flow of air over the evaporation pan, the time derivative of water
vapor stored within the control volume is zero. Thus, after substituting for mv

from (3.5.2), (3.5.3) becomes

pwAE = J J ^ V - d A (3.5.4)
CS.

which is the continuity equation for an evaporation pan, considering both water
and water vapor. In a more general sense, (3.5.4) can be used to define the
evaporation or evapotranspiration rate from any surface when written in the form

E - (^)I /"* y - d A <3-5»
where E is the equivalent depth of water evaporated per unit time (in/day or
mm/day).

Energy. The heat energy balance of a hydrologic system, as expressed by
Eq. (2.7.4) can be applied to the water in the control volume:

dH dW d f f (7 I 2 \

CV.

+ J J k + ̂ V2 + gjpV-dA (3.5.6)

where dHldt is the rate of heat input to the system from external sources, dWldt



is the rate of work done by the system (zero in this case), eu is the specific
internal heat energy of the water, and the two terms on the right hand side are,
respectively, the rate of change of heat energy stored in the control volume and
the net outflow of heat energy carried across the control surface with flowing
water. Because V = 0 for the water in the evaporation pan, and the rate of change
of its elevation, z, is very small, (3.5.6) can be simplified to

f = i\\\e^dV (3-5-7)
CV.

Considering a unit area of water surface, the source of heat energy is net
radiation flux Rn, measured in watts per meter squared; the water supplies a
sensible heat flux H8 to the air stream and a ground heat flux G to the ground
surface, so dHldt = Rn- Hs - G. If it is assumed that the temperature of the
water within the control volume is constant in time, the only change in the heat
stored within the control volume is the change in the internal energy of the water
evaporated, which is equal to /vmv, where /v is the latent heat of vaporization.
Hence, (3.5.7) can be rewritten as

Rn-H3-G = lvmv (3.5.8)

By substituting for mv from (3.5.2) with A = I m2, (3.5.8) may be solved for E:

E = ̂ -(Rn-H3-G) (3.5.9)
hPw

which is the energy balance equation for evaporation. If the sensible heat flux
Hs and the ground heat flux G are both zero, then an evaporation rate Er can
be calculated as the rate at which all the incoming net radiation is absorbed by
evaporation:

Er = -^- (3.5.10)
hPw

Example 3.5.1. Calculate by the energy balance method the evaporation rate from
an open water surface, if the net radiation is 200 W/m2 and the air temperature is
25°C, assuming no sensible heat or ground heat flux.

Solution. From (2.7.6) the latent heat of vaporization at 25°C is / v = 2500 - 2.36 x
25 = 2441 kJ/kg. From Table 2.5.2, water density pw=991 kg/m3, and substitution
into (3.5.10) gives

200
r~2441 x 103 x 997

= 8.22 x 10"8m/s

= 8.22 x 10"8 x 1000 x 86400 mm/day

= 7.10 mm/day



FIGURE 3.5.2
Evaporation from an open water surface.

Aerodynamic Method

Besides the supply of heat energy, the second factor controlling the evaporation
rate from an open water surface is the ability to transport vapor away from the
surface. The transport rate is governed by the humidity gradient in the air near
the surface and the wind speed across the surface, and these two processes can
be analyzed by coupling the equations for mass and momentum transport in air.

In the control volume shown in Fig. 3.5.2, consider a horizontal plane of
unit area located at height z above the surface. The vapor flux mv passing upward
by convection through this plane is given by the equation (from Table 2.8.1 with
c = qv):

mv= -PaKw^ (3.5.11)
dz

where Kw is the vapor eddy diffusivity. The momentum flux upward through the
plane is likewise given by an equation from Table 2.8.1:

du
T= PaKm-T (3.5.12)

dz

Suppose the wind velocity u\ and specific humidity qVx are measured at
elevation zi , and u2 and qV2 at elevation z2, the elevations being sufficiently close
that the transport rates mv and rare constant between them. Then the substitutions
dqjdz = (qV2 ~~ qvx)l(z>2 ~ Zi) and duldz = (u2 - ui)/(z2 - Zi) can be made in
(3.5.11) and (3.5.12), respectively, and a ratio of the resulting equations taken
to give

mv _ Kw(qV2 — qV{)

T K1n(U2 - U1)

or
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Kw(qVl ~ qV2) 1̂ . n ,
mv = r—- (3.5.13)

Km{u2 ~ Ux)

The wind velocity in the boundary layer near the earth's surface (up to about
50 m) is well described by the logarithmic profile law [Eq. (2.8.5)]

-*=~AA (3.5.14)
u k \zo)

where w* = shear velocity= ^JTI pa, k is the von Karman constant, usually taken
as 0.4, and zo is the roughness height of the surface given in Table 2.8.2. Hence,

and

* ^kJu2 ~ U1)

In (z2/Zi)

But u = ^Jr/pa by definition, hence

Jk(U2-Ui)]2

Substituting this result into (3.5.13) and rearranging gives

Kwk2pa(qVl - qV2)(u2 - ux)
mv = - (3.5.15)

Krn[In(Z2Iz1)]

which is the Thornthwaite-Holzman equation for vapor transport, first developed
by Thornthwaite and Holzman (1939). In application it is usually assumed that the
ratio KJKm = 1 and is constant. Thornthwaite and Holzman set up measurement
towers to sample qv and u at different heights and computed the corresponding
evaporation rate, and many subsequent investigators have made similar experi-
ments.

For operational application where such apparatus is not available and mea-
surements of qv and u are made at only one height in a standard climate sta-
tion, Eq. (3.5.15) is simplified by assuming that the wind velocity M1 = 0 at
the roughness height Zi = ZQ and that the air is saturated with moisture there.
From Eq. (3.2.6), qv = 0.622 e/p, where e is the vapor pressure and p is the
ambient air pressure (the same at both heights), so measurements of vapor pres-
sure can be substituted for those of specific humidity. At height z2, the vapor
pressure is ea, the ambient vapor pressure in air, and the vapor pressure at
the surface is taken to be e aS9 the saturated vapor pressure corresponding to
the ambient air temperature. Under these assumptions (3.5.15) is rewritten as



mv=0.622kiPa(eas-ea)u2 ^ ^

p[ln(z2/zo)\

Recalling that mv is defined here for a unit area of surface, an equivalent
evaporation rate Ea, expressed in dimensions of [L/T], can be found by setting
mv = pwEa in (3.5.16) and rearranging:

Ea=B(eas-ea) (3.5.17)

where

B= 0 - 6 m ^ 2
 2 (3.5.18)

PPw[In(Z2^o)]

Eq. (3.5.17) is a common basis for many evaporation equations, with the form
of the vapor transfer coefficient B varying from one place to another. This type
of equation was first proposed by Dalton in 1802.

Example 3.5.2 Calculate the evaporation rate from an open water surface by the
aerodynamic method with air temperature 25°C, relative humidity 40 percent, air
pressure 101.3 kPa, and wind speed 3 m/s, all measured at height 2 m above the
water surface. Assume a roughness height ZQ = 0.03 cm.

Solution. The vapor transfer coefficient B is given by (3.5.18), using k = 0.4, pa =
1.19 kg/m3 for air at 25°C, and pw = 997 kg/m3. Hence

D — ~

ppw[\n(z2/zo)}

0.622 x 0.42x 1.19 x 3

101.3 x 103 x 997{ln [2/(3 x 10"4)]}2

= 4.54 x 10"11 m/fti-s

The evaporation rate is given by (3.5.17), using eas = 3167 Pa at 25°C from Table
(3.2.1) and, from (3.2.11), ea = Rheas = 0.4 x 3167 = 1267 Pa:

Ea = B(eas - ea)

= 4.54 x 10"n(3167- 1267)

= 8.62 x 10~8 m/s

= 8.62 x 1 0 - x ( I M i ^ E ) x (8640O1)
\ I m / I day J

= 7.45 mm/day

Combined Aerodynamic and Energy Balance Method

Evaporation may be computed by the aerodynamic method when energy supply
is not limiting and by the energy balance method when vapor transport is not



limiting. But, normally, both of these factors are limiting, so a combination of
the two methods is needed. In the energy balance method, the sensible heat flux
Hs is difficult to quantify. But since the heat is transferred by convection through
the air overlying the water surface, and water vapor is similarly transferred by
convection, it can be assumed that the vapor heat flux ijUv and the sensible heat
flux Hs are proportional, the proportionality constant being called the Bowen ratio
p (Bowen, 1926):

j 3 = - ^ - (3.5.19)

The energy balance equation (3.5.9) with ground heat flux G = O can then be
written as

Rn = lvmv(\ + (S) (3.5.20)

The Bowen ratio is calculated by coupling the transport equations for vapor
and heat, this is similar to the coupling of the vapor and momentum transport
equations used in developing the Thornthwaite-Holzman equation. From Table
2.8.1, the transport equations for vapor and heat are

mv = -PaKw^ (3.5.21)
dz

Hs = -PaCpKh^ (3.5.22)

where Cp is the specific heat at constant pressure and Kn is the heat diffusivity.
Using measurements of qv and T made at two levels z \ and z 2 and assuming the
transport rate is constant between these levels, division of (3.5.22) by (3.5.21)
gives

H1 = CpKn(T2 - Ti) ^ 5 23^
mv Kw(qV2 - qVl)

Dividing (3.5.23) by /v and substituting 0.622 elp for qv provides the expression
for the Bowen ratio /3 from (3.5.19)

B= CpKhp(T2 - T1)
P 0.622lvKw(e2-ei)

or

P= jl1^1) (3.5.24)

where y is the psychrometric constant

^oMik (3-5-25)



The ratio Kt1IKw of the heat and vapor diffusivities is commonly taken to be 1
(Priestley and Taylor, 1972).

If the two levels 1 and 2 are taken at the evaporative surface and in
the overlying air stream, respectively, it can be shown that the evaporation
rate Er computed from the rate of net radiation [as given by Eq. (3.5.10)] and
the evaporation rate computed from aerodynamic methods [Eq. (3.5.17)] can be
combined to yield a weighted estimate of evaporation E, by

E = -r^—Er + -T^—Ea (3.5.26)
A + y A + y

where y is the psychrometric constant and A is the gradient of the saturated vapor
pressure curve at air temperature Ta, as given by (3.2.10); the weighting factors
A/(A + y) and y/(A + y) sum to unity. Equation (3.5.26) is the basic equation
for the combination method of computing evaporation, which was first developed
by Penman (1948). Its derivation is lengthy (see Wiesner, 1970), and will not be
presented here.

The combination method of calculating evaporation from meteorological
data is the most accurate method when all the required data are available and the
assumptions are satisfied. The chief assumptions of the energy balance are that
steady state energy flow prevails and that changes in heat storage over time in
the water body are not significant. This assumption limits the application of the
method to daily time intervals or longer, and to situations not involving large
heat storage capacity, such as a large lake possesses. The chief assumption of the
aerodynamic method is associated with the form of the vapor transfer coefficient
B in Eq. (3.5.17). Many empirical forms of B have been proposed, locally fitted
to observed wind and other meteorological data.

The combination method is well suited for application to small areas with
detailed climatological data. The required data include net radiation, air temper-
ature, humidity, wind speed, and air pressure. When some of these data are
unavailable, simpler evaporation equations requiring fewer variables must be used
(American Society of Civil Engineers, 1973; Doorenbos and Pruitt, 1977). For
evaporation over very large areas, energy balance considerations largely govern
the evaporation rate. For such cases Priestley and Taylor (1972) found that the
second term of the combination equation (3.5.26) is approximately 30 percent
of the first, so that (3.5.26) can be rewritten as the Priestley-Taylor evaporation
equation

E = cc-^-Er (3.5.27)
A + y

where a= 1.3. Other investigators have confirmed the validity of this approach,
with the value of a varying slightly from one location to another.

Pan evaporation data provide the best indication of nearby open water
evaporation where such data are available. The observed values of pan evaporation
Ep are multiplied by a pan factor kp (0 < kp ̂  1) to convert them to equivalent
open water evaporation values. Usually kp ~ 0.7, but this factor varies by season
and location.



The formulas for the various methods of calculating evaporation are sum-
marized in Table 3.5.1.

Example 3.5.3. Use the combination method to calculate the evaporation rate from
an open water surface subject to net radiation of 200 W/m2, air temperature 25°C,
relative humidity 40 percent, and wind speed 3 m/s, all recorded at height 2 m, and
atmospheric pressure 101.3 kPa.

Solution. From Example 3.5.1 the evaporation rate corresponding to a net radiation
of 200 W/m2 is Er = 7.10 mm/day, and from Example 3.5.2, the aerodynamic
method yields Ea = 7.45 mm/day for the given air temperature, humidity, and
wind speed conditions. The combination method requires values for A and y in
Eq. (3.5.26). The psychrometric constant y is given by (3.5.25), using Cp = 1005
J/kg-K for air, KhIKw = 1.00, and /v = 2441 x 103 J/kg at 25°C (from Example
3.5.1):

1 0.622lvKw

1005 x 1.00 x 101.3 x IQ3

0.622 x 2441 x 103

= 67.1 FaJ0C

A is the gradient of the saturated vapor pressure curve at 25°C, given by (3.2.10)
with es = eas = 3167 Pa for T = 25°C:

4098e,
(237.3 4- T)2

4098 x 3167
" (237.3 + 25)2

= 188.7 P&/OC

The weights in the combination equation, then, are y/(A + y) = 67.1/(188.7 +
67.1) = 0.262 and A/(A + y) = 188.7/(188.7 + 67.1) = 0.738. The evaporation
rate is then computed by (3.5.26):

p =—^—p I J_—p

A + y A + y

= 0.738 x 7.10 + 0.262X7.45

= 7.2 mm/day

Example 3.5.4 Use the Priestley-Taylor method to calculate the evaporation rate
for a water body with net radiation 200 W/m2 and air temperature 25°C.

Solution. The Priestley-Taylor method uses Eq. (3.5.27) with Er = 7.10 mm/day
from Example 3.5.1, A/(A + y) = 0.738 at 25°C from Example 3.5.3, and a =
1.3. Hence,

A
E = a——ErA + y



TABLE 3.5.1
Summary of equations for calculating evaporation*

(1) Energy balance method

Er = 0.0353/?n (mm/day)

where

Rn = net radiation (W/m2)

(2) Aerodynamic method

Ea = B(eas - ea) (mm/day)

where

0.102w2B = - (mm/day • Pa)

Rs)]
U2 is wind velocity (m/s) measured at height Z1 (cm), and
Zo is from Table 2.8.2. Also,

/ 17 277 \
^ = 6 1 1 e x p ( 2 ^ T T r ) (pa)

T=air temperature (0C)

ea=Rheas (Pa)

in which Rh is the relative humidity (0 </?/,< 1).

(3) Combination method

E=-—~Er + T^—Ea (mm/day)A 4- y A + y

where

and

7=66.8 (Pa/°C)

(4) Priestley-Taylor method

IT A r.

A + y

where a = 1.3
The values shown are valid for standard atmospheric pressure and air tem-

perature 20°C.



= 1.3 x 0.738 x 7.10

= 6.8 mm/day

which is close to the result from the more complicated combination method shown
in the previous example.

3.6 EVAPOTRANSPIRATION

Evapotranspiration is the combination of evaporation from the soil surface and
transpiration from vegetation. The same factors governing open water evaporation
also govern evapotranspiration, namely energy supply and vapor transport. In
addition, a third factor enters the picture: the supply of moisture at the evaporative
surface. As the soil dries out, the rate of evapotranspiration drops below the level
it would have maintained in a well watered soil.

Calculations of the rate of evapotranspiration are made using the same meth-
ods described previously for open water evaporation, with adjustments to account
for the condition of the vegetation and soil (Van Bavel, 1966; Monteith, 1980).
For given climatic conditions, the basic rate is the reference crop evapotranspira-
tion, this being "the rate of evapotranspiration from an extensive surface of 8 cm
to 15 cm tall green grass cover of uniform height, actively growing, completely
shading the ground and not short of water" (Doorenbos and Pruitt, 1977).

Comparisons of computed and measured values of evapotranspiration have
been made at many locations by the American Society of Civil Engineers (1973)
and by Doorenbos and Pruitt (1977). They concluded that the combination method
of Eq. (3.5.26) is the best approach, especially if the vapor transport coefficient
B in Eq. (3.5.18) is calibrated for local conditions. For example, Doorenbos and
Pruitt recommend

5 = 0.0027(l + j^j (3.6.1)

in which B is in mm/day-Pa and u is the 24-hour wind run in kilometers per day
measured at height 2 m. The 24-hr wind run is the cumulative distance a particle
would move in the airstream in 24 hours under the prevailing wind conditions.
Note that the dimensions of u given here are not meters per second as used in the
equation for B given in Table 3.5.1, but the resulting value of Ea is in millimeters
per day in both cases.

The potential evapotranspiration of another crop growing under the same
conditions as the reference crop is calculated by multiplying the reference crop
evapotranspiration Etr by a crop coefficient kc, the value of which changes with
the stage of growth of the crop. The actual evapotranspiration Et is found by
multiplying the potential evapotranspiration by a soil coefficient ks (0 < ks.< 1):

Et = kskcEtr (3.6.2)

The values of the crop coefficient kc vary over a range of about 0.2 < kc ^
1.3, as shown in Fig. 3.6.1 (Doorenbos and Pruitt, 1977). The initial value of kc,



for well-watered soil with little vegetation, is approximately 0.35. As the vegeta-
tion develops, kc increases to a maximum value, which can be greater than 1 for
crops with large vegetative cover, such as corn, which transpire at a greater rate
than grass. As the crop matures or ripens, its moisture requirements diminish. The
precise shape of the crop coefficient curve varies with the agricultural practices
of a region, such as the times of plowing and harvest. Some vegetation, such as
orchards or permanent ground cover, may not exhibit all the growth stages shown
in Fig. 3.6.1.

Example 3.6.1. (From Gouevsky, Maidment, and Sikorski, 1980) The monthly
values of reference crop evapotranspiration Etr, calculated using the combination

Stages of crop growth

Stage Crop condition

1 Initial stage — less than 10% ground cover.

2 Development stage — from initial stage to attainment
of effective full ground cover (70 - 80%).

3 Mid-season stage — from full ground cover to
maturation.

4 Late season stage — full maturity and harvest.

FIGURE 3.6.1
The relationship between the crop coefficient kc and the stage of crop growth.
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method, for average conditions in Silistra, Bulgaria, are shown in the
table below. The crop coefficients for corn (see Fig. 3.6.1) are k\ =
0.38,^2 = I-OO, and Jc3 = 0.55; tx = April 1, f2 = June 1, ^3 = JuIy 1 , ^ =
September 1, and t$ = October 1. Calculate the actual evapotranspiration
from this crop assuming a well-watered soil.

Solution.

Month Apr May Jun JuI Aug Sep Oct Apr-Oct total

En. (mm/day) 4.14 5.45 5.82 6.60 5.94 4.05 2.34 34.3 mm

kc 0.38 0.38 0.69 1.00 1.00 0.78 0.55

Et (mm/day) 1.57 2.07 4.02 6.60 5.94 3.16 1.29 24.7 mm

Monthly average values of kc are specified following the curve in Fig. 3.6.1 using
the given values. In June, kc rises from 0.38 at t2 = June 1 to 1.00 at r3 = July
1, so kc is taken as (0.38 + 1.00)/2 = 0.69. The values of Et are computed using
Eq. (3.6.2) with ks = 1 for a well-watered soil; that is, Et = kcEtr. The total
evapotranspiration for the growing season from April to October for corn, 24.7
mm, is 72 percent of the value a grass cover would have yielded under the same
conditions, 34.3 mm.
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PROBLEMS

3.1.1 A parcel of air at the equator is at rest relative to the earth's surface. Considering
the effects on air motion of the conservation of angular momentum, calculate the
theoretical eastward velocity of the air relative to the earth's surface if the parcel
is moved to 300N latitude. Mean radius of earth = 6371 km.

3.1.2 A parcel of air initially at rest relative to the earth's surface, is moved to a latitude
a° (either north or south). Considering only the effect of the conservation of angular
momentum, show that the velocity of the parcel of air relative to the earth's surface
is 2wre sin a tan a/71, where re is the mean radius of the earth and T is the period
of the earth's rotation about its own axis.

3.2.1 At a climate station, the following measurements are made: air pressure = 101.1
kPa, air temperature = 25°C, and dew point temperature = 200C. Calculate the
corresponding vapor pressure, relative humidity, specific humidity, and air density.

3.2.2 Calculate the vapor pressure, air pressure, specific humidity, and air density at
elevation 1500 m if the surface conditions are as specified in Prob. 3.2.1 and the
lapse rate is 9°C/km.

3.2.3 If the air temperature is 15°C and the relative humidity 35 percent, calculate the
vapor pressure, specific humidity, and air density. Assume standard atmospheric
pressure (101.3 kPa).

3.2.4 Solve Prob. 3.2.3 if the air temperature rises to 300C. By what percentage does
the specific humidity increase as a result of the temperature rise from 15 to 300C?

3.2.5 Calculate the precipitable water (mm) in a 10-km-high saturated atmospheric
column if the surface conditions are temperature = 200C, pressure = 101.3 kPa,
and the lapse rate is 6.5°C/km.

3.2.6 Solve Prob. 3.2.5 for surface temperatures of 0, 10, 20, 30 and 400C and plot a
graph showing the variation of precipitable water depth with surface temperature.

3.3.1 Calculate the terminal velocity of a 0.8-mm raindrop at standard atmospheric
pressure and air temperature 200C. Air density =1 .20 kg/m3.

3.3.2 An air current moving vertically upward at 5 m/s carries raindrops of various sizes.
Calculate the velocity of a 2-mm-diameter drop and determine whether it is rising
or falling. Repeat this exercise for a 0.2-mm-diameter drop. Assume standard
atmospheric pressure and air temperature 200C. Air density =1 .20 kg/m3.

3.3.3 If a spherical raindrop of diameter D, density pw, and drag coefficient C</, is
released from rest in an atmosphere of density p a , show that the distance z it falls



to attain velocity Vis given by

= _ 2 A £ 1» F1 _ ipgCdV2 1
Z 3PaCd [ 4Dg(Pv-Pa)J

Assume V < terminal velocity.
3.3.4 Using the equation given in Prob. 3.3.3, calculate the distance a 0.8-mm raindrop

would need to fall to attain 50 percent, 90 percent, and 99 percent of its terminal
velocity at standard atmospheric pressure and 200C air temperature.

3.3.5 Raindrops of diameter 1 mm are falling on an erodable soil. Estimate the impact
energy of each drop. Assume standard atmospheric conditions of 200C temperature
and 101.3 kPa air pressure. Hint: the drop will lose its kinetic energy on impact.

3.3.6 Solve Prob. 3.3.5 for drop sizes of 0.1, 0.5, 1, and 5 mm and plot a graph showing
the variation of impact energy with drop size.

3.3.7 For the thunderstorm cell model, show that the proportion of incoming moisture
precipitated is given by (qVl — qV2)/qVl(l — qV2), where qVx and qV2 are the specific
humidities of the inflow and outflow air streams, respectively.

3.3.8 Solve Example 3.3.2 in the text to determine the precipitation intensity if the
surface temperature is 200C. By what percentage is the precipitation intensity
reduced by lowering the surface temperature from 30 to 200C? Calculate the rate
of release of latent heat in the thunderstorm through condensation of water vapor
to produce precipitation.

3.3.9 Solve Example 3.3.2 in the text to determine the precipitation from a thunderstorm
if the moisture outflow is at elevation 5 km. What percentage of the incoming
moisture is now precipitated?

3.4.1 Lay a piece of graph paper over the isohyetal map for the Johnstown storm
[Fig. 3.4.1 (a)] and trace the isohyets. Calculate the volume of precipitation in
this storm and the average depth of precipitation within the area bounded by the
2-in isohyet.

3.4.2 Calculate the average depth of precipitation over the 10 mi x 10 mi area shown
for the Austin storm [Fig. 3.4.1(Z?)].

3.4.3 The following rainfall data were recorded at gage 1-Bol for the storm of May 24-
25, 1981, Austin, Texas:

Time(min) 0 5 10 15 20 25 30 35 40

Rainfall (in) - 0.07 0.20 0.25 0.22 0.21 0.16 0.12 0.03

Plot the rainfall hyetograph. Compute and plot the cumulative rainfall hyetograph.
Calculate the maximum depth and intensity recorded in 10, 20, and 30 minutes for
this storm. Compare the 30-minute intensity with the value found in Table 3.4.1
in the text for gage 1-Bee.

3.4.4 The following incremental rainfall data were recorded at gage 1-WLN in Austin,
Texas, on May 24, 1981. Plot the rainfall hyetograph. Compute and plot the
cumulative rainfall hyetograph. Calculate the maximum depth and intensity of
rainfall for 5, 10, 30, 60, 90, 120 minutes for this storm. Compare the results for
30, 60, and 120 minutes with the values given in Table 3.4.1 for gage 1-Bee in
the same storm. Which gage experienced the more severe rainfall?



Time(min) 0 5 10 15 20 25 30 35 40 45 50

Rainfall (in) - 0.09 0.00 0.03 0.13 0.10 0.13 0.21 0.37 0.22 0.30

Time(min) 55 60 65 70 75 80 85 90 95 100 105

Rainfall (in) 0.20 0.10 0.13 0.14 0.12 0.16 0.14 0.18 0.25 0.48 0.40

Time(min) 110 115 120 125 130 135 140 145 150

Rainfall (in) 0.39 0.24 0.41 0.44 0.27 0.17 0.17 0.14 0.10

3.4.5 The shape of a drainage basin can be approximated by a polygon whose vertices
are located at the following coordinates: (5,5), (—5,5), (—5,—5),(0, —10), and
(5 , -5) . The rainfall amounts of a storm were recorded by a number of rain gages
situated within and nearby the basin as follows:

Gage number Coordinates Recorded rainfall
(mm)

1 (7, 4) 62

2 (3, 4) 59

3 (-2, 5) 41

4 (-10, 1) 39

5 (-3, -3) 105

6 (-7, -7) 98

7 (2, -3) 60

8 (2,-10) 41

9 (0, 0) 81

All coordinates are expressed in kilometers. Determine the average rainfall on the
basin by (a) the arithmetic-mean method, (b) the Thiessen method, and (c) the
isohyetal method. Hints: For the Thiessen method, begin by drawing a polygon
around gage 9, then draw polygons around gages 2, 3, 5, and 7; for the isohyetal
method, draw the isohyets with maximum rainfall on a ridge running southwest to
northeast through (—3,-3).

3.4.6 Compute the average rainfall over the drainage area in Fig. 3.4.3 if gage station
Pi is moved to P2 using (a) the arithmetic-mean method, (b) the Thiessen method,
and (c) the isohyetal method.

3.4.7 Four rain gages located within a rectangular area with four corners at (0,0), (0,13),
(14,13), and (14,0) have the following coordinates and recorded rainfalls:

Raingage location Rainfall (in)

(2, 9) 0.59

(7,11) 0.79

(12,10) 0.94

(6, 2) 1.69



All coordinates are expressed in miles. Compute the average rainfall in the area
by the Thiessen method.

3.5.1 Compute by the Priestley-Taylor method the evaporation rate in millimeters per
day from a lake on a winter day when the air temperature is 5°C and the net
radiation 50 W/m2, and on a summer day when the net radiation is 250 W/m2 and
the temperature is 3O0C.

3.5.2 For Cairo, Egypt, in July, average net radiation is 185 W/m2, air temperature
28.5°C, relative humidity 55 percent, and wind speed 2.7 m/s at height 2 m.
Calculate the open water evaporation rate in millimeters per day using the energy
method (E r), the aerodynamic method (Ea), the combination method, and the
Priestley-Taylor method. Assume standard atmospheric pressure (101.3 kPa) and
Zo = 0.03 cm.

3.5.3 For Cairo in January, the average weather conditions are: net radiation 40 W/m2,
temperature 14°C, relative humidity 65 percent, and wind speed 2.0 m/s measured
at height 2 m. Calculate the open water evaporation rate by the energy method
(Er), the aerodynamic method (Ea), the combination method, and the Priestley-
Taylor method. Assume standard atmospheric pressure (101.3 kPa) and Zo = 0.03
cm.

3.6.1 For the meteorological data for Cairo in July given in Prob. 3.5.2, calculate the
reference crop evapotranspiration using the Doorenbos and Pruitt vapor transfer
coefficient B = 0.0027[l + (w/100)] where u is the wind run in kilometers per
day.

3.6.2 Compute the reference crop evapotranspiration (mm/day) in January in Cairo using
the meteorological data given in Prob. 3.5.3 and the Doorenbos and Pruitt vapor
transfer coefficient B = 0.0027[l + (w/100)], where u is the wind run in kilometers
per day.

3.6.3 The following data (from the American Society of Civil Engineers, 1973) show cli-
matic conditions over a well-watered grass surface in May, July, and September in
Davis, California, (latitude 38°N). Calculate the corresponding evapotranspiration
rate (mm/day) by the energy balance method, the aerodynamic method, the com-
bination method, and the Priestley-Taylor method. Assume standard atmospheric
pressure. Use Eq. (3.6.1) for the coefficient B.

Temperature Vapor Pressure Net radiation Wind run
(0C) (kPa) (W/m2) (km/day)

May 17 1.1 169 167

July 23 1.4 189 121

September 20 1.2 114 133

3.6.4 Solve Prob. 3.6.3 for Coshocton, Ohio, where the meteorological conditions are:

Temperature Vapor Pressure Net radiation Wind run
(0C) (kPa) (W/m2) (km/day)

May 16 1.3 135 110

July 23 2.0 112 89

September 18 1.5 59 94



3.6.5 Use the aerodynamic method to calculate the evapotranspiration rate (mm/day)
from a well-watered, short grass area on a day when the average air temperature
is 25°C, relative humidity is 30 percent, 24-hour wind run is 100 km, and normal
atmospheric pressure (101.3 kPa) prevails. Assume the Doorenbos-Pruitt wind
function (3.6.1) is valid. By what percentage would the evapotranspiration rate
change if the relative humidity were doubled and the temperature, wind speed,
and air pressure remained constant?



SUBSURFACE
WATER

Subsurface water flows beneath the land surface. In this chapter, only subsurface
flow processes important to surface water hydrology are described. The broader
field of groundwater flow is covered in a number of other textbooks (Freeze and
Cherry, 1979; de Marsily, 1986).

4.1 UNSATURATEDFLOW

Subsurface flow processes and the zones in which they occur are shown schemati-
cally in Fig. 4.1.1. Three important processes are infiltration of surface water into
the soil to become soil moisture, subsurface flow or unsaturated flow through the
soil, and groundwater flow or saturated flow through soil or rock strata. Soil and
rock strata which permit water flow are called porous media. Flow is unsaturated
when the porous medium still has some of its voids occupied by air, and saturated
when the voids are filled with water. The water table is the surface where the
water in a saturated porous medium is at atmospheric pressure. Below the water
table, the porous medium is saturated and at greater pressure than atmospheric.
Above the water table, capillary forces can saturate the porous medium for a
short distance in the capillary fringe, above which the porous medium is usually
unsaturated except following rainfall, when infiltration from the land surface can
produce saturated conditions temporarily. Subsurface and groundwater outflow
occur when subsurface water emerges to become surface flow in a stream or
spring. Soil moisture is extracted by evapotranspiration as the soil dries out.

Consider a cross section through an unsaturated soil as shown in Fig. 4.1.2.
A portion of the cross section is occupied by solid particles and the remainder by
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FIGURE 4.1.2
Cross section through an unsaturated porous medium.

FIGURE 4.1.1
Subsurface water zones and processes.

voids. The porosity 77 is defined as
_ volume of voids

total volume

The range for 77 is approximately 0.25 < rj < 0.75 for soils, the value depending
on the soil texture (see Table 2.6.1).

A part of the voids is occupied by water and the remainder by air, the
volume occupied by water being measured by the soil moisture content 6 defined
as

e = yolumeofwater

total volume

Hence 0 < 6 < 77; the soil moisture content is equal to the porosity when the soil
is saturated.

Solid particles

Water
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FIGURE 4.1.3
Control volume for development of the continuity equation in an unsaturated porous medium.

Continuity Equation

A control volume containing unsaturated soil is shown in Figure 4.1.3. Its sides
have length dx, dy, and dz, in the coordinate directions, so its volume is dx dy dz,
and the volume of water contained in the control volume is 6 dx dy dz. The flow
of water through the soil is measured by the Darcy flux q = QIA, the volumetric
flow rate per unit area of soil. The Darcy flux is a vector, having components
in each of the coordinate directions, but in this presentation the horizontal fluxes
are assumed to be zero, and only the vertical or z component of the Darcy flux is
considered. As the z axis is postive upward, upward flow is considered positive
and downward flow negative.

In the Reynolds transport theorem, the extensive property B is the mass of
soil water, hence /3 = dBldm = 1, and dBldt = 0 because no phase changes are
occurring in the water. The Reynolds transport theorem thus takes the form of
the integral equation of continuity (2.2.1):

0= ! J J Jpw jy+ J JpwV-dA (4.1.3)
CV. CS.

where pw is the density of water. The first term in (4.1.3) is the time rate of
change of the mass of water stored within the control volume, which is given by

(4.1.4)

A A A d6

= pwdxdydz —
at

where the density is assumed constant and the partial derivative suffices because
the spatial dimensions of the control volume are fixed. The second term in (4.1.3)

Darcy flux
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is the net outflow of water across the control surface. As shown in Fig. 4.1.3, the
volumetric inflow at the bottom of the control volume is q dx dy and the outflow
at the top is [q + {dqldz)dz\ dx dy, so the net outflow is

npw Y'dA = pJq + — dz)dxdy- pwqdxdy
\ uZ /
v ' (4.1.5)

= pwdxdydz —
OZ

Substituting (4.1.4) and (4.1.5) into (4.1.3) and dividing by pwdx dy dz gives

at dz

This is the continuity equation for one-dimensional unsteady unsaturated flow in
a porous medium. This equation is applicable to flow at shallow depths below
the land surface. At greater depth, such as in deep aquifers, changes in the water
density and in the porosity can occur as the result of changes in fluid pressure,
and these must also be accounted for in developing the continuity equation.

Momentum Equation

In Eq. (2.6.4) Darcy's Law was developed to relate the Darcy flux q to the rate
of head loss per unit length of medium, Sf.

q = KSf (4.1.7)

Consider flow in the vertical direction and denote the total head of the flow
by h\ then Sf = —dhldz where the negative sign indicates that the total head
is decreasing in the direction of flow because of friction. Darcy's law is then
expressed as

?=-*f (4-1-8)
Darcy's Law applies to a cross section of the porous medium found by

averaging over an area that is large compared with the cross section of individual
pores and grains of the medium (Philip, 1969). At this scale, Darcy's law
describes a steady uniform flow of constant velocity, in which the net force on any
fluid element is zero. For unconfined saturated flow the only two forces involved
are gravity and friction, but for unsaturated flow the suction force binding water
to soil particles through surface tension must also be included.

The porous medium is made up of a matrix of particles, as shown in Fig.
4.1.2. When the void spaces are only partially filled with water, the water is
attracted to the particle surfaces through electrostatic forces between the water
molecules' polar bonds and the particle surfaces. This surface adhesion draws
the water up around the particle surfaces, leaving the air in the center of the voids.
As more water is added to the porous medium, the air exits upwards and the area



of free surfaces diminishes within the medium, until the medium is saturated and
there are no free surfaces within the voids and, therefore, no soil suction force.
The effect of soil suction can be seen if a column of dry soil is placed vertically
with its bottom in a container of water—moisture will be drawn up into the dry
soil to a height above the water surface at which the soil suction and gravity
forces are just equal. This height ranges from a few millimeters for a coarse sand
to several meters for a clay soil.

The head h of the water is measured in dimensions of height but can also
be thought of as the energy per unit weight of the fluid. In an unsaturated porous
medium, the part of the total energy possessed by the fluid due to the soil suction
forces is referred to as the suction head \\f. From the preceding discussion, it is
evident that the suction head will vary with the moisture content of the medium,
as illustrated in Fig. 4.1.4, which shows that for this clay soil, the suction head
and hydraulic conductivity can range over several orders of magnitude as the
moisture content changes. The total head h is the sum of the suction and gravity
heads

h = i/f + z (4.1.9)

No term is included for the velocity head of the flow because the velocity is so
small that its head is negligible.

Substituting for h in (4.1.8)

= _KW±A (4. L 1 0 )
OZ

FIGURE 4.1.4
Variation of soil suction head if/
and hydraulic conductivity K with
moisture content 0 for YoIo light
clay. (Reprinted with permission
from A. J. Raudkivi, Hydrology,
Copyright 1979, Pergamon Books
Ltd.)
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\ dddz )

= -{DJz
+K) (4-LU)

where D is the soil water diffusivity K{d\\jld6) which has dimensions [L2/T].
Substituting this result into the continuity equation (4.1.6) gives

66 d I dd \
-~ = —\D— +K) (4.1.12)
dt dz\ Sz I

which is a one-dimensional form of Richard's equation, the governing equation
for unsteady unsaturated flow in a porous medium, first presented by Richards
(1931).

Computation of Soil Moisture Flux

The flow of moisture through the soil can be calculated by Eq. (4.1.8) given
measurements of soil suction head if/ at different depths z in the soil and knowledge

April May June July

1981

(a)

FIGURE 4.1.5(a)
Profiles of total soil moisture head through time at Deep Dean in Sussex, England. (Source: Research
Report 1981-84, Institute of Hydrology, Wallingford, England, Fig. 36, p. 33, 1984. Used with
permission.)

Total head at depth 1.8 m

Total head at
depth 0.8 m
h = Y+z
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of the relationship between hydraulic conductivity K and t/>. Figure 4.1.5(a) shows
profiles through time of soil moisture head measured by tensiometers located at
depths 0.8 m and 1.8 m in a soil at Deep Dean, Sussex, England. The total head
h is found by adding the measured suction head \p to the depth z at which it was
measured. These are both negative: z because it is taken as positive upward with
0 at the soil surface, and ijj because it is a suction force which resists flow of
moisture away from the location.

Example 4.1.1. Calculate the soil moisture flux q (cm/day) between depths 0.8
m and 1.8 m in the soil at Deep Dean. The data for total head at these depths

April May June July

1981

(b)

FIGURE 4.1.5»)
Variation through time of total soil water head h at various depths in a loam soil at Deep Dean,
Sussex, England. The infiltration of rainfall reduces soil suction which increases again an evapo-
transpiration dries out the soil. Soil suction head is the difference betwen the total head and the
value for evaluation shown on each line. (Source: Research Report 1981-84, Institute of Hydrology,
Wallingford, England, Fig. 36, p. 33, 1984. Used with permission.)
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are given at weekly time intervals in columns 2 and 3 of Table 4.1.1. For this
soil the relationship between hydraulic conductivity and soil suction head is K =
250(—1//)~2n, where K is in centimeters per day and if/ is in centimeters.

Solution. Equation (4.1.8) is rewritten for an average flux q 12between measurement
points 1 and 2 as

_ TM ~ h2
Qn - -&

Zi -Z2

In this case, measurement point 1 is at 0.8 m and point 2 at 1.8 m, so z i = - 8 0
cm, zi = - 1 8 0 cm, and z\ - Zi = - 8 0 - (-180) = 100 cm. The suction head
at each depth is if/ = h — z. For example, for week 1 at 0.8 m, Zi1 = —145, so
<Ai =h{-zi = - 1 4 5 - ( - 8 O ) = - 6 5 cm, and ^ 2 = - 2 3 0 - ( - 1 8 0 ) = - 5 0 cm, as
shown in columns 4 and 5 of the table. The hydraulic conductivity K varies with if/,
so the value corresponding to the average of the Rvalues at 0.8 and 1.8 m is used.
For week 1, the average suction head is i/jav = [(—50) + (—65)]/2 = —57.5 cm; and
the corresponding hydraulic conductivity is K= 250(-^a v)~2-1 1 = 250(57.5) ~2 1 1 =
0.0484 cm/day, as shown in column 6. The head difference h{- h2= (-145) -
(—230) = 85 cm. The soil moisture flux between 0.8 and 1.8 m for week 1 is

KhLZh
Zl - Z 2

= - 0 . 0 4 8 4 ^

= -0.0412 cm/day

TABLE 4.1.1

Computation of soil moisture flux between 0.8 m and 1.8 m depth at Deep
Dean (Example 4.1.1)
Column: 1 2 3 4 5 6 7 8

Total Total Suction Suction Unsaturated Head Moisture
head h\ head hi head ipi \pi hydraulic difference flux q
at 0.8 m at 1.8 m at 0.8 m at 1.8 m conductivity K Zz1- Ji2

Week (cm) (<hn) (cm) (cm) (cm/day) (cm) (cm/day)

1 - 1 4 5 - 2 3 0 - 6 5 - 5 0 0.0484 85 -0 .0412
2 - 1 6 5 - 2 3 5 - 8 5 - 5 5 0.0320 70 -0 .0224
3 - 1 3 0 - 2 4 0 - 5 0 - 6 0 0.0532 110 -0 .0585
4 - 1 4 0 - 2 4 0 - 6 0 - 6 0 0.0443 100 -0 .0443
5 - 1 2 5 - 2 4 0 - 4 5 - 6 0 0.0587 115 -0 .0675
6 - 1 0 5 - 2 3 0 - 2 5 - 5 0 0.1193 125 -0 .1492
7 - 1 3 5 - 2 1 5 - 5 5 - 3 5 0.0812 80 -0 .0650
8 - 1 5 0 - 2 3 0 - 7 0 - 5 0 0.0443 80 -0 .0354
9 - 1 6 5 - 2 4 0 - 8 5 - 6 0 0.0297 75 -0 .0223

10 - 1 9 0 - 2 4 5 - 1 1 0 - 6 5 0.0200 55 -0 .0110
11 - 2 2 0 - 2 5 5 - 1 4 0 - 7 5 0.0129 35 -0 .0045
12 - 2 3 0 - 2 6 5 - 1 5 0 - 8 5 0.0107 35 -0 .0038
13 - 2 5 5 - 2 7 5 - 1 7 5 - 9 5 0.0080 20 -0 .0016
14 - 2 8 0 - 2 8 5 - 2 0 0 - 1 0 5 0.0062 5 -0 .0003



as shown in column 8. The flux is negative because the moisture is flowing
downward.

The Darcy flux has dimensions [L/T] because it is a flow per unit area of
porous medium. If the flux is passing through a horizontal plane of area A = Im2 ,
then the volumetric flow rate in week 1 is

Q = qA

= -0.0412 cm/day x 1 m2

= -4.12 x 10"4m3/day

= -0.412 liters/day (-0.11 gal/day)

Table 4.1.1 shows the flux q calculated for all time periods, and the computed
values of q, K, and h\ - h2 are plotted in Fig. 4.1.6. In all cases the head at 0.8 m
is greater than that at 1.8 m so moisture is always being driven downward between
these two depths in this example. It can be seen that the flux reaches a maximum in
week 6 and diminishes thereafter, because both the head difference and the hydraulic
conductivity diminish as the soil dries out. The figure shows the importance of the
variability of the unsaturated hydraulic conductivity K in affecting the moisture flux
q. As the soil becomes wetter, its hydraulic conductivity increases, because there
are more continuous fluid-filled pathways through which the flow can move.

The complete picture of rainfall on the soil at Deep Dean and the soil
moisture head at various depths is presented in Fig. 4.1.5(b). Rainfall during April
and May flows down into the soil, reducing the soil suction head, but later the soil
dries out by evapotranspiration, causing the soil suction head to increase again.
The head profile at the shallowest depth (0.4 m) shows the greatest variability
and the fact that it falls below the profile at 0.8 m from the beginning of June
onwards shows that during this period, soil moisture flows upwards between these
two depths to supply moisture for evapotranspiration (Wellings, 1984).

FIGURE 4.1.6
Computation of the soil moisture flux at Deep Dean (Example 4.1.1).

Week

Soil moisture flux q
(cm/day)

Hydraulic conductivity
K (cm/day)

Head difference Zz1-/i2 (cm X 10 3)



4.2 INFILTRATION

Infiltration is the process of water penetrating from the ground surface into the
soil. Many factors influence the infiltration rate, including the condition of the
soil surface and its vegetative cover, the properties of the soil, such as its porosity
and hydraulic conductivity, and the current iftoisture content of the soil. Soil strata
with different physical properties may overlay each other, forming horizons', for
example, a silt soil with relatively high hydraulic conductivity may overlay a
clay zone of low conductivity. Also, soils exhibit great spatial variability even
within relatively small areas such as a field. As a result of these great spatial
variations and the time variations in soil properties that occur as the soil moisture
content changes, infiltration is a very complex process that can be described only
approximately with mathematical equations.

The distribution of soil moisture within the soil profile during the downward
movement of water is illustrated in Fig. 4.2.1. There are four moisture zones:
a saturated zone near the surface, a tranmission zone of unsaturated flow and
fairly uniform moisture content, a wetting zone in which moisture decreases with
depth, and a wetting front where the change of moisture content with depth is
so great as to give the appearance of a sharp discontinuity between the wet soil
above and the dry soil below. Depending on the amount of infiltration and the
physical properties of the soil, the wetting front may penetrate from a few inches
to several feet into a soil (Hillel, 1980).

The infiltration rate/, expressed in inches per hour or centimeters per hour,
is the rate at which water enters the soil at the surface. If water is ponded on the
surface, the infiltration occurs at the potential infiltration rate. If the rate of supply
of water at the surface, for example by rainfall, is less than the potential infiltration
rate then the actual infiltration rate will also be less than the potential rate. Most
infiltration equations describe the potential rate. The cumulative infiltration F is
the accumulated depth of water infiltrated during a given time period and is equal
to the integral of the infiltration rate over that period:

F(t) = J0Z(T) dr (4.2.1)

FIGURE 4.2.1
Moisture zones during infiltration.
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where ris a dummy variable of time in the integration. Conversely, the infiltration
rate is the time derivative of the cumulative infiltration:

/(O - ^ (4.2.2)

Horton's Equation

One of the earliest infiltration equations was developed by Horton (1933, 1939),
who observed that infiltration begins at some rate/0 and exponentially decreases
until it reaches a constant rate/c (Fig. 4.2.2):

f{t)=fc + (fo-fc)e~kt (4.2.3)

where A: is a decay constant having dimensions [T"1]. Eagleson (1970) and
Raudkivi (1979) have shown that Horton's equation can be derived from Richard's
equation (4.1.12) by assuming that K and D are constants independent of the
moisture content of the soil. Under these conditions (4.1.12) reduces to

which is the standard form of a diffusion equation and may be solved to yield
the moisture content 0 as a function of time and depth. Horton's equation results
from solving for the rate of moisture diffusion D(ddldz) at the soil surface.

Philip's Equation
Philip (1957, 1969) solved Richard's equation under less restrictive conditions
by assuming that K and D can vary with the mositure content 6. Philip employed
the Boltzmann transformation B(O) = zt~m to convert (4.1.12) into an ordinary
differential equation in B, and solved this equation to yield an infinite series for

Time

(a) Variation of the parameter k

FIGURE 4.2.2
Infiltration by Horton's equation.

Time

(b) Infiltration rate and cumulative infiltration.
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cumulative infiltration F(O, which is approximated by

F(O = Stm + Kt (4.2.5)

where 5 is a parameter called sorptivity, which is a function of the soil suction
potential, and K is the hydraulic conductivity.

By differentiation

/(O = ^Srm + K (4.2.6)

As t —» °°,/(0 tends to K. The two terms in Philip's equation represent the effects
of soil suction head and gravity head, respectively. For a horizontal column of
soil, soil suction is the only force drawing water into the column, and Philip's
equation reduces to F(O = Stm.

Example 4.2.1. A small tube with a cross-sectional area of 40 cm2 is filled with
soil and laid horizontally. The open end of the tube is saturated, and after 15
minutes, 100 cm3 of water have infiltrated into the tube. If the saturated hydraulic
conductivity of the soil is 0.4 cm/h, determine how much infiltration would have
taken place in 30 minutes if the soil column had initially been placed upright with
its upper surface saturated.

Solution. The cumulative infiltration depth in the horizontal column is F = 100
cm3/40 cm2 = 2.5 cm. For horizontal infiltration, cumulative infiltration is a
function of soil suction alone so that after t = 15 min = 0.25 h,

F{t) = St112

and

2.5 = S(0.25)1/2

5 = 5 cm-h"1/2

For infiltration down a vertical column, (4.2.5) applies with K = 0.4 cm/h.
Hence, with t = 30 min = 0.5 h

F(t) = Stm + Kt

= 5(0.5)1/2 + 0.4(0.5)

= 3.74 cm

4.3 GREEN-AMPTMETHOD

In the previous section, infiltration equations were developed from approximate
solutions of Richard's equation. An alternative approach is to develop a more
approximate physical theory that has an exact analytical solution. Green and Ampt
(1911) proposed the simplified picture of infiltration shown in Fig. 4.3.1. The
wetting front is a sharp boundary dividing soil of moisture content 0/ below from
saturated soil with moisture content r\ above. The wetting front has penetrated to
a depth L in time t since infiltration began. Water is ponded to a small depth Zz0

on the soil surface.



FIGURE 4.3.1
Variables in the Green-Ampt infiltration model. The vertical axis is the distance from the soil
surface, the horizontal axis is the moisture content of the soil.

Continuity

Consider a vertical column of soil of unit horizontal cross-sectional area (Fig.
4.3.2) and let a control volume be defined around the wet soil between the surface
and depth L. If the soil was initially of moisture content 0/ throughout its entire
depth, the moisture content will increase from 0/ to r/ (the porosity) as the wetting
front passes. The moisture content 0 is the ratio of the volume of water to the
total volume within the control surface, so the increase in the water stored within
the control volume as a result of infiltration is L(r) — 0/) for a unit cross section.
By definition this quantity is equal to F , the cumulative depth of water infiltrated
into the soil. Hence

™-«'"« ,43.1)
= LA6

where A0 = 17 — 0/.

Momentum

Darcy's law may be expressed

q = -K^ (4.3.2)

In this case the Darcy flux q is constant throughout the depth and is equal to —/,
because q is positive upward whi le / is positive downward. If points 1 and 2 are

Wetting front

Wetted zone
(conductivity K)



located respectively at the ground surface and just on the dry side of the wetting
front, (4.3.2) can be approximated by

Ui -Zi.

The head h\ at the surface is equal to the ponded depth ho- The head hi, in the
dry soil below the wetting front, equals —if/— L. Darcy's law for this system is
written

(4.3.4)

- ^ + 1

if the ponded depth ho, is negligible compared to \fj and L. This assumption is
usually appropriate for surface water hydrology problems because it is assumed
that ponded water becomes surface runoff. Later, it will be shown how to account
for h0 if it is not negligible.

From (4.3.1) the wetting front depth is L = FIAO, and assuming ho = 0,
substitution into (4.3.4) gives

d/A6 + F
f = K ^ (4.3.5)

t

Since/ = dFldt, (4.3.5) can be expressed as a differential equation in the one
unknown F:

dF _ [ftAfl + F

Y t ' ^ F

To solve for F, cross-multiply to obtain

FIGURE 4.3.2
Infiltration into a column of soil of unit cross-sectional
area for the Green-Ampt model.

Dry soil

Wetting front

Ground surface



^ 7 - \dF = Kdt
[F + (//A^J

then split the left-hand side into two parts

[[-FTJTe)" [7TJTeJr = Kdt

and integrate

Jo \ F + i/f A0/ Jo

to obtain

F(O - <A A0 In [F(O + i//A0] - In (ijjAd) = Kt

or

F(O - <AA0 In 1 + ^ j = Kt (4.3.6)

This is the Green-Ampt equation for cumulative infiltration. Once F is found from

Eq. (4.3.6), the infiltration r a t e / can be obtained from (4.3.5) or

In the case when the ponded depth h0 is not negligible, the value of \\f — ho is
substituted for i/fin (4.3.6) and (4.3.7).

Equation (4.3.6) is a nonlinear equation in F. It may be solved by the method
of successive substitution by rearranging (4.3.6) to read

F(O = Kt+ t&d In Il + ^ j (4.3.8)

Given K, t, if/ and Ad, a trial value F is substituted on the right-hand side (a
good trial value is F = Kt), and a new value of F calculated on the left-hand
side, which is substituted as a trial value on the right-hand side, and so on, until
the calculated values of F converge to a constant. The final value of cumulative
infiltration F is substituted into (4.3.7) to determine the corresponding potential
infiltration rate / .

Equation (4.3.6) can also be solved by Newton's iteration method, which
is more complicated than the method of successive substitution but converges in
fewer iterations. Newton's iteration method is explained in Sec. 5.6.

Green-Ampt Parameters

Application of the Green-Ampt model requires estimates of the hydraulic conduc-
tivity K, the porosity rj, and the wetting front soil suction head if/. The variation



with moisture content 0 of the suction head and hydraulic conductivity was studied
by Brooks and Corey (1964). They concluded, after laboratory tests of many
soils, that \\f can be expressed as a logarithmic function of an effective saturation
se (see Fig. 4.3.3). If the residual moisture content of the soil after it has been
thoroughly drained is denoted by 0r, the effective saturation is the ratio of the
available moisture 0 — 6r to the maximum possible available moisture content

Se = " ^ 4 <4-3'9)
where 77 — 0r is called the effective porosity 0e.

The effective saturation has the range 0 < se < 1.0, provided 0 r < 0 < 77.
For the initial condition, when 0 = 0/, cross-multiplying (4.3.9) gives 0,- - 0r =
se 6e, and the change in the moisture content when the wetting front passes is
A0 = 7] - 0/ = rj - (se6e + 0r); therefore

A 0 = ( 1 - S 6 ) O 6 (4.3.10)

The logarithmic relationship shown in Fig. 4.3.3 can be expressed by the Brooks-
Corey equation

in which 1/̂  and A are constants obtained by draining a soil in stages, measuring
the values of se and i(/ at each stage, and fitting (4.3.11) to the resulting data.

FIGURE 4.3.3
The Brooks-Corey relationship
between soil suction head and
effective saturation. (Source:
Brooks and Corey, 1964, Fig. 2,
p. 5. Used with permission.)Soil suction head, y/ (cm water)

(1) Fragmented mixture
(2) Berea sandstone
(3) Hygiene sandstone
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Bouwer (1966) also studied the variation of hydraulic conductivity with moisture
content and concluded that the effective hydraulic conductivity for an unsaturated
flow is approximately half the corresponding value for saturated flow.

Brakensiek, Engleman, and Rawls (1981) presented a method for determin-
ing the Green-Ampt parameters using the Brooks-Corey equation. Rawls, Brak-
ensiek, and Miller (1983) used this method to analyze approximately 5000 soil
horizons across the United States and determined average values of the Green-
Ampt parameters 77, 6e, if/, and K for different soil classes, as shown in Table
4.3.1. As the soil becomes finer moving from sand to clay the wetting front soil
suction head increases while the hydraulic conductivity decreases. Table 4.3.1
also shows typical ranges for 77, 6e, and ty. The ranges are not large for 17 and
0e, but iff can vary over a wide range for a given soil. As was shown in Example
4.1.1, K varies along with if/, so the values given in Table 4.3.1 for both if/
and K should be considered typical values that may show a considerable degree
of variability in application (American Society of Agricultural Engineers, 1983;
Devaurs and Gifford, 1986).

TABLE 4.3.1
Green-Ampt infiltration parameters for various soil classes

Soil class Porosity Effective Wetting front Hydraulic
porosity soil suction conductivity

head
7) 0e iff K

(cm) (cm/h)

Sand 0.437 0.417 4.95 11.78
(0.374-0.500) (0.354-0.480) (0.97-25.36)

Loamy sand 0.437 0.401 6.13 2.99
(0.363-0.506) (0.329-0.473) (1.35-27.94)

Sandy loam 0.453 0.412 11.01 1.09
(0.351-0.555) (0.283-0.541) (2.67^5.47)

Loam 0.463 0.434 8.89 0.34
(0.375-0.551) (0.334-0.534) (1.33-59.38)

Silt loam 0.501 0.486 16.68 0.65
(0.420-0.582) (0.394-0.578) (2.92-95.39)

Sandy clay 0.398 0.330 21.85 0.15
loam (0.332-0.464) (0.235-0.425) (4.42-108.0)

Clay loam 0.464 0.309 20.88 0.10
(0.409-0.519) (0.279-0.501) (4.79-91.10)

Siltyclay 0.471 0.432 27.30 0.10
loam (0.418-0.524) (0.347-0.517) (5.67-131.50)

Sandy clay 0.430 0.321 23.90 0.06
(0.370-O.490) (0.207-0.435) (4.08-140.2)

Siltyclay 0.479 0.423 29.22 0.05
(0.425-0.533) (0.334-0.512) (6.13-139.4)

Clay 0.475 0.385 31.63 0.03
(0.427-O.523) (0.269-0.501) (6.39-156.5)

The numbers in parentheses below each parameter are one standard deviation around the parameter
value given. Source: Rawls, Brakensiek, and Miller, 1983.



Two-layer Green-Ampt Model

Consider a soil with two layers, as shown in Fig. 4.3.4. The upper layer has
thickness H\ and Green-Ampt parameters K\, ^1 , and A0i, and the lower layer
has thickness H2 and parameters K2, ife> and Ad2. Water is ponded on the surface
and the wetting front has penetrated through the upper layer and a distance L2

into the lower layer (L2 < H2). It is required that Â 1 > K2 for the upper layer
to remain saturated while water infiltrates into the lower layer. By a method
similar to that described previously for one layer of soil, it can be shown that the
infiltration rate is given by

and that the cumulative infiltration is given by

F = H1Ad1 + L2AO2 (4.3.13)

By combining Eqs. (4.3.12) and (4.3.13) into a differential equation for L2 and
integrating, one arrives at

L 2 ^ + -I—[AO2H1K2-AO2K1(IIs2 + /Zi)]In 1 + ^ 2 ] = t (4.3.14)

from which the cumulative infiltration and infiltration rate can be determined.
This approach can be employed when a more permeable upper soil layer overlies
a less permeable lower layer. The normal Green-Ampt equations are used while
the wetting front is in the upper layer; (4.3.12) to (4.3.14) are used once the
wetting front enters the lower layer.

Example 4.3.1. Compute the infiltration rate/ and cumulative infiltration F after
one hour of infiltration into a silt loam soil that initially had an effective saturation of
30 percent. Assume water is ponded to a small but negligible depth on the surface.

Solution, From Table 4.3.1, for a silt loam soil 6e = 0.486, i[/ = 16.7 cm, and
K = 0.65 cm/h. The initial effective saturation is se = 0.3, so in (4.3.10)

FIGURE 4.3.4
Parameters in a two-layer
Green-Ampt model.

Wetting front

Upper layer parameters AT1, V1, AGi

Lower layer

Parameters K2, V2, AG2

(K2<K])



AO=(I-Se)O6

= (1 -0.3X0.486)

= 0.340

and

if/A0=16.7 x 0.340

= 5.68 cm

The cumulative infiltration at t = 1 h is calculated employing the method of
successive substitution in Eq. (4.3.8). Take a trial value of F(t) = Kt = 0.65
cm, then calculate

F{t)=Kt+ +tern (i + M )

= 0.65 x 1 + 5.68 In (l + — j

= 1.27 cm

Substituting F =1.27 into the right-hand side of (4.3.8) gives F =1.79 cm, and after
a number of iterations F converges to a constant value of 3.17 cm. The infiltration
rate after one hour is found from Eq. (4.3.7):

'-A*r+ •)

= 1.81 cm/h

4.4 PONDINGTIME

In the preceding sections several methods for computing the rate of infiltration
into the soil were presented. All of these methods used the assumption that water
is ponded to a small depth on the soil surface so all the water the soil can infiltrate
is available at the surface. However, during a rainfall, water will pond on the
surface only if the rainfall intensity is greater than the infiltration capacity of the
soil. The ponding time tp is the elapsed time between the time rainfall begins and
the time water begins to pond on the soil surface.

If rainfall begins on dry soil, the vertical moisture profile in the soil may
appear as in Fig. 4.4.1. Prior to the ponding time (t < tp), the rainfall intensity is
less than the potential infiltration rate and the soil surface is unsaturated. Ponding
begins when the rainfall intensity exceeds the potential infiltration rate. At this
time (t = tp), the soil surface is saturated. As rainfall continues (t > ^ ) , the
saturated zone extends deeper into the soil and overland flow occurs from the
ponded water. How can the infiltration equations developed previously be used
to describe this situation?



FIGURE 4.4.1
Soil moisture profiles before, during,
and after ponding occurs.

Mein and Larson (1973) presented a method for determining the ponding
time with infiltration into the soil described by the Green-Ampt equation for
rainfall of intensity i starting instantaneously and continuing indefinitely. There
are three principles involved: (1) prior to the time ponding occurs, all the rainfall
is infiltrated; (2) the potential infiltration rate / is a function of the cumulative
infiltration F; and (3) ponding occurs when the potential infiltration rate is less
than or equal to the rainfall intensity.

In the Green-Ampt equation, the infiltration ra te / and cumulative infiltration
F are related by

/-*(*r + i) <4-41)

where K is the hydraulic conductivity of the soil, \\J is the wetting front capillary
pressure head, and AO is the difference between the initial and final moisture
contents of the soil. As shown in Fig. 4.4.2, the cumulative infiltration at the
ponding time tp is given by Fp = itp and the infiltration rate b y / = /; substituting
into Eq. (4.4.1),

solving, (4.4.2)

_ Kif/Ad
tp~i{i-K)

gives the ponding time under constant rainfall intensity using the Green-Ampt
infiltration equation.

Example 4.4.1. Compute the ponding time and the depth of water infiltrated at
ponding for a silt loam soil of 30 percent initial effective saturation, subject to
rainfall intensities of (a) 1 cm/h and (b) 5 cm/h.

Depth
in soil

Soil moisture
content

Saturated



FIGURE 4.4.2
Infiltration rate and cumulative infiltration for ponding under constant intensity rainfall.

Solution. From Example 4.3.1, for a silt loam soil if/ AO = 5.68 cm and K = 0.65
cm/h. The ponding time is given by (4.4.2):

_ Ki/jkO
tp-i(i-K)

(a) For i = 1 cm/h,

0.65 x 5.68
tp~ 1.0(1.0 -0.65)

= 10.5 h

and

Fp = itp

= 1.0 x 10.5

= 10.5 cm

(b) For / = 5 cm/h,

^0.65X5.68
tp~ 5(5 -0.65)

= 0.17 h(10 min)
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and

Fp = itp

= 5.0 x 0.17

= 0.85 cm

In each case the infiltration rate/ equals the rainfall intensity / at ponding.

To obtain the actual infiltration rate after ponding, a curve of potential infil-
tration is constructed beginning at a time to such that the cumulative infiltration
and the infiltration rate at tp are equal to those observed under rainfall beginning
at time 0 (see dashed line in Fig. 4.4.2). Substituting t — tp — t0 and F = Fp into
Eq. (4.3.6) gives

Fp-if, Ad In (l + J^) = K{fp - t0) (4.4.3)

For / > tp,

F - if, Ad In (l + ~ ) = K(f ~ to) (4.4.4)

and subtracting (4.4.3) from (4.4.4),

-'-•4(4^)--(*^)]-«'-»
or

F-F^^eiA^ir} = K{t~tp) (4A5)

Equation (4.4.5) can be used to calculate the depth of infiltration after
ponding, and then (4.3.7) can be used to obtain the infiltration rate/ .

Example 4.4.2. Calculate the cumulative infiltration and the infiltration rate after
one hour of rainfall of intensity 5 cm/h on a silt loam soil with an initial effective
saturation of 30 percent.

Solution. From Example 4.3.1, \pA0 = 5.68 cm and K= 0.65 cm/h for this soil,
and from Example 4.4.1, tp = 0.17 h and Fp = 0.85 cm under rainfall intensity 5
cm/h. For t = 1.0 h, the infiltration depth is given by (4.4.5):

' - ' ' - •H$T£)-«' -* )

F - 0.85 - 5.68 in ( 5 ^ 5 ^ ) = 0.65(1.0 - 0.17)

= 0.54



F is obtained by the method of successive substitution in the manner used in Example
4.3.1. The solution converges to F = 3.02 cm. The corresponding rate is given by
(4.3.7):

H*£•>)
-Hif •')
= 1.87 cm/h

These results may be compared with the cumulative infiltration of 3.17 cm obtained
in Example 4.3.1 for infiltration under continuous ponding. Less water is infiltrated
after one hour under the 5 cm/h rainfall because it took 10 minutes for ponding to
occur, and the infiltration rate during this period was less than its potential value.

Table 4.4.1 summarizes the equations needed for computing various quan-
tities for constant rainfall intensity; a set of equations is given for each of three
approaches, based respectively on the Green-Ampt, Horton, and Philip infiltration
equations. Equations (1) and (2) are the methods for computing infiltration under
ponded conditions. Equation (3) gives the ponding time under constant rainfall
intensity, and Equation (4) gives the equivalent time origin t0, from which the
same infiltration rate and cumulative infiltration as those observed at ponding
time would be produced under continuously ponded conditions. After ponding
has occurred, the infiltration functions can be found for Horton's and Philip's
equations by substituting t — to into Eqs. (1) and (2). For the Green-Ampt equa-
tion, the method illustrated in Ex. 4.4.2 can be used. In Eq. (4.4.2) under the
Green-Ampt method, ponding time tp is positive and finite only if / > K; pond-
ing will never occur if the rainfall intensity is less than or equal to the hydraulic
conductivity of the soil. Table 4.4.1 indicates that the same condition holds for
Philip's equation, while Horton's equation requires / > fc to achieve ponding.
If, in the Horton equation, / > /o , ponding will occur immediately and tp = 0.

The condition i < K holds for most rainfalls on very permeable soils and
for light rainfall on less permeable soils. In such cases, streamflow results from
subsurface flow, especially from areas near the stream channel.

Determination of ponding times under rainfall of variable intensity can be
done by an approach similar to that for constant intensity. Cumulative infiltration
is calculated from rainfall as a function of time. A potential infiltration rate can
be calculated from the cumulative infiltration using the Green-Ampt or other
infiltration formulas. Whenever rainfall intensity is greater than the potential
infiltration rate, ponding is occurring (Bouwer, 1978; Morel-Seytoux, 1981). For
sites where estimates of a constant infiltration rate are available, the estimates can
be used as a guide to decide whether surface or subsurface flow is the primary
mechanism producing flood flows (Pearce and McKerchar, 1979). This subject
is developed further in Chap. 5.



TABLE 4.4.1
Equations for calculating ponding time and infiltration after ponding occurs

Philip's
equation

F = Stm + Kt

S2(i - KIl)

Substitute {t — t0) for
t in (2).

Substitute (/ — t0) for
Mn(I ) .

Horton's
equation

f=fc + (fo~fc)e-kt

F=fct + &^L{l-e~kt)

l\ , (f0-fc\]
tP- Ah i+fc In I

ik\_ \i ~fc J]

Substitute (t — t0) for
t in (2).

Substitute (/ — /0) for
Mn(I ) .

Green-Ampt
equation

Solve for F from (2)
then use (6).

tp " / (I " K)

a > K)

F-Fp-*A6ln (f^rfp) = K{t-tp)

Variable
calculated

Potential infil-
tration rate as
a function of
time

Potential cumu-
lative infiltra-
tion as a func-
tion of time

Ponding time
under con-
stant rainfall
intensity i

Equivalent time
origin for poten-
tial infiltra-
tion after pond-
ing

Cumulative infil-
tration after
ponding

Infiltration rate
after ponding

Equation

(D

(2)

(3)

(4)

(5)

(6)
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PROBLEMS

4.1.1 Figure 4.1.5(Z?) shows the profiles through time of soil moisture head /z, with
vertical lines at weekly intervals. Calculate the soil moisture flux q between 0.8



m and 1.0 m at weekly intervals using the relationship K = 250(-i#) 2 U , where
K is hydraulic conductivity (cm/day) and if/ is soil suction head (cm).

4.1.2 Solve Prob. 4.1.1 for the soil moisture flux between 1.0 m and 1.2 m.
4.1.3 Take each pair of successive soil moisture head profiles in Fig. 4.1.5(Z?) (i.e.,

the profiles at 0.4 m and 0.8 m, 0.8 m and 1.0 m, . . . , 2.40 m and 3.0 m).
Use the relationship K = 250(-i/f)~"211 with K in centimeters per day and i// in
centimeters to calculate the soil moisture flux between each pair of levels. Plot
the soil moisture flux profiles and discuss how the moisture flows in the soil in
relation to the rainfall and evapotranspiration at the surface.

4.1.4 Using the YoIo light clay data shown in Fig. 4.1.4, calculate values of the soil
water diffusivity D = K{d^ld6), for 6 = 0.1,0.2,0.3, and 0.4. Plot a graph of
D vs 0.

4.2.1 Suppose that the parameters for Horton's equation are/o = 3.0 in/h,/c = 0.53 in/h,
and A: = 4.182h~1. Determine the infiltration rate and cumulative infiltration after
0, 0.5, 1.0, 1.5, and 2 h. Plot both as functions of time. Plot the infiltration rate
as a function of cumulative infiltration. Assume continuously ponded conditions.

4.2.2 For the same conditions as in Prob. 4.2.1, determine the incremental depth of
infiltration between 0.75 and 2.0 h.

4.2.3 For Horton's equation suppose/0 = 5 cm/h, / = 1 cm/h, and k = 2 h - 1 . Determine
the cumulative infiltration after 0, 0.5, 1.0, 1.5, and 2.0 h. Plot the infiltration
rate and cumulative infiltration as functions of time. Plot the infiltration rate as a
function of the cumulative infiltration. Assume continuously ponded conditions.

4.2.4 The infiltration rate at the beginning of a storm was/o = 4.0 in/h and it decreased
to 0.5 in/h after two hours. A total of 1.7 in infiltrated during these two hours.
Determine the value of k for Horton's equation. Assume continuously ponded
conditions.

4.2.5 For the same conditions as in Prob. 4.2.4, determine the value of k for Horton's
equation if a total of 1.2 in infiltrated during the two-hour period.

4.2.6 Suppose the parameters for Philip's equation are sorptivity S = 5 cm-h~1/2 and
K = 0.4 cm/h. Determine the cumulative infiltration after 0, 0.5, 1.0, 1.5, and
2.Oh. Plot the infiltration rate and the cumulative infiltration as functions of
time. Plot the infiltration rate as a function of the cumulative infiltration. Assume
continuously ponded conditions.

4.2.7 The infiltration rate as a function of time for an Alexis silt loam is as follows
(Terstriep and Stall, 1974):

Time(h) 0 0.07 0.16 0.27 0.43 0.67 1.10 2.53

Infiltration rate (in/h) 0.26 0.21 0.17 0.13 0.09 0.05 0.03 0.01

Determine the best values for the parameters/o, / c , and k for Horton's equation
to describe the infiltration for Alexis silt loam.

4.2.8 The infiltration into a YoIo light clay as a function of time for a steady rainfall
rate of 0.5 cm/h is as follows (Skaggs, 1982):

Time(h) 0 1.07 1.53 2.30 3.04 3.89 4.85 7.06

Cumulative infiltration (cm) 0 0.54 0.75 1.0 1.2 1.4 1.6 2.0

Infiltration rate (cm/h) 0.5 0.5 0.37 0.29 0.25 0.22 0.20 0.17



Determine the parameters /o, / c , and k for Horton's equation. Assume that
ponding occurs at t = 1.07 h.

4.2.9 Determine the parameters for Philip's equation for the infiltration data given in
Prob. 4.2.8.

4.2.10 Parameters in Philip's equation for a clay soil are S = 45 cm-h"1/2 and K = 10
cm/h. Determine the cumulative infiltration and the infiltration rate at 0.5-hour
increments for a 3-hour period. Plot both as functions of time. Plot the infiltration
rate as a function of the cumulative infiltration. Assume continuously ponded
conditions.

4.2.11 Solve Prob. 4.2.10 for a sandy soil with parameters S = 9.0 cm-h~m and K = 10
cm/h. Assume continuously ponded conditions.

4.3.1 For a sandy loam soil, calculate the infiltration rate (cm/h) and depth of infiltration
(cm) after one hour if the effective saturation is initially 40 percent, using the
Green-Ampt method. Assume continuously ponded conditions.

4.3.2 For the same conditions as in Prob. 4.3.1, plot curves of cumulative infiltration
depth F and infiltration rate / vs. time t for the first three hours of infiltration
using 0.5-h increments. Plot the infiltration rate as a function of the cumulative
infiltration for the same period.

4.3.3 Use the Green-Ampt method to evaluate the infiltration rate and cumulative
infiltration depth for a silty clay soil at 0.1-hour increments up to 6 hours from
the beginning of infiltration. Assume initial effective saturation 20 percent and
continous ponding.

4.3.4 For the soil of Prob. 4.3.3, compute the cumulative infiltration after one hour for
initial effective saturations of 0, 20, 40, 60, 80, and 100 percent. Draw a graph
of cumulative infiltration vs. initial effective saturation.

4.3.5 Show that the depth L 2 to the wetting front in the lower layer of the two-layer
Green-Ampt model satisfies

L2^r + T^rtAfcff i^ - ^e2K{{lP2 + /Z1)] In I + . L*' = t
K2 KiK2 I if/2 + Mx J

4.3.6 A soil comprises two layers, an upper layer six centimeters thick of silt loam
overlying a very deep layer of clay. The initial effective saturation in each layer
is 10 percent. As the wetting front penetrates into the soil, calculate, at 1-cm
increments of wetting front depth, the values o f / ,F , and t. For the clay layer
use the relationships given in Eqs. (4.3.12) to (4.3.14). Stop the calculations
once the wetting front reaches 10 cm. Plot graphs of the infiltration rate and
cumulative infiltration as functions of time.

4.3.7 Using the parameter values in Table 4.3.1, determine points on the infiltration
rate curves for sand, loam, clay loam, and clay from time 0 to 4 h, at 0.5-h
increments. Plot and compare these curves. Assume an initial effective saturation
of 30 percent in each soil and continuous ponding.

4.3.8 Solve Prob. 4.3.7 for cumulative infiltration curves.
4.3.9 Solve Prob. 4.3.7 using an initial effective saturation of 15 percent in each soil.
4.3.10 Solve Prob. 4.3.8 using an initial effective saturation of 15 percent in each soil.
4.4.1 Solve Example 4.4.1 in the text with an initial effective saturation of 20 percent.
4.4.2 Solve Example 4.4.2 in the text with an initial effective saturation of 20 percent.
4.4.3 Compute the ponding time and cumulative infiltration at ponding for a clay loam

soil with a 25 percent initial effective saturation subject to a rainfall intensity of
(a) 1 cm/h (b) 3 cm/h.



4.4.4 Calculate the cumulative infiltration and the infiltration rate after one hour of
rainfall at 3 cm/h on a clay loam with a 25 percent initial effective saturation.

4.4.5 Compute the ponding time and depth of water infiltrated at ponding for a silty
clay soil with a 20 percent initial effective saturation subject to a rainfall intensity
of (a) 1 cm/h (b) 3 cm/h.

4.4.6 Calculate the cumulative infiltration and the infiltration rate on a silty clay soil
after one hour of rainfall at 1 cm/h if the initial effective saturation is 20 percent.
Assume ponding depth Zz0 is negligible in the calculations.

4.4.7 Solve Prob. 4.4.6 assuming that any ponded water remains stationary over the
soil so that Zz0 must be accounted for in the calculations.

4.4.8 Rainfall of intensity 2 cm/h falls on a clay loam soil, and ponding occurs after
five minutes. Calculate the ponding time on a nearby sandy loam soil if both
soils initially had the same effective saturation se.

4.4.9 A soil has sorptivity S = 5 cm-h~1/2 and conductivity K = 0.4 cm/h. Calculate the
ponding time and cumulative infiltration at ponding under a rainfall of 6 cm/h.

4.4.10 A soil has Horton's equation parameters /o = 10 cm/h, / = 4 cm/h and k = 2
h"1 . Calculate the ponding time and cumulative infiltration at ponding under a
rainfall of 6 cm/h.

4.4.11 Show that the ponding time under rainfall of constant intensity / for a soil
described by Philip's equation with parameters S and K is given by

_ S2Ji - KIl)
tp " li(i -K)2

4A.12 Show that the ponding time under rainfall of intensity / for a soil described by
Horton's equation with parameters / 0 , fc, and k is given by

>-&-'+'--N)]
Indicate the range of values of rainfall intensity for which this equation is valid
and explain what happens if / is outside this range.



SURFACE
WATER

Surface water is water stored or flowing on the earth's surface. The surface water
system continually interacts with the atmospheric and subsurface water systems
described in previous chapters. This chapter describes the physical laws governing
surface water flow and shows how hydrologic data are analyzed to provide input
information for models of surface flow.

5.1 SOURCES OF STREAMFLOW

The watershed, or catchment, is the area of land draining into a stream at a given
location. To describe how the various surface water processes vary through time
during a storm, suppose that precipitation of a constant rate begins and continues
indefinitely on a watershed. Precipitation contributes to various storage and flow
processes, as illustrated in Fig. 5.1.1. The vertical axis of this diagram represents,
relative to the rate of precipitation, the rate at which water is flowing or being
added to storage in each of the processes shown at any instant of time.

Initially, a large proportion of the precipitation contributes to surface stor-
age', as water infiltrates into the soil, there is also soil moisture storage. There
are two types of storage: retention arid detention', retention is storage held for
a long period of time and depleted by evaporation, and detention is short-term
storage depleted by flow away from the storage location.

As the detention storages begin filling, flow away from them occurs: unsat-
uratedflow through the unsaturated soil near the land surface, groundwater flow
through saturated aquifers deeper down, and overland flow across the land surface.

CHAPTER
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FIGURE 5.1.1
Schematic illustration of the disposal of precipitation during a storm on a watershed.

Channel flow is the main form of surface water flow, and all the other surface flow
processes contribute to it. Determining flow rates in stream channels is a central
task of surface water hydrology. The precipitation which becomes streamflow
may reach the stream by overland flow, subsurface flow, or both.

Hortonian Overland Flow

Horton (1933) described overland flow as follows: "Neglecting interception by
vegetation, surface runoff is that part of the rainfall which is not absorbed by the
soil by infiltration. If the soil has an infiltration capacity/, expressed in inches
depth absorbed per hour, then when the rain intensity / is less than / the rain is
all absorbed and there is no surface runoff. It may be said as a first approximation
that if / is greater than/, surface runoff will occur at the rate (/ — / ) . " Horton
termed this difference (/ —f) "rainfall excess." Horton considered surface runoff
to take the form of a sheet flow whose depth might be measured in fractions of an
inch. As flow accumulates going down a slope, its depth increases until discharge
into a stream channel occurs (Fig. 5.1.2). Along with overland flow there is
depression storage in surface hollows and surface detention storage proportional
to the depth of the overland flow itself. The soil stores infiltrated water and
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FIGURE 5.1.2
Overland flow on a slope produced by the excess of
rainfall over infiltration. (After Horton, 1945, Fig.
13, p. 314.)

then slowly releases it as subsurface flow to enter the stream as baseflow during
rainless periods.

Hortonian overland flow is applicable for impervious surfaces in urban
areas, and for natural surfaces with thin soil layers and low infiltration capacity
as in semiarid and arid lands.

Subsurface Flow

Hortonian overland flow occurs rarely on vegetated surfaces in humid regions
(Freeze, 1972, 1974; Dunne, Moore, and Taylor, 1975). Under these conditions,
the infiltration capacity of the soil exceeds observed rainfall intensities for all
except the most extreme rainfalls. Subsurface flow then becomes a primary
mechanism for transporting stormwater to streams. The process of subsurface flow
is illustrated in Fig. 5.1.3, using the results of numerical simulations carried out
by Freeze (1974). Part (a) shows an idealized cross section of a hillside draining
into a stream. Prior to rainfall, the stream surface is in equilibrium with the water
table and no saturated subsurface flow occurs. P&rts (b)-(d) show how a seepage
pattern develops from rainfall on surface DE, which serves to raise the water
table (e) until inflow ceases (t = 277 min), after which the water table declines
if). All of the rainfall is infiltrated along surface DE until t = 84 min, when the
soil first becomes saturated at D; as time continues, decreasing infiltration occurs
along DE as progressively more of the surface becomes saturated (g). The total
outflow (h) partly comprises saturated groundwater flow contributed directly to
the stream and partly unsaturated subsurface flow seeping from the hillside above
the water table.

Subsurface flow velocities are normally so low .that subsurface flow alone
cannot contribute a significant amount of storm precipitation directly to stream-
flow except under special circumstances where the hydraulic conductivity of the
soil is very high (Pearce, Stewart, and Sklash, 1986). However, Moseley (1979)
has suggested that flow through root holes in a forested soil can be much more
rapid than flow through the adjacent soil mass.

Rainfall, i

Initial detention

Outlet

Infiltration,/



FIGURE 5.1.3
Saturated-unsaturated subsurface flow in a small idealized two-dimensional flow system (a) Boundary
and initial conditions. (b)-(d) Transient hydraulic head contours (broken line) and stream lines (solid).
(e) Water table rise, if) Water table decline, (g) Inflow as a function of time and position, (K)
Outflow hydrograph. (Source: Freeze, 1974, p. 644. Copyright by the American Geophysical
Union.)
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Saturation Overland Flow

Saturation overland flow is produced when subsurface flow saturates the soil near
the bottom of a slope and overland flow then occurs as rain falls onto saturated
soil. Saturation overland flow differs from Hortonian overland flow in that in
Hortonian overland flow the soil is saturated from above by infiltration, while in
saturation overland flow it is saturated from below by subsurface flow. Saturation
overland flow occurs most often at the bottom of hill slopes and near stream
banks.

The velocity of subsurface flow is so low that not all of a watershed can
contribute subsurface flow or saturation overland flow to a stream during a storm.
Forest hydrologists (Hewlett, 1982) have coined the terms variable source areas,
or partial areas, to denote the area of the watershed actually contributing flow
to the stream at any time (Betson, 1964; Ragan, 1968; Harr, 1977; Pearce
and McKerchar, 1979; Hewlett, 1982). As shown in Fig. 5.1.4, the variable
source area expands during rainfall and contracts thereafter. The source area for
streamflow may constitute only 10 percent of the watershed during a storm in a
humid, well vegetated region.

FIGURE 5.1.4
The small arrows in the hydrographs show how streamflow increases as the variable source extends
into swamps, shallow soils and ephemeral channels. The process reverses as streamflow declines.
(Reprinted from Principles of Forest Hydrology by J. D. Hewlett, Copyright 1982 the University of
Georgia Press. Reprinted by permission of the University of Georgia Press.)
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5.2 STREAMFLOW HYDROGRAPH

A streamflow or discharge hydrograph is a graph or table showing the flow rate
as a function of time at a given location on the stream. In effect, the hydrograph
is "an integral expression of the physiographic and climatic characteristics that
govern the relations between rainfall and runoff of a particular drainage basin"
(Chow, 1959). Two types of hydrographs are particularly important: the annual
hydrograph and the storm hydrograph.

Annual Hydrograph

The annual hydrograph, a plot of streamflow vs. time over a year, shows the
long-term balance of precipitation, evaporation, and streamflow in a watershed.
Examples typical of three main types of annual hydrographs are shown in Fig.
5.2.1.

The first hydrograph, from Mill Creek near Belleville, Texas, has a peren-
nial or continuous flow regime typical of a humid climate. The spikes, caused
by rain storms, are called direct runoff or quickflow, while the slowly varying
flow in rainless periods is called baseftow. The total volume of flow under the
annual hydrograph is the basin yield. For a river with perennial flow most of the
basin yield usually comes from baseflow, indicating that a large proportion of the
rainfall is infiltrated into the basin and reaches the stream as subsurface flow.

The second hydrograph, from the Frio River near Uvalde, Texas, is an
example of an ephemeral river in an arid climate. There are long periods when
the river is dry. Most storm rainfall becomes direct runoff and little infiltration
occurs. Basin yield from this watershed is the result of direct runoff from large
storms.

The third hydrograph, from the East River near Almont, Colorado, is
produced by a snow-fed river. The bulk of the basin yield occurs in the spring and
early summer from snowmelt. The large volume of water stored in the snowpack,
and its steady release, create an annual hydrograph which varies more smoothly
over the year than for the perennial or ephemeral streams illustrated.

Storm Hydrograph

Study of annual hydrographs shows that peak streamflows are produced infre-
quently, and are the result of storm rainfall alone or storm rainfall and snowmelt
combined. Figure 5.2.2 shows four components of a streamflow hydrograph dur-
ing a storm. Prior to the time of intense rainfall, baseflow is gradually diminishing
(segment AB). Direct runoff begins at B, peaks at C and ends at D. Segment DE
follows as normal baseflow recession begins again.

Baseflow Separation

A variety of techniques have been suggested for separating baseflow and direct
runoff. One of the oldest is the normal depletion curve described by Horton
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(c) East River at Almont, Colorado (watershed area = 289 mi2)

FIGURE 5.2.1
The annual streamflow hydrographs for 1981 from three different gaging stations illustrating the
main types of hydrologic regimes: (a) perennial river, [b) ephemeral river, (c) snow-fed river. (Data
provided by the U. S. Geological Survey).
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(a) Mill Creek near Belville, Texas (watershed area = 376 mi2)
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(1933). The normal depletion curve, or master baseflow recession curve, is a
characteristic graph of flow recessions compiled by superimposing many of the
recession curves observed on a given stream. Recession curves often take the
form of exponential decay:

G(O = Qoe ~{t~to)/k (5.2.1)

where <2o is the flow at time ô a n d k is an exponential decay constant having
the dimensions of time (Singh and Stall, 1971). Equation (5.2.1) is linearized by
plotting the logarithm of Q(t) against time on a linear scale. In Northland, New
Zealand, a typical value for k is 6 x 10~3 days, which corresponds to a "half-
life" of 116 days (Martin, 1973). The half-life is the time for baseflow to recede
to the point where Q(t)/Q0 = 0.5. The concept underlying Eq. (5.2.1) is that of
a linear reservoir, whose outflow rate is proportional to the current storage (see
Sec. 8.5):

S(t) = kQ(t) (5.2.2)

By noting the periods of time when the streamflow hydrograph is coincident
with the normal baseflow recession curve, the points where direct runoff begins
and ceases can be identified (B and D on Fig. 5.2.2). Between these points direct
runoff and baseflow can be separated by various methods.

Some alternative methods of baseflow separation are: (a) the straight line
method, (b) the fixed base length method, and (c) the variable slope method.
These methods are illustrated in Figure 5.2.3.

The straight line method, involves drawing a horizontal line from the point
at which surface runoff begins to the intersection with the recession limb. This is
applicable to ephemeral streams. An improvement over this approach is to use an
inclined line to connect the beginning point of the surface runoff with the point on
the recession limb of the hydrograph where normal baseflow resumes. For small
forested watersheds in humid regions, Hewlett and Hibbert (1967) suggested that
baseflow during a storm can be assumed to be increasing at a rate of 0.0055
//s-ha-h (0.05 cfs/mi2h).

FIGURE 5.2.2
Components of the streamflow
hydrograph during a storm.Time
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(a) Straight line method.
(b) Fixed base method.
(c) Variable slope method.

FIGURE 5.2.3
Baseflow separation techniques.

In the fixed base method, the surface runoff is assumed to end a fixed time
N after the hydrograph peak. The baseflow before the surface runoff began is
projected ahead to the time of the peak. A straight line is used to connect this
projection at the peak to the point on the recession limb at time N after the peak.

In the variable slope method, the baseflow curve before the surface runoff
began is extrapolated forward to the time of peak discharge, and the baseflow
curve after surface runoff ceases is extrapolated backward to the time of the point
of inflection on the recession limb. A straight line is used to connect the endpoints
of the extrapolated curves.

5.3 EXCESSRAINFALLANDDIRECT
RUNOFF

Excess rainfall, or effective rainfall, is that rainfall which is neither retained on
the land surface nor infiltrated into the soil. After flowing across the watershed
surface, excess rainfall becomes direct runoff at the watershed outlet under the
assumption of Hortonian overland flow. The graph of excess rainfall vs. time, or
excess rainfall hyetograph (ERH), is a key component of the study of rainfall-
runoff relationships. The difference between the observed total rainfall hyetograph
and the excess rainfall hyetograph is termed abstractions, or losses. Losses are
primarily water absorbed by infiltration with some allowance for interception and
surface storage.

The excess rainfall hytograph may be determined from the rainfall hyeto-
graph in one of two ways, depending on whether streamflow data are available for
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the storm or not. In this section, it is assumed that streamflow data are available.
Sections 5.4 and 5.5 show how to calculate abstractions when streamflow data
are not available.

Suppose that a rainfall hyetograph and streamflow hyetograph are avail-
able, baseflow has been separated from streamflow to produce the direct runoff
hydrograph, and the excess rainfall hyetograph is to be determined. The param-
eters of infiltration equations can be determined by optimization techniques such
as nonlinear programming (Unver and Mays, 1984), but these techniques are
complicated. There is a simpler alternative, called a 0-index. The </>-index is
that constant rate of abstractions (in/h or cm/h) that will yield an excess rainfall
hyetograph (ERH) with a total depth equal to the depth of direct runoff rj over
the watershed. The value of (f> is determined by picking a time interval length
At, judging the number of intervals M of rainfall that actually contribute to direct
runoff, subtracting (f>At from the observed rainfall in each interval, and adjusting
the values of <f) and M as necessary so that the depths of direct runoff and excess
rainfall are equal:

M

rd= X ( ^ - M O (5.3.1)

where Rm is the observed rainfall (in) in time interval m.

Example 5.3.1. Determine the direct runoff hydrograph, Jhe </>-index, and the
excess rainfall hyetograph from the observed rainfall and streamflow data given
in Table 5.3.1. The watershed area is 7.03 mi2.

Solution. The basin-average rainfall data given in column 2 of Table 5.3.1 were
obtained by taking Thiessen-weighted averages of the rainfall data from two rainfall
gages in the watershed. (Ideally, data from several more gages would be used.) The
pulse data representation is used for rainfall with a time interval of Ar = 1/2 h, so
each value shown in column 2 is the incremental precipitation that occurred during
the half-hour up to the time shown. The streamflow data shown were recorded as
sample data; the value shown in column 3 is the streamflow recorded at that instant
of time. The observed rainfall and streamflow data are plotted in Fig. 5.3.1, from
which it is apparent that rainfall prior to 9:30 P.M. produced a small flow in the
stream (approximately 400 cfs) and that the direct runoff occurred following intense
rainfall between 9:30 and 11:30 P.M.

The computation of the effective rainfall hyetograph and the direct runoff
hydrograph uses the following procedure:

Step 1. Estimate the baseflow. A constant baseflow rate of 400 cfs is selected.
Step 2. Calculate the direct runoff hydrograph (DRH). The DRH, in column

6 of Table 5.3.1, is found by the straight line method, by subtracting the 400 cfs
baseflow from the observed streamflow (column 3). Eleven half-hour time intervals
in column 4 are labeled from the first period of non-zero direct runoff, beginning
at 9:30 P.M.

Step 3. Compute the volume Vd and depth r</ of direct runoff.



TABLE 5.3.1
Rainfall and streamflow data dapted from the storm of May 24-25, 1981, on
Shoal Creek at Northwest Park, Austin, Texas

Observed Excess rainfall Direct runoff
Time Rainfall Streamflow Time hyetograph (ERH) hydrograph (DRH)

(in) (cfs) (±h) (in) (cfs)

Column: 1 2 3 4 5 6

24 May 8:30 P.M. 203
9:00 0.15 246
9:30 0.26 283

10:00 1.33 828 1 1.06 428
10:30 2.20 2323 2 1.93 1923
11:00 2.08 5697 3 1.81 5297
11:30 0.20 9531 4 9131

25 May 12:00 A.M. 0.09 11025 5 10625
12:30 8234 6 7834

1:00 4321 7 3921
1:30 2246 8 1846
2:00 1802 9 1402
2:30 1230 10 830
3:00 713 11 313
3:30 394
4:00 354 Total 4.80 43550
4:30 303

Excess rainfall = observed rainfall — abstractions (0.27 in per half-hour)

Direct runoff = observed streamflow — baseflow (400 cfs)

ii

= 43,550 cfs x 1/2 h

,„ c c n ft3 3600 s 1 u
= 43,550— x x - h

s 1 h 2

= 7.839 x 107 ft3

r Vd

watershed area

7.839 x IQ7 ft3

7.03 mi2 x 52802 ft2/mi2

= 0.400 ft

= 4.80 in



P.M. A.M.
MAY 24-25, 1981

FIGURE 5.3.1
Rainfall and streamflow for the storm of May 24-25, 1981, on Shoal Creek at Northwest Park,
Austin, Texas.

Step 4. Estimate the rate of rainfall abstractions by infiltration and surface
storage in the watershed. Any rainfall prior to the beginning of direct runoff is
taken as initial abstraction (i.e., that rainfall prior to 9:30 P.M. in Table 5.3.1).
The abstraction rate $, and M, the number of nonzero pulses of excess rainfall, are
found by trial and error.

1. If M = 1, the largest rainfall pulse, Rm = 2.20 in, is selected, substituted into
Eq. (5.3.1) using rd = 4.80 in and Ar = 0.5 h, and solved for a trial value of
<t>:

M

rd=^(Rm-<j>At)

4.80 = (2.20-<£x 0.5)

</>=-5.20 in/h

which is not physically possible.
2. If M = 2, the one-hour period having the highest rainfall is selected (between

10:00 P.M. and 11:00 P.M.) and substituted into (5.3.1) to solve for a new trial
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value of </>:
M

rd = ^(Rm-</>&)

4.80 = (2.20 + 2.08 - 0 x 2 x 0.5)

<j> = - 0.52 in/h

again impossible.

3. IfM= 3, the I^ hour period having pulses 1.33, 2.20, and 2.08 in is selected,
and the data is substituted into (5.3.1):

M

YYl = 1

4.80 = (1.33 + 2.20 + 2.08 - <p x 3 X 0.5)

(j) = 0.54 in/h

This value of <\> is satisfactory because it gives </>Af = 0.27 in, which is greater
than all of the rainfall pulses in column 2 outside of the three assumed to
contribute to direct runoff.

Step 5. Calculate the excess rainfall hyetograph. The ordinates (column 5)
are found by subtracting <pkt = 0.27 in from the ordinates of the observed rainfall
hyetograph (column 2), neglecting all intervals in which the observed rainfall depth
is less than $Af. The duration of excess rainfall is 1.5 h in this example (9:30 to
11:00 P.M.). The depth of excess rainfall is checked to ensure that it equals ra (total
of column 5 = 4.80 in). The excess portion of the observed rainfall hyetograph is
cross-hatched in Fig. 5.3.1.

Runoff Coefficients

Abstractions may also be accounted for by means of runoff coefficients. The most
common definition of a runoff coefficient is that it is the ratio of the peak rate
of direct runoff to the average intensity of rainfall in a storm. Because of highly
variable rainfall intensity, this value is difficult to determine from observed data.
A runoff coefficient can also be defined to be the ratio of runoff to rainfall over a
given time period. These coefficients are most commonly applied to storm rainfall
and runoff, but can also be used for monthly or annual rainfall and streamflow
data. If 2 m=i Rm is the total rainfall and r^ the corresponding depth of runoff,
then a runoff coefficient can be defined as

C = - ^ - (5.3.2)

m = l



Example 5.3.2. Determine the runoff coefficient for the storm in Example 5.3.1.

Solution. Considering only the rainfall that occurred after the beginning of direct
runoff (9:30 P.M.):

M

^ i ? m = 1.33 + 2.20 + 2.08 + 0.20 + 0.09
m=\

= 5.90 in

C = - ^ L -

M

m = l

_ 4^*0
" 5.90
= 0.81

5.4 ABSTRACTIONS USING INFILTRATION
EQUATIONS

Abstractions include interception of precipitation on vegetation above the ground,
depression storage on the ground surface as water accumulates in hollows over
the surface, and infiltration of water into the soil. Interception and depression
storage abstractions are estimated based on the nature of the vegetation and ground
surface or are assumed to be negligible in a large storm.

In the previous section, the rate of abstractions from rainfall was determined
by using a known streamflow hydrograph. In most hydrologic problems, the
streamflow hydrograph is not available and the abstractions must be determined
by calculating infiltration and accounting separately for other forms of abstrac-
tion, such as interception, and detention or depression storage. In this section, it is
assumed that all abstractions arise from infiltration, and a method for determining
the ponding time and infiltration under a variable intensity rainfall is developed
based on the Green-Ampt infiltration equation. Equivalent relationships for use
with the Horton and Philip equations are presented in Table 5.4.1. The problem
considered is: given a rainfall hyetograph defined using the pulse data repre-
sentation, and the parameters of an infiltration equation, determine the ponding
time, the infiltration after ponding occurs, and the excess rainfall hyetograph.

The basic principles used for determining ponding time under constant rain-
fall intensity in Sec. 4.4 are also employed here: in the absence of ponding,
cumulative infiltration is calculated from cumulative rainfall; the potential infil-
tration rate at a given time is calculated from the cumulative infiltration at that
time; and ponding has occurred when the potential infiltration rate is less than or
equal to the rainfall intensity.



TABLE 5.4.1
Equations for calculating infiltration at and following ponding

Philip's equation

F^1=F1 + KAt- 2(fi_ ^

S +Js2 + 4KF1 + ̂ ,
ft+Ai K + S

r S2((, - K/2)

(i,>K)

Horton's equation

Ft+^t =Ft+fc Af

f,+A,=f,- KF1+^ - F1 -fcAt)

( f c < « f < / 0 )

Equation Green-Ampt equation

(1) Cumulative infiltration F1+A,

F1+Ar=F1 +KAt

• ^ L F , + if>Ae J

(2) Infiltration rate/,+A*

(3) Cumulative infiltration at ponding Fp

b" - i,-K

Ht > K)



Consider a time interval from Mo f I At. The rainfall intensity during
this interval is denoted it and is constant throughout the interval. The potential
infiltration rate and cumulative infiltration at the beginning of the interval are ft

and Ft, respectively, and the corresponding values at the end of the interval are
ft+At, and Ft+At- It is assumed that Ft is known from given initial conditions or
previous computation.

A flow chart for determining ponding time is presented in Fig 5.4.1. There
are three cases to be considered: (1) ponding occurs throughout the interval; (2)
there is no ponding throughout the interval; and (3) ponding begins part-way
through the interval. The infiltration rate is always either decreasing or constant
with time, so once ponding is established under a given rainfall intensity, it will
continue. Hence, ponding cannot cease in the middle of an interval, but only at
its end point, when the value of the rainfall intensity changes.

Following the flow chart, the first step is to calculate the current potential
infiltration r a t e / , from the known value of cumulative infiltration Ft. For the
Green-Ampt method, one uses

ft = K^y^ + Il (5.4.1)

The result ft is compared to the rainfall intensity i t. If ft is less than or
equal to /r, case (1) arises and there is ponding throughout the interval. In this
case, for the Green-Ampt equation, the cumulative infiltration at the end of the
interval, F1+At^ is calculated from

This equation is derived in a manner similar to that shown in Sec. 4.4 for Eq.
(4.4.5).

Both cases (2) and (3) have / , > it and no ponding at the beginning of the
interval. Assume that this remains so throughout the interval; then, the infiltration
rate is it and a tentative value for cumulative infiltration at the end of the time
interval is

Fl+At = Ft + iAt (5.4.3)

Next, a corresponding infiltration rate/J+Ar is calculated from Ff
t+At> If ft+At is

greater than it9 case (2) occurs and there is no ponding throughout the interval.
Thus Ff+At — Fr

t+At and the problem is solved for this interval.
KfI+At is less than or equal to iu ponding occurs during the interval (case

(3)). The cumulative infiltration Fp at ponding time is found by setting ft = it

and Ft = Fp in (5.4.1) and solving for Fp to give, for the Green-Ampt equation,

F, - f**$ (5.4.4,
lt — A

The ponding time is then t + At', where



FIGURE 5.4.1
Flow chart for determining infiltration and ponding time under variable rainfall intensity.

Ar' = FP~Ft (5.4.5)
h

and the cumulative infiltration Ft+/^t is found by substituting F t = Fp and Af =

Ar — Ar' in (5.4.2). The excess rainfall values are calculated by subtracting

At t = 0, F = 0.

At time t, cumulative
infiltration, Ft is

known.

Calculate ft from Ft.
(2) No ponding

throughout
interval:

* f + A ' = t + Af

calculated from
rainfall.

No ponding at the
beginning of the

interval. Calculate
tentative values

Ft+p= Ft+ it lit
and fuAt fromF)+A/

(1) Ponding occurs
throughout interval:

Ft+^t calculated
by infiltration

equation.

(3) Ponding occurs during
interval:

Calculate Fp from it, find
Ar' = (Fp-Ft)l it

and calculate Ft+At from
Fp and At'

by infiltration equation.



cumulative infiltration from cumulative rainfall, then taking successive differences
of the resulting values.

Example 5.4.1 A rainfall hyetograph is given in columns 1 and 2 of Table 5.4.2.
If this rain falls on a sandy loam soil of initial effective saturation 40 percent,
determine the excess rainfall hyetograph.

Solution. From Table 4.3.1, for a sandy loam soil, K = 1.09 cm/h, ijj = 11.01 cm
and 0e = 0.412. From Eq. (4.3.10)

A0=(1 -se)0e

= (1 -0.4X0.412)

= 0.247
and

iff A0 = O.247 x 11.01

= 2.72 cm

The time interval in Table 5.4.2 is Af = 10 min = 0.167 h. Column 3 of the table
shows the cumulative rainfall depths found by summing the incremental values in
column 2. The rainfall hyetograph and the cumulative rainfall hyetograph are shown
in Fig. 5.4.2. The rainfall intensity in column 4 is found from column 2 by dividing
by Ar. For example, during the first time interval, 0.18 cm of rainfall occurs, so
it = 0.18/0.167 = 1.08 cm/h as shown. Initially, F = 0, s o / = °o from (5.4.1) and
ponding does not occur at time 0. Hence F at time 10 min is calculated by (5.4.3),
thus: F't+fr = Ft + it Af = 0 H- 0.18 = 0.18 cm. The corresponding value of/',+A*
is. from (5.4.1),

= 17.57 cm/h

as shown in column 5 of the table. This value is greater than /,; therefore, no
ponding occurs during this interval and cumulative infiltration equals cumulative
rainfall as shown in column 6. It is found that ponding does not occur up to 60
minutes of rainfall, but at 60 min,

= • < £ + >)
= 2.77 cm/h

which is less than it = 3.84 cm/h for the interval from 60 to 70 minutes, so ponding
begins at 60 min [see Fig. 5.4.2(a)].



TABLE 5.4.2
Calculation of excess rainfall hyetograph using the Green-Ampt infiltration equation (Example 5.4.1)

7 8
Excess Rainfall

Cumulative Incremental
(cm) (cm)

0.00

0.20 0.20

0.96 0.76

3.78 2.82

5.09 1.31

5.57 0.48

5.78 0.21

5.90 0.12

5.96 0.06

5 6
Infiltration

Rate Cumulative
(cm/h) (cm)

0.00

17.57 0.18

8.70 0.39

5.65 0.65

4.15 0.97

3.30 1.34

2.77 1.77

2.43 2.21

2.23 2.59

2.09 2.95

1.99 3.29

1.91 3.62

1.84 3.93

1.79 4.24

1.74 4.53

1.71 4.81

1.68 5.05

1.66 5.24

1.64 5.41

4

Intensity
(cm/h)

1.08

1.26

1.56

1.92

2.22

2.58

3.84

6.84

19.08

9.90

4.86

3.12

2.52

2.16

1.68

1.44

1.14

1.02

3
Rainfall

Cumulative
(cm)

0.00

0.18

0.39

0.65

0.97

1.34

1.77

2.41

3.55

6.73

8.38

9.19

9.71

10.13

10.49

10.77

11.01

11.20

11.37

2

Incremental
(cm)

0.18

0.21

0.26

0.32

0.37

0.43

0.64

1.14

3.18

1.65

0.81

0.52

0.42

0.36

0.28

0.24

0.19

0.17

Time
(min)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

Column:

Ponding



During the ponded period, (5.4.2) is used to calculate infiltration. The value of
Ft +At at 70 mins is given by

F,«, - 1.77 - 2.72 In [ y ^ f ^ ] - 1-09 X 0.167

or

F(+Ar= 1.95 + 2 . 7 2 I n ( ^ p )

FIGURE 5.4.2
Infiltration and excess rainfall under variable rainfall intensity (Example 5.4.1).

Time (min)

Initial abstraction

Continuing abstraction

Excess
rainfall

Rainfall
Infiltration

Cumulative rainfall
and infiltration

Time (min)

Excess
rainfall
rate

Initial
abstraction

Continuing
abstraction

Potential
infiltration

Rainfall

Rainfall and
infiltration rate

R
at

e 
(c

m
/h

)
C

um
ul

at
iv

e 
de

pt
h 

(c
m

)

Po
nd

in
g 

tim
e



which is solved by the method of successive approximation to give Ft+At
 = 2.21

cm as shown in column 6 of Table 5.4.2. The cumulative excess rainfall (column
7) is found by subtracting cumulative infiltration (column 6) from cumulative
rainfall (column 3). And the excess rainfall values in column 8 are found by taking
differences of successive cumulative rainfall values. Ponding ceases at 140 min
when the rainfall intensity falls below the potential infiltration rate. After 140 min,
cumulative infiltration is computed from rainfall by (5.4.3). For example, at 150
min Ft+&t = Ft + itAt = 4.53 + 0.28 = 4.81 in as shown in column 6.

As shown in Fig. 5.4.2, the total rainfall of 11.37 cm is disposed of as an
initial abstraction of 1.77 cm (cumulative infiltration at ponding time), a continuing
abstraction of 3.64 cm (5.41 cm total infiltration — 1.77 cm initial abstraction),
and an excess rainfall of 5.96 cm.

5.5 SCSMETHODFORABSTRACTIONS

The Soil Conservation Service (1972) developed a method for computing abstrac-
tions from storm rainfall. For the storm as a whole, the depth of excess precipita-
tion or direct runoff Pe is always less than or equal to the depth of precipitation P;
likewise, after runoff begins, the additional depth of water retained in the water-
shed, Fa, is less than or equal to some potential maximum retention S (see Fig.
5.5.1). There is some amount of rainfall Ia (initial abstraction before ponding) for
which no runoff will occur, so the potential runoff is P — Ia. The hypothesis of
the SCS method is that the ratios of the two actual to the two potential quantities
are equal, that is,

From the continuity principle

P = Pe + Ia + F a (5.5.2)

Combining (5.5.1) and (5.5.2) to solve for Pe gives

FIGURE 5.5.1
Variables in the SCS method of rainfall
abstractions: Ia = initial abstraction,
Pe = rainfall excess, Fa — continuing
abstraction, P = total rainfall.Time
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which is the basic equation for computing the depth of excess rainfall or direct
runoff from a storm by the SCS method.

By study of results from many small experimental watersheds, an empirical
relation was developed.

Ia = 0.2S (5.5.4)

On this basis

= (P - 0.25)2
Fe P + 0.85 {5'5'5)

Plotting the data for P and Pe from many watersheds, the SCS found curves
of the type shown in Fig. 5.5.2. To standardize these curves, a dimensionless
curve number CN is defined such that 0 < CN < 100. For impervious and
water surfaces CN = 100; for natural surfaces CN < 100. As an illustration, the
rainfall event of Example 5.3.2 has Pe = 4.80 in. and P = 5.80 in. From Fig.
5.5.2, it can be seen that CN = 91 for this event.

Cumulative rainfall P in inches

FIGURE 5.5.2
Solution of the SCS runoff equations. (Source: Soil Conservation Service, 1972, Fig. 10.1, p.
10.21)
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The curve number and S are related by

where 5 is in inches. The curve numbers shown in Fig. 5.5.2 apply for normal
antecedent moisture conditions (AMC II). For dry conditions (AMC I) or wet
conditions (AMC III), equivalent curve numbers can be computed by

4.2CN(II)
C N ( I ) = 10-0.058CN(II) ( 5 - 5 - 7 )

and

23CN(II)
C N ( I I I ) " 1O +0.13CN(II) <5 '5 8 )

The range of antecedent moisture conditions for each class is shown in Table
5.5.1.

Curve numbers have been tabulated by the Soil Conservation Service on the
basis of soil type and land use. Four soil groups are defined:
Group A: Deep sand, deep loess, aggregated silts
Group B: Shallow loess, sandy loam
Group C: Clay loams, shallow sandy loam, soils low in organic content, and

soils usually high in clay
Group D: Soils that swell significantly when wet, heavy plastic clays, and

certain saline soils
The values of CN for various land uses on these soil types are given in Table
5.5.2. For a watershed made up of several soil types and land uses, a composite
CN can be calculated.

Example 5.5.1 (After Soil Conservation Service, 1975). Compute the runoff from
5 inches of rainfall on a 1000-acre watershed. The hydrologic soil group is 50
percent Group B and 50 percent Group C interspersed throughout the watershed.
Antecedent moisture condition II is assumed. The land use is:

40 percent residential area that is 30 percent impervious
12 percent residential area that is 65 percent impervious

TABLE 5.5.1
Classification of antecedent moisture classes (AMC)
for the SCS method of rainfall abstractions

Total 5-day antecedent rainfall (in)

AMC group Dormant season Growing season

I Less than 0.5 Less than 1.4
II 0.5 to 1.1 1.4 to 2.1

III Over 1.1 Over 2.1

{Source: Soil Conservation Service, 1972, Table 4.2, p. 4.12.)



TABLE 5.5.2
Runoff curve numbers for selected agricultural, suburban, and urban land
uses (antecedent moisture condition II, Ia = 0.2S)

Land Use Description Hydrologic Soil Group

A B C D

Cultivated landl: without conservation treatment 72 81 88 91

with conservation treatment 62 71 78 81

Pasture or range land: poor condition 68 79 86 89

good condition 39 61 74 80

Meadow: good condition 30 58 71 78

Wood or forest land: thin stand, poor cover, no mulch 45 66 77 83
good cover2 25 55 70 77

Open Spaces, lawns, parks, golf courses, cemeteries, etc.

good condition: grass cover on 75% or more of the area 39 61 74 80

fair condition: grass cover on 50% to 75% of the area 49 69 79 84

Commercial and business areas (85% impervious) 89 92 94 95

Industrial districts (72% impervious) 81 88 91 93

Residential:

Average lot size Average % impervious4

1/8 acre or less 65 77 85 90 92

1/4 acre 38 61 75 83 87

1/3 acre 30 57 72 81 86

1/2 acre 25 54 70 80 85

1 acre 20 51 68 79 84

Paved parking lots, roofs, driveways, etc.5 98 98 98 98

Streets and roads:

paved with curbs and storm sewers 5 98 98 98 98

gravel 76 85 89 91

dirt 72 82 87 89

lFor a more detailed description of agricultural land use curve numbers, refer to Soil Conservation Service, 1972,

Chap. 9

2Good cover is protected from grazing and litter and brush cover soil.

3Curve numbers are computed assuming the runoff from the house and driveway is directed towards the street

with a minimum of roof water directed to lawns where additional infiltration could occur.

4The remaining pervious areas (lawn) are considered to be in good pasture condition for these curve numbers.

5ln some warmer climates of the country a curve number of 95 may be used.



18 percent paved roads with curbs and storm sewers
16 percent open land with 50 percent fair grass cover and 50 percent good
grass cover
14 percent parking lots, plazas, schools, and so on (all impervious)

Solution. Compute the weighted curve number using Table 5.5.2.

Hydrologic soil group

B C

Land Use % CN Product % CN Product

Residential (30% impervious) 20 72 1440 20 81 1620
Residential (65% impervious) 6 85 510 6 90 540
Roads 9 98 882 9 98 882
Open land: Good cover 4 61 244 4 74 296

Fair cover 4 69 276 4 79 316
Parking lots, etc _7_ 98 686 1_ 98 686

50 4038 50 4340

Thus,

Weighted C N = 4 0 3 8 + . 4 3 4 0 = 8 3 . 8
IUU

S~ CN 1 0

= 12»-10
83.8

= 1.93 in

(P- 0.2S)2

e (P + 0.8S)

_ ( 5 - 0 . 2 x 1.93)2

5 + 0.8 x 1.93

= 3.25 in

Example 5.5.2. Recompute the runoff from this watershed if the wet conditions of
antecedent moisture condition III are applicable.

Solution. Find a curve number for AMC III equivalent to CN = 83.8 under AMC
II using Eq. (5.5.8):

23CN(II)
C N ( I I I ) = 1O +0.13CN(II)

23 x 83.8

" 10 + 0.13X83.8

= 92.3



Then,

= 1 ^ - 1 0
92.3

= 0.83 in

^ (P - 0.2S)2

P + 0.85

_ (5 - 0.2 x 0.83)2

5 + 0.8 x 0.83

= 4.13 in

The change in runoff caused by the change in antecedent moisture condition is
4.13 - 3.25 = 0.88 in, a 27 percent increase.

Urbanization Effects

During the past 15 to 20 years, hydrologists have paid considerable attention to
the effects of urbanization. Early works in urban hydrology were concerned with
the effects of urbanization on the flood potential of small urban watersheds. The
effects of urbanization on the flood hydrograph include increased total runoff
volumes and peak flow rates, as depicted in Fig. 5.5.3. In general, the major
changes in flow rates in urban watersheds are due to the following:

1. The volume of water available for runoff increases because of the increased
impervious cover provided by parking lots, streets, and roofs, which reduce
the amount of infiltration.

FIGURE 5.5.3
The effect of urbanization
on storm runoff.Time
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2. Changes in hydraulic efficiency associated with artificial channels, curbing,
gutters, and storm drainage collection systems increase the velocity of flow
and the magnitude of flood peaks.

The SCS method for rainfall-runoff analysis can be applied to determine the
increase in the amount of runoff caused by urbanization.

Example 5.5.3 Calculate the runoff from 5 inches of rainfall on a 1000-acre
watershed. The soil is 50 percent Group B and 50 percent Group C. Assume
antecedent moisture condition II. The land use is open land with fair grass cover
before urbanization; after urbanization it is as specified in Example 5.5.1. How
much additional runoff is caused by urbanization?

Solution. The curve numbers for open land with fair grass cover are CN = 69 for
Group B and 79 for Group C, so the average curve number for the watershed is CN
= (69 + 79)/2 = 74. From (5.5.6), S = (1000/74) - 10 = 3.51 in. The excess
rainfall or direct runoff Pe is calculated from (5.5.5) with P = 5.0 in:

= (P - 0.2S)2

P + 0.85

_ (5 .0-0 .2 x 3.51)2

5.0 + 0.8 x 3.51

= 2.37 in (before urbanization)
After urbanization, Example 5.5.1 shows Pe = 3.25 in, so the impact of urbanization
is to cause 3.25 — 2.37 = 0.88 in of additional runoff from this storm, a 27 percent
increase.

Time Distribution of SCS Abstractions

To this point, only the depth of excess rainfall or direct runoff during a storm
has been computed. By extension of the previous method, the time distribution
of abstractions F a within a storm can be found. Solving for F a from Eqs. (5.5.1)
and (5.5.2),

Differentiating, and noting that Ia and S are constants,

^ = S^dPldt
dt (P-Ia+ S)2 ^ }

As P —> °°, (dFJdf) —> 0 as required, but the presence of dPldt (rainfall intensity)
in the numerator means that as the rainfall intensity increases, the rate of retention
of water within the watershed tends to increase. This property of the SCS method
may not have a strong physical basis (Morel-Seytoux and Verdin, 1981).

In application, cumulative abstractions and rainfall excess may be deter-
mined either from (5.5.9) or from (5.5.5).



Example 5.5.4. Storm rainfall occurred on a watershed as shown in column 2 of
Table 5.5.3. The value of CN is 80 and Antecedent Moisture Condition II applies.
Calculate the cumulative abstractions and the excess rainfall hyetograph.

Solution. For CN = 80, S = (1000/80) - 10 = 2.50 in; Ia = 0.2S = 0.5 in. The
initial abstraction absorbs all of the rainfall up to P = 0.5 in. This includes the 0.2
in of rainfall occurring during the first hour and 0.3 in of the rain falling during
the second hour. For P > 0.5 in, the continuing abstraction Fa is computed from
(5.5.9):

S(P-Ig)
a P-Ia + S

2.50(P-0.5)
~ P - 0 . 5 + 2.50

_ 2.50(P - 0.5)
P + 2.0

For example, after two hours, the cumulative rainfall is P = 0.90 in, so

_ 2.50(0.9 - 0.5)
a~ 0.9 4-2.0

= 0.34 in

as shown in column 4 of the table. The excess rainfall is that remaining after initial
and continuing abstractions. From (5.5.2)

TABLE 5.5.3
Computation of abstractions and excess rainfall hyetograph by the
SCS method (Example 5.5.4)

Column: 1 2 3 4 5 6

r w . Cumulative C u m u l a t i v e E x c e s s

CUTuT abstractions (in) exfefu D ™mfa11
 uTime rainfall P — rainfall Pe hyetograph

(h) (in) Ig Fg (in) (in)

0 0 0 - 0
0

1 0.20 0.20 - 0
0.06

2 0.90 0.50 0.34 0.06
0.12

3 1.27 0.50 0.59 0.18
0.58

4 2.31 0.50 1.05 0.76
1.83

5 4.65 0.50 1.56 2.59
0.56

6 5.29 0.50 1.64 3.15
0.06

7 5.36 0.50 1.65 3.21



Pe=P-Ia-Fa

= 0 .90 -0 .50 -0 .34

= 0.06 in

as shown in column 5. The excess rainfall hyetograph is determined by
taking the difference of successive values of Pe (column 6).

5.6 FLOW DEPTH AND VELOCITY

The flow of water over a watershed surface is a complicated process varying in
all three space dimensions and time. It begins when water becomes ponded on
the surface at sufficient depth to overcome surface retention forces and begins
to flow. Two basic flow types may be distinguished: overland flow and channel
flow. Overland flow has a thin layer of water flowing over a wide surface.
Channel flow has a much narrower stream of water flowing in a confined path.
Chapter 2 gave the physical laws applicable to these two types of flow. On a
natural watershed, overland flow is the first mechanism of surface flow but it
may persist for only a short distance (say up to 100 ft) before nonuniformities
in the watershed surface concentrate the flow into tortuous channels. Gradually,
the outflows from these small channels combine to produce recognizable stream
channel flows which accumulate going downstream to form streamflow at the
watershed outlet.

Surface water flow is governed by the principles of continuity and
momentum. The application of these principles to three-dimensional unsteady
flow on a watershed surface is possible only in very simplified situations, so one-
or two-dimensional flow is usually assumed.

Overland Flow

Overland flow is a very thin sheet flow which occurs at the upper end of slopes
before the flow concentrates into recognizable channels. Figure 5.6.1 shows flow
down a uniform plane on which rain is falling at intensity / and infiltration
occurring at rate f. Sufficient time has passed since rainfall began that all flows
are steady. The plane is of unit width and length Lo, and is inclined at angle 6
to the horizontal with slope S0 = tan 0.

Continuity. The continuity equation (2.2.5) for steady, constant density flow is

jJv-dA = O (5.6.1)
CS.

The inflow to the control volume from rainfall is /L0 cos 0, and the outflow is
/L 0 cos 9 from infiltration plus Vy from overland flow. The depth y is measured
perpendicular to the bed and the velocity Vparallel to the bed. Thus the continuity
equation is written



FIGURE 5.6.1
Steady flow on a uniform plane under rainfall.

VdA = /L0 cos 6 + Vy - H0 cos 0 = 0
CS.

The discharge per unit width, q0, is given by

qo = Vy = (i - / ) L 0 cos 6 (5.6.2)

Momentum. For uniform laminar flow on an inclined plane, it can be shown
(Roberson and Crowe, 1985), that the average velocity Vis given by

V= ^ - (5.6.3)

where g is acceleration due to gravity and v is the kinematic viscosity of the fluid.
For uniform flow, S0 = Sf = hf/L, and (5.6.3) can be rearranged to yield

hf = * * £ £ (5.6.4)
J Vy 4y2g

which is in the form of the Darcy-Weisbach equation (2.5.1) for flow resistance

hf=f J-RT8
 ( 5 A 5 )

with the friction factor f = 96/Re in which the Reynolds number Re = AVRI v,
and the hydraulic radius R = y. For a unit width sheet flow, R = area/(wetted
perimeter) =y x 1 / I = J , as required. The flow remains laminar provided Re <
2000.

For laminar sheet flow under rainfall, the friction factor increases with the
rainfall intensity. If it is assumed that f has the form CJRe, where Ci is a

Infiltration /

Rainfall intensity /



resistance coefficient, experimentation carried out at the University of Illinois
(Chow and Yen, 1976) gave

CL = 96 + 108/0-4 (5.6.6)

where / is the rainfall intensity in inches per hour.
Solving for y from (5.6.5) and using the fact that hjJL = So for uniform

flow, one finds

then q0 = Vy from (5.6.2) is used to substitute for V, yielding

which specifies the depth of sheet flow on a uniform plane.

Example 5.6.1. A rainfall of intensity 1 in/h falls on a uniform, smooth, impervious
plane 100 feet long at 5 percent slope. Calculate the discharge per unit width, the
depth, and the velocity at the lower end of the plane. Take v — 1.2 x 10 "5 ft2/s.

Solution. The discharge per unit width is given by (5.6.2) with / = 1 in/h = 2.32 x
10"5 ft/s, and / = 0. The angle 6 = tan" 1CS0) = tan"1CO.05) = 2.86°, so
cos 0 = 0.999.

qo = (i -f)Lo cos 0

= (2.32 x 10"5 - 0) x 100 x 0.999

= 2.31 x 10~3ft2/s

The Reynolds number is

Re = 4-^

V

V

_ 4 x 2.31 x IQ"3

1.2 x 10"5

= 770

and the flow is laminar. The resistance coefficient CL is given by (5.6.6):

C L = 9 6 + 108/° 4

= 96 + 108(I)0-4

= 204
The friction factor is f = CJRe = 204/770 = 0.265, and the depth is calculated
from Eq. (5.6.8),



y \8g5o/

_ ["0.265 X (2.31 x 1(T3)211/3

~ [ 8 x 32.2 x 0.05 J

= 0.0048 ft (0.06 in)

The velocity V is given by

y

= 2.31 x 10"3/0.0048

= 0.48 ft/s

Field studies of overland flow (Emmett, 1978) indicate that the flow is
laminar but that the flow resistance is about ten times larger than for laboratory
studies on uniform planes. The increase in flow resistance results primarily from
the unevenness in the topography and surface vegetation. Equation (5.6.8) can
be rewritten in the more general form

y = oufi (5.6.9)

For laminar flow m = 2/3 and a = (f/SgS0)
113. Emmett's studies indicate that

the Darcy-Weisbach friction factor/ is in the range 20-200 for overland flow at
field sites.

When the flow becomes turbulent, the friction factor becomes independent
of the Reynolds number and dependent only on the roughness of the surface. In
this case, Manning's equation (2.5.7) is applicable to describe the flow:

V=^-R213S?2 (5.6.10)
n J

with R = y, Sf = So for uniform flow, and q0 = Vy. This can be solved for y to
yield

\3/5

y 1A9S1
O'2

which is in the general form of (5.6.9) with a = (n/l.49Sl
0
/2)3/5 and m = 3/5.

For SI units, a = n°-6/S°0
3.

Example 5.6.2. Calculate the depth and velocity of a discharge of 2.31 xl0~ 3

cfs/ft (width) on turf having Darcy-Weisbach / = 75 and a slope of 5 percent.
Take v= 1.2 x 10"5 ft2/s.

Solution. The Reynolds number is Re = Aq0Iv = 4 x 2.31 x 10 "3/l.2 x 10 "5 = 770
(laminar flow), and a = (f/SgS0)

113 = (75/(8 x 32.2 x 0.05))1/3= 1.80. From (5.6.9)
with m = 2/3



= 1.80(2.31 x 10"3)2/3

= 0.031 ft (0.4 in)

Velocity V= qo/y = 2.31 X 10"3/0.031 = 0.075 ft/s. It can be seen that this flow is
much deeper and slower flowing than flow on the smooth plane of Example 5.6.1.

Example 5.6.3. Calculate the discharge per unit width, depth, and velocity at the
end of a 200-ft strip of asphalt, of slope 0.02, subject to rainfall of 10 in/h, with
Manning's n = 0.015 and kinematic viscosity ^ = 1 . 2 x l 0 " 5 ft2/s.

Solution. The discharge per unit width is given by Eq. (5.6.2) with i = 10 in/h =
2.32 x 10~4 ft/s,/ = 0, and 6 = tan"1(0.02) = 1.15°, for which cos 6 = 1.00:

qo = (i ~f)Lo cos 0

= 2.32 x 10"4x 200 x 1.00

= 0.0464 cfs/ft

The Reynolds number is Re = 4qo/v = 4 x 0.046/(1.2 x 10 "5) = 15333, so the flow
is turbulent. The depth of flow is given by Eq. (5.6.9) with a = (n/1.495^/2)3/5 =
[0.015/(1.49 x 0.021/2)]3/5 = 0.205 and m = 0.6:

= 0.205 x (0.0464)° 6

= 0.032 ft (0.4 in)
Also,

V= ^
y

_ 0.0464

" 0.032

= 1.43 ft/s.

Channel Flow

The passage of overland flow into a channel can be viewed as a lateral flow in the
same way that the previous examples have considered rainfall as a lateral flow
onto the watershed surface.

Consider a channel of length Lc that is fed by overland flow from a plane
as shown in Fig. 5.6.2. The overland flow has discharge q$ per unit width, so
the discharge in the channel is Q = qoLc. To find the depth and velocity at
various points along the channel, an iterative solution of Manning's equation is
necessary. Manning's equation is

Q = h^LsmARm (5 6 12)



FIGURE 5.6.2
Overland flow from a plane into a channel.

Solution of Manning's Equation by Newton's
Method

There is no general analytical solution to Manning's equation for determining the
flow depth given the flow rate because the area A and hydraulic radius R may be
complicated functions of the depth. Newton's method can be applied iteratively to
give a numerical solution. Suppose that at iteration j the depth yj is selected and
the flow rate Qj is computed from (5.6.12), using the area and hydraulic radius
corresponding to yj. This Qj is compared with the actual flow Q; the object is to
select y so that the error

f(yj) = Qj-Q (5.6.13)

is acceptably small. The gradient of/ with respect to y is

f - f <*••••«>
dyj dyj

because Q is a constant. Hence, assuming Manning's n is constant,

[df\ /1.49 m 2/3\14 i ~ ° jj I
1.49 l/2f2AR-^dR mdA\

~~S° [^Ty+R TyI
(5.6.15)

" n S° AjKj \3Rdy A dy)j

Qi\3Rdy + Adyjj

where the subscript j outside the parentheses indicates that the contents are
evaluated for y = yj.



FIGURE 5.6.3
Newton's method extrapolates the tan-
gent of the error function at the current
depth yj to obtain the depth yj +1 for the
next iteration.

This expression for the gradient is useful for Newton's method, where,
given a choice of yj, j ; +1 is chosen to satisfy

( f ) . ^ a (5.6,6)
This yj + i is the value of j , in a plot of / vs. y, where the tangent to the curve at
y = yj intersects the horizontal axis, as illustrated in Fig. 5.6.3.

Solving (5.6.16) for 3^ + 1,

which is the fundamental equation of the Newton's method. Iterations are con-
tinued until there is no significant change in y; this will happen when the error
f(y) is very close to zero.

Substituting into (5.6.17) from Eqs. (5.6.13) and (5.6.15) gives the New-
ton's-method equation for solving Manning's equation:

\3Rdy + Adyjj

For a rectangular channel A = Bwy and R = Bwy/(BW + 2y) where B w is the
channel width; after some manipulation, (5.6.18) becomes

v =v - l ~ QiQi
yj+x }j ( 5Bw + eyj \

\3yj(Bw + 2yj))

Values for the channel shape function [(2/3/?) (dR/dy) + (VA) (dA/dy)] for other
cross sections are given in Table 5.6.1.

Depth y

Error



TABLE 5.6.1
Geometric functions for channel elements

Circle

|(0- sin 6)d2
0

l / s i n » \ ,

4^ 0 )d°

or

4(2sin 0+30-50cos 6)

3do0(0- sinO) sin (0/2)

where 0 = 2 cos -1 1 - —

Triangle

zy2

2Vl +z2

8

Trapezoid

Bv, +2jVr+z2

B^ -f 2z^

(Bn, +2^)(SBH, +6yVl +^2) +4^2Vl +z2

3y(Bw + Zy)(B w + 2y Vl + z2)

Rectangle

Bwy

Bw +2y

Bwy

Bw +2y

B w

5BW +6y

3y(Bw +2y)

Section:

Area A

Wetted
perimeter P

Hydraulic
radius R

Top
width B

2dR 1 dA

3Rdy A dy

Source: Chow, V. T., Open-Channel Hydraulics, McGraw-Hill, New York, 1959, Table 2.1, p. 21 (with additions).



Example 5.6.4. Calculate the flow depth in a two-foot-wide rectangular channel
having n = 0.015, S0 = 0.025, a n d ^ = 9.26 cfs.

Solution.

o _ l - 4 9 l /2 {Bwy^

^ _LJ2 . ( 0 o25)i/2 (2yj)5"

0 . 0 1 5 ( U U 2 5 ) (2 + 2yj)*i

=
 3 1 ' 4 1 ^ 5 / 3

 ( 5 6 1 9 )

(!+^2/3 ^ l y )
Also,

_2_d# 1 JA 5Bn, + 6yj _ 10 + 6j7

3R~fy + A " ^ "3^ 7 (B n ,+ 2^) " 3^(2 4- Iyj)

1.667 + y7

" »d + »)
From Eq. (5.6.18)

From an arbitrarily chosen starting guess of j i = 1.00 ft, the solution to three
significant figures is achieved after three iterations by successively solving (5.6.19)
and (5.6.20) for Q7 and yj + l. The result is y = 0.58 ft.

Iteration; 1 2 3 4

V7 (ft) 1.00 0.601 0.577 0.577

Qj (cfs) 19.79 9.82 9.26 9.26

Example 5.6.5. Compute the velocity and depth of flow at 200-foot increments
along a 1000-foot-long rectangular channel having width 2 ft, roughness n = 0.015,
and slope S = 0.025, supplied by a lateral flow of 0.00926 cfs/ft.

Solution. The method of Example 5.6.4 is applied repetitively to compute y for
Q = 0.00926L. The velocity is V= QIBwy = QIIy.

Distance along channel, L (ft) 0 200 400 600 800 1000

Flow rate (cfs) 0 1.85 3.70 5.56 7.41 9.26

Depth y (ft) 0 0.20 0.31 0.41 0.49 0.58

Velocity V(ft/s) 0 4.63 5.97 6.86 7.56 8.02



FIGURE 5.6.4
Dimensionless hydrograph of overland flow.
The steady flow qc is attained at time of
equilibrium^. (After Izzard, 1946.)

The examples in this section have assumed steady flow on the watershed.
In reality, under a constant intensity rainfall, the steady flow at equilibrium is
approached asymptotically in the manner illustrated by Fig. 5.6.4. Thus, the flow
is varying both in space and time on the watershed surface and in the stream
channel.

5.7 TRAVEL T I M E

The travel time of flow from one point on a watershed to another can be deduced
from the flow distance and velocity. If two points on a stream are a distance L
apart and the velocity along the path connecting them is v(/), where / is distance
along the path, then the travel time t is given by

dl = v(l)dt

Jo Jo v(Z)

or

Jo v(Z)

If the velocity can be assumed constant at v, in an increment of length AZ1-,
/ = 1,2, . . . , / , then

-if ('•«)
; = i l

Velocities for use in Eq. (5.7.3) may be computed using the methods described
in Sec. 5.6 or by reference to Table 5.7.1.



TABLE 5.7.1
Approximate average velocities in ft/s of runoff flow for calculating
time of concentration

Description of water course Slope in percent
0-3 4-7 8-11 12-

Unconcentrated*

Woodlands 0-1.5 1.5- 2.5 2.5- 3.25 3.25-

Pastures 0-2.5 2.5- 3.5 3.5- 4.25 4.25-

Cultivated 0-3.0 3.0- 4.5 4.5- 5.5 5.5-

Pavements 0-8.5 8.5-13.5 13.5-17 17-

Concentrated**

Outlet channel—determine velocity by Manning's formula

Natural channel not
well defined 0-2 2-4 4-7 7-

*This condition usually occurs in the upper extremities of a watershed prior to the overland flows accumulating
in a channel.
**These values vary with the channel size and other conditions. Where possible, more accurate determinations
should be made for particular conditions by the Manning channel formula for velocity.
{Source: Drainage Manual, Texas Highway Department, Table VII, p. 11-28, 1970.)

Because of the travel time to the watershed outlet, only part of the watershed
may be contributing to surface water flow at any time t after precipitation begins.
The growth of the contributing area may be visualized as in Fig. 5.7.1. If rainfall
of constant intensity begins and continues indefinitely, then the area bounded by
the dashed line labeled t\ will contribute to streamflow at the watershed outlet
after time t\\ likewise, the area bounded by the line labeled ^ will contribute to

FIGURE 5.7.1
Isochrones at tx and f2 define the area contributing to flow at the outlet for rainfall of durations t\
and f2- Time of concentration tc is the time of flow from the farthest point in the watershed (A) to
the outlet (B).



TABLE 5,7.2
Travel time in a channel (Example 5.7.1)

Distance along channel, / (ft) 0 200 400 600 800 1000

Al 200 200 200 200 200

Calculated velocity V (ft/s) 0 4.63 5.97 6.86 7.56 8.02

Average velocity V(ft/s) 2.32 5.30 6.42 7.21 7.79

Travel time At = AUV(s) 86.2 37.7 31.2 27.7 25.7

(2 At = 208.5 s)

streamflow after time t^> The boundaries of these contributing areas are lines of
equal time of flow to the outlet and are called isochrones. The time at which all
of the watershed begins to contribute is the time of concentration Tc\ this is the
time of flow from the farthest point on the watershed to the outlet.

Example 5.7.1. Calculate the time of concentration of a watershed in which the
longest flow path covers 100 feet of pasture at a 5 percent slope, then enters a
1000-foot-long rectangular channel having width 2 ft, roughness n = 0.015, and
slope 2.5 percent, and receiving a lateral flow of 0.00926 cfs/ft.

Solution, From Table 5.7.1, pasture at 5 percent slope has a velocity of flow in
the range 2.5-3.5 ft/s; use a velocity of 3.0 ft/s. The travel time over the 100 feet
of pasture is At = AlIv = 100/3.0 = 33 s. For the rectangular channel, the velocity
at 200-foot intervals was calculated in Example 5.6.5. The travel time over each
interval is found from the average velocity in that interval. For example, for the
first 200 ft, At = AlIv = 200/2.32 = 86.2 s. This yields a total travel time for the
channel of 208.5 s, as shown in Table 5.7.2. The time of concentration tc is the
sum of the travel times over pasture and in the channel, or 33 + 209 = 242s = 4
min.

5.8 STREAM NETWORKS

In fluid mechanics, the study of the similarity of fluid flow in systems of differ-
ent sizes is an important tool in relating the results of small-scale model studies
to large-scale prototype applications. In hydrology, the geomorphology of the
watershed, or quantitative study of the surface landform, is used to arrive at mea-
sures of geometric similarity among watersheds, especially among their stream
networks.

The quantitative study of stream networks was originated by Horton (1945).
He developed a system for ordering stream networks and derived laws relating
the number and length of streams of different order. Horton's stream ordering
system, as slightly modified by Strahler (1964), is as follows:

The smallest recognizable channels are designated order 1; these channels
normally flow only during wet weather.



Where two channels of order 1 join, a channel of order 2 results downstream;
in general, where two channels of order i join, a channel of order / + 1 results.

Where a channel of lower order joins a channel of higher order, the channel
downstream retains the higher of the two orders.

The order of the drainage basin is designated as the order of the stream
draining its outlet, the highest stream order in the basin, /.

An example of this classification system for a small watershed in Texas is shown
in Fig. 5.8.1.

Key

Boundary
Order-3 stream
Order-2 stream
Order-1 stream

FIGURE 5.8.1
Watershed of Miller Creek, Blanco County, Texas, showing the delineation of stream orders.



Horton (1945) found empirically that the bifurcation ratio RB, or ratio of
the number Nt, of channels of order i to the number Nt +1 of channels of order
/ H- 1 is relatively constant from one order to another. This is Horton's Law of
Stream Numbers:

- ^ - =RB i = 1,2 / - 1 (5.8.1)

As an example, in Fig. 5.8.1, Nx = 28, N2 = 5, and N3 = 1; so TV1ZiV2 = 5.6
and N2IN3 = 5.0. The theoretical minimum value of the bifurcation ratio is 2,
and values typically lie in the range 3-5 (Strahler, 1964).

By measuring the length of each stream, the average length of streams of
each order, L1-, can be found. Horton proposed a Law of Stream Lengths in which
the average lengths of streams of successive orders are related by a length ratio
RL'-

^ = R L (5.8.2)

By a similar reasoning, Schumm (1956) proposed a Law of Stream Areas to relate
the average areas A1- drained by streams of successive order

^ = R A (5.8.3)

Mamon 5 Mamon

Order / Order /'

FIGURE 5.8.2
Geomorphological parameters for the Mamon basins. (Source: Valdes, Fiallo, and Rodriguez-Iturbe,
p. 1123, 1979. Copyright by the American Geophysical Union.)



These ratios are computed by plotting the values for Ni, L1-, and A/ on a loga-
rithmic scale against stream order on a linear scale, as shown for two Venezu-
elan watersheds in Fig. 5.8.2. The ratios RB,RL, and RA are computed from the
slopes of the lines on these graphs. The Mamon 5 watershed is a subbasin of the
Mamon watershed (Fig. 5.8.3). The consistency of RB, RL, and RA between the
two watersheds demonstrates their geometric similarity. Studies have been made
to relate the characteristics of flood hydrographs to stream network parameters
(Rodriguez-Iturbe and Valdes, 1979; Gupta, Waymire, and Wang, 1980; Gupta,
Rodriguez-Iturbe and Wood, 1986).

Other parameters useful for hydrologic analysis are the drainage density and
the length of overland flow (Smart, 1972). The drainage density D is the ratio of
the total length of stream channels in a watershed to its area

/ N1

D = ^ - (5.8.4)

FIGURE 5.8.3
Drainage basin of the Mamon watershed in Venezuala. (Source: Valdes, Fiallo, and Rodriguez-
Iturbe, p. 1123, 1979. Copyright by the American Geophysical Union.)

Mamon basin
(area 103.0 km2)

Mamon 5 subbasin
(area 3.2 km2)



where Ltj is the length of the jth stream of order /. If the streams are fed by
Hortonian overland flow from all of their contributing area, then the average
length of overland flow, L0, is given approximately by

Shreve (1966) showed that Horton's stream laws result from the most likely
combinations of channels into a network if random selection is made among all
possible combinations.
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PROBLEMS

5.2.1 If Q(i) = Qoe~(t~to)/k describes baseflow recession in a stream, prove that the
storage S(t) supplying baseflow is given by S(t) = kQ(i).

5.2.2 Baseflow on a river is 100 cfs on July 1 and 80 cfs on July 10. Previous study
of baseflow recession on this river has shown that it follows the linear reservoir
model. If there is no rain during July, estimate the flow rate on July 31 and the
volume of water in subsurface storage on July 1 and July 31.

5.2.3 The streamflow hydrograph at the outlet of a 300-acre drainage area is as shown:

Time(h) 0 1 2 3 4 5 6 7 8 9 10 11 12
Discharge (cfs) 102 100 98 220 512 630 460 330 210 150 105 75 60

Determine the base flow using the straight line method, the fixed base method,
and the variable slope method. Assume N = 5 hours for the fixed base method.

5.3.1 For the following rainfall-runoff data, determine the 4>-index and the cumulative
infiltration curve based upon the 0-index. Also, determine the cumulative excess
rainfall as a function of time. Plot these curves. The watershed area is 0.2 mi2.

Time(h) 1 2 3 4 5 6 7
Rainfall rate (in/h) 1.05 1.28 0.80 0.75 0.70 0.60 0
Direct runoff (cfs) 0 30 60 45 30 15 0



5.3.2 Determine the direct runoff hydrograph, the </>-index, and the excess rainfall
hyetograph for the storm of May 12, 1980, on Shoal Creek in Austin, Texas, for
which the rainfall and streamflow data are given in Prob. 2.3.2. The watershed
area is 7.03 mi2.

5.4.1 Determine the excess rainfall hyetograph for the data given in Example 5.4.1 in
the text if the initial effective saturation of the soil is 60 percent.

5.4.2 Determine the excess rainfall hyetograph for the data given in the text in Example
5.4.1 if the rain falls on a clay soil of initial effective saturation 40 percent.

5.4.3 Solve Example 5.4.1 in the text if the soil is described by Philip's equation with
5 = 5 cm-h~1/2 and K = 2 cm/h.

5.4.4 Solve Example 5.4.1 in the text if the soil is described by Horton's equation with
/o = 5 cm/h, / c = 1 cm/h, and k = 2 h~l.

5.4.5 Using the cumulative rainfall hyetograph given below for a 150-km2 watershed,
determine the abstractions and the excess rainfall hyetograph using Horton's
equation with / 0 = 40 mm/h, fc = 10 mm/h, and k = 2 h"1 . Assume that
an interception storage of 10 mm is satisfied before infiltration begins. Also,
determine the depth and volume of excess rainfall and its duration.

Time(h) 1 2 3 4 5 6

Cumulative rainfall (mm) 25 70 115 140 160 180

5.4.6 Solve Prob. 5.4.5 if the soil is described by Philip's equation with S = 50
mm-h~1/2 and K = 20 mm/h.

5.4.7 Determine the excess rainfall hyetograph for the following storm hyetograph.

Time(h) 0-0.5 0.5-1.0 1.0-1.5 1.5-2.0

Rainfall intensity (in/h) 3.0 1.5 1.0 0.5

Horton's equation is applicable, with/ 0 = 3.0 in/h, / c = 0.53 in/h, and k = 4.182
h"1 . Determine the cumulative infiltration and rainfall curves and plot them. Also
plot the infiltration rate and excess rainfall hyetograph. What is the total depth
of excess rainfall?

5.4.8 Terstriep and Stall (1974) developed standard infiltration curves for bluegrass
turf for each of the U.S. Soil Conservation Service hydrologic soil groups. These
standard infiltration curves, which are used in the ILLUDAS model (Chap. 15),
are based on Horton's equation with the following parameters:

S C S h y d r o l o g i c a l s o i l g r o u p A B C D

fc (in/h) 1.00 0.50 0.25 0.10

fo (in/h) 10.00 8.00 5.00 3.00

fcOT1) 2.00 2.00 2.00 2.00

Depression storage (in) 0.2 0.2 0.2 0.2



For the following storm hyetograph, determine the excess rainfall hyetograph,
the cumulative infiltration, and the depth of excess rainfall for hydrologic soil
group A.

Time(h) 0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-5.0

Rainfall rate (in/h) 10 5 3 2 0.5

5.4.9 Solve Prob. 5.4.8 for each of the hydrologic soil groups and compare the depths
of excess rainfall determined.

5.4.10 Solve Prob. 5.4.8 for the following rainfall hyetograph.

Time(h) 0-2.0 2.0-4.0 4.0-5.0

Rainfall rate (in/h) 2 1.5 0.5

5.4.11 Show that for infiltration under ponded conditions described by the Green-Ampt
equation, the cumulative infiltration at the end of a time interval, Ft+&h is given
by

f--'•-*"•" few] = "'
5.4.12 Derive Eqs. (1) and (2) in Table 5.4.1, for Ft+^t and / ,+A, respectively, for the

Horton infiltration equation.
5.4.13 Derive Eqs. (1) and (2) in Table 5.4.1, for Ft+At and/,+Ar respectively, for the

Philip infiltration equation.
5.5.1 Determine the cumulative abstractions for the Austin, Texas, 25-year design storm

given below, for SCS curve numbers of 75 and 90. Use the SCS method and
plot these two curves of cumulative abstractions on one graph. Also compute the
cumulative excess rainfall vs. time and the excess rainfall hyetograph for each
curve number. Plot the excess rainfall hyetographs for the two curve numbers on
one graph.

Design storm rainfall depths (in)

Minutes 10 20 30 40 50 60 70 80 90 100

10-year 0.070 0.083 0.104 0.126 0.146 0.170 0.250 0.450 1.250 0.650

25-year 0.105 0.122 0.140 0.167 0.173 0.225 0.306 0.510 1.417 0.783

100-year 0.138 0.155 0.168 0.203 0.250 0.332 0.429 0.665 1.700 0.935

Minutes 110 120 130 140 150 160 170 180 Totals

10-year 0.317 0.203 0.164 0.142 0.112 0.093 0.073 0.067 4.470

25-year 0.417 0.297 0.192 0.170 0.143 0.126 0.119 0.099 5.511

100-year 0.513 0.373 0.293 0.243 0.182 0.159 0.147 0.135 7.020



5.5.2 Solve Prob. 5.5.1 for the 10-year design storm.
5.5.3 Solve Prob. 5.5.1 for the 100-year design storm.
5.5.4 (a) Compute the runoff from a 7-in rainfall on a 1500-acre watershed that has

hydrologic soil groups that are 40 percent group A, 40 percent group B, and
20 percent group C interspersed throughout the watershed. The land use is 90
percent residential area that is 30 percent impervious, and 10 percent paved roads
with curbs. Assume AMC II conditions.
(b) What was the runoff for the same watershed and same rainfall before devel-
opment occurred? The land use prior to development was pasture and range land
in poor condition.

5.5.5 A 200-acre watershed is 40 percent agricultural and 60 percent urban land. The
agricultural area is 40 percent cultivated land with conservation treatment, 35
percent meadow in good condition, and 25 percent forest land with good cover.
The urban area is residential: 60 percent is |-acre lots, 25 percent is ^-acre
lots, and 15 percent is streets and roads with curbs and storm sewers. The entire
watershed is in hydrologic soil group B. Compute the runoff from the watershed
for 5 in of rainfall. Assume AMC II conditions.

5.5.6 Solve Prob. 5.5.5 if the moisture condition is (a) AMC I, and (b) AMC III.
5.5.7 For the rainfall-runoff data given in Prob. 5.3.1, use the SCS method for abstrac-

tions to determine the representative SCS curve number for this watershed, assum-
ing AMC II.

5.5.8 Considering the rainfall-runoff data in Prob. 5.3.1 and using the curve number
determined in Prob. 5.5.7, determine the cumulative infiltration and the cumula-
tive rainfall excess as functions of time. Plot these curves.

5.6.1 Compute the uniform flow depth in a trapezoidal channel having n = 0.025,
S0 = 0.0005, and Q = 30 cfs. The base width is 4 ft, and the side slopes are
l:z = 1:3.

5.6.2 Compute the uniform flow depth in a triangular channel having n = 0.025, So =
0.0004, Q = 10 cfs, and side slopes \:z = 1:4.

5.6.3 A rainfall of 3 in/h falls on a uniform, smooth, impervious plane that is 50 feet
long and has a slope of 1 percent. Calculate discharge per unit width, depth, and
velocity at the bottom end of the plane. Take v = 1.2 x 10"5 ft/s and n = 0.015.

5.6.4 Solve Prob. 5.6.3 if the rainfall has intensity 10 in/h.
5.6.5 Solve Prob. 5.6.3 if the rain falls on grass with an infiltration rate of 0.5 in/h

and a Darcy-Weisbach roughness/ =100.
5.7.1 Solve Example 5.7.1 in the text if the flow length over pasture is 50 ft, and the

channel is 500 feet long.
5.8.1 Determine the length ratio RL for the Miller Creek watershed in Fig. 5.8.1.
5.8.2 Determine the drainage density and average overland flow length for the Miller

Creek watershed in Fig. 5.8.1.



HYDROLOGIC
MEASUREMENT

Hydrologic measurements are made to obtain data on hydrologic processes. These
data are used to better understand these processes and as a direct input into
hydrologic simulation models for design, analysis, and decision making. A rapid
expansion of hydrologic data collection worldwide was fostered by the Interna-
tional Hydrologic Decade (1965-1974), and it has become a routine practice
to store hydrologic data on computer files and to make the data available in a
machine-readable form, such as on magnetic tapes or disks. These two develop-
ments, the expansion and computerization of hydrologic data, have made avail-
able to hydrologists a vast array of information, which permits studies of greater
detail and precision than was formerly possible. Recent advances in electronics
allow data to be measured and analyzed as the events occur, for purposes such
as flood forecasting and flood warning. The purpose of this chapter is to review
the sequence of steps involved in hydrologic measurement, from the observation
of the process to the receipt of the data by the user.

Hydrologic processes vary in space and time, and are random, or probabil-
istic, in character. Precipitation is the driving force of the land phase of the hydro-
logic cycle, and the random nature of precipitation means that prediction of the
resulting hydrologic processes (e.g., surface flow, evaporation, and streamflow)
at some future time is always subject to a degree of uncertainty that is large in
comparison to prediction of the future behavior of soils or building structures, for
example. These uncertainties create a requirement for hydrologic measurement to
provide observed data at or near the location of interest so that conclusions can
be drawn directly from on-site observations.

CHAPTER

6



6.1 HYDROLOGIC MEASUREMENT
SEQUENCE

Although hydrologic processes vary continuously in time and space, they are
usually measured as point samples, measurements made through time at a fixed
location in space. For example, rainfall varies continuously in space over a water-
shed, but a rain gage measures the rainfall at a specific point in the watershed. The
resulting data form a time series, which may be subjected to statistical analysis.

In recent years, some progress has been made in measuring distributed
samples over a line or area in space at a specific point in time. For example,
estimates of winter snow cover are made by flying an aircraft over the snow field
and measuring the radiation reflected from the snow. The resulting data form a
space series. Distributed samples are most often measured at some distance from
the phenomenon being observed; this is termed remote sensing. Whether the data
are measured as a time series or as a space series, a similar sequence of steps is
followed.

The sequence of steps commonly followed for hydrologic measurement is
shown in Fig. 6.1.1, beginning with the physical device which senses or reacts
to the physical phenomenon and ending with the delivery of data to a user. These
steps are now described.

1. Sensing. A sensor is an instrument that translates the level or intensity of
the phenomenon into an observable signal. For example, a mercury thermometer
senses temperature through the expansion or contraction of the volume of mercury
within a thin tube; a storage rain gage collects the incoming rainfall in a can or
tube. Sensors may be direct or indirect.

A direct sensor measures the phenomenon itself, as with the storage rain
gage; an indirect sensor measures a variable related to the phenomenon, as with
the mercury thermometer. Many hydrologic variables are measured indirectly,
including streamflow, temperature, humidity, and radiation. Sensors for the major
hydrologic variables are discussed in the subsequent sections of this chapter.

2. Recording. A recorder is a device or procedure for preserving the signal
produced by the sensor. Manual recording simply involves an observer taking
readings off the sensor and tabulating them for future reference. Most of the
available rainfall data are produced by observers who read the level in a storage
rain gage each day at a fixed time (e.g., 9 A.M.). Automatic recording requires a
device which accepts the signal from the sensor and stores it on a paper chart or
punched tape, or an electronic memory including magnetic disks or tapes. P&per
records require a mechanical system of pulleys or levers to translate the motion of
the sensor to the motion of a pen on a chart or a punching mechanism for a paper
tape. Fig. 6.1.2 shows hydrologic paper chart and tape recorders in common
use. Historically, charts were the first recorders widely used in hydrology; they
are still used when there is a need to have a direct visual image of the record,
but charts have a great disadvantage in that translation of the chart record into a
computerized form is a tedious procedure, involving manually tracking the line
on the chart and recording the points where it changes direction. By contrast,
paper tape recorders can be directly read by a computer. Sixteen-track paper



tapes are currently the most widespread form of automatic hydrologic recorders,
but electronic storages are beginning to be adopted; their use can be expected to
spread because of their convenience and because they need no mechanical system
to translate the signal from sensor to recorder.

3. Transmission. Transmission is the transfer of a record from a remote
recording site to a central location. Transmission may be done routinely, such as
by manually changing the chart or tape on a recorder at regular intervals (from
one week to several months in duration) and carrying the records to the central
location. A rapidly developing area of hydrology is real-time transmission of
data through microwave networks, satellites, or telephone lines. The recorder
site is "polled" by the central location when data are needed; the recorder has the
data already electronically stored and sends them back to the central location
immediately. Microwave transmitters operate with relatively short-wavelength
electromagnetic waves (10~1 tol0~3m) traveling directly over the land surface
with the aid of repeater stations; satellite data transmission uses radio waves (1 to

Transform the intensity of
the phenomenon into an
observable signal

Make an electronic or
paper record of the signal

Move the record to a
central processing site

Convert the record into
a computerized data sequence

Check the data and eliminate
errors and redundant information

Archive the data on a
computer tape or disk

Recover the data in
the form required

FIGURE 6.1.1
The hydrologic measurement
sequence.
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FIGURE 6.1.2(«)
Digital recorder for hydrologic data. The 16-track paper tape moves vertically behind the metal plate
shown in the center of the picture. At predetermined intervals (usually every 15 minutes) the plate
pushes the tape back against a set of needles, one for each track on the tape. The needles, in turn,
are pushed back against the two rimmed wheels—if the needle hits one of the raised rims, it punches
through the tape, if not, the tape is left blank. In this way, a pattern of holes emerges across the
16 tracks, 8 of which are used for recording the level of the phenomenon, and 8 for recording the
time at which the punch was made. The rimmed disks, one for time and one for measurement level,
rotate as time passes and the level of the phenomenon changes. (Source: T. J. Buchanan, U.S.
Geological Survey. First published as Fig. 3 in "Techniques of water-resources investigations of the
United States Geological Survey," Book 3, Chapter A6, U.S. Geological Survey, 1968.)

104 m in wavelength) reflected off a satellite whose position is fixed relative to
the earth's surface. Microwave and satellite transmission of data are valuable for
producing flood forecasts and for providing continuous access to remote recording
sites which are difficult to reach by land travel.

4. Translation. Translation is the conversion of a record from a field instru-
ment form into a computerized record for permanent electronic storage. For exam-
ple, translators are available which read 16-track hydrologic paper tape records
and produce an electronic signal in a form readable by computers. Cassette readers
and chart followers are other devices of this type.

5. Editing. Editing is the procedure of checking the records translated into
the computer to correct any obvious errors which have occurred during any of



FIGURE 6.1.2W
Paper chart recorder attached to a float for recording water level variation. Rises or falls in the float
level move the pen horizontally, parallel to the front of the recorder case. The paper is driven toward
the back of the case continuously at a slow rate, thereby allowing the pen to trace out a record of
water level against time on the chart. (Source: T. J. Buchanan, U.S. Geological Survey.)

the previous steps. Common errors include mistakes in the automatic timing
of recorded measurements and information lost in transmission and translation,
which is filled in by directly analyzing the record made at the recorder site.

6. Storage. Edited data are stored in a computerized data archive such as
WATSTORE, operated by the U.S. Geological Survey, or TNRIS (Texas Natural
Resource Information System). Such archives contain many millions of hydrologic
data systematically compiled into files indexed by location and sequenced by the
time of measurement.

7. Retrieval. Data are retrieved for users either in a machine-readable form,
such as magnetic tape or diskette, or as a paper printout.

6.2 MEASUREMENT OF ATMOSPHERIC WATER

Atmospheric Moisture

The measurement of moisture high in the atmosphere is made by means of a
radiosonde, which is a balloon filled with helium that is attached to a measuring



device recording temperature, humidity, and air pressure. The balloon is released,
and as it rises in the atmosphere, it sends the data back to a field tracking station.
At the tracking station, the balloon is tracked by radar as it rises, and the wind
speed at various elevations is thereby observed.

The measurement of atmospheric moisture and climate parameters near
the ground is accomplished at a climate station. A climate station commonly
contains, within a screened box, thermometers for measuring the maximum and
minimum air temperatures each day, and a wet- and dry-bulb thermometer or
hygrometer, to measure humidity; nearby are located precipitation gages, and
sometimes an evaporation pan and an anemometer. For detailed measurements
of climate variables, special weather stations are installed at the testing site, and
the data can be accumulated and sent by microwave to a central recording station
as described previously. The measurement of radiation is accomplished with a
device known as a radiometer, which relies on the principle that a black body
will have a temperature proportional to the amount of radiation it receives. By
measuring this temperature, the intensity of the incident radiation can be deduced.

Rainfall

Rainfall is recorded by two types of gages: nonrecording gages and recording
gages. A recording gage is a device that automatically records the depth of
rainfall in intervals down to one minute in duration. Nonrecording gages are read
manually at longer time intervals. Nonrecording gages generally consist of open
receptacles with vertical sides, in which the depth of precipitation is measured
by a graduated measuring cylinder or dipstick. The two types of nonrecording
gages are standard gages and storage gages. Standard gages are ordinarily used
for daily rainfall readings and consist of a collector above a funnel leading into
a receiver. Rain gages for locations where only weekly or monthly readings are
used are similar in design to the daily type but have a larger capacity receiver.
Storage gages are used to measure rainfall over an entire season, usually in
remote, sparsely inhabited areas. These rain gages consist of a collector above a
funnel that leads into a storage area large enough for the season rainfall volume.
Standard gages are the most widespread rainfall data measurement devices used
in hydrology. Many thousands of these gages are read by voluntary observers,
and their data are recorded by weather services.

There are three types of recording rain gages in general use: the weighing
type, the float type, and the tipping bucket type. A weighing type rain gage
continuously records the weight of the receiving can plus the accumulated rainfall
by means of a spring mechanism or a system of balance weights (Fig. 6.2.1).
These gages are designed to prevent excessive evaporation losses by the addition
of oil or other evaporation-suppressing material to form a film over the surface.
Weighing rain gages are useful in recording snow, hail, and mixtures of snow
and rain.

A float type rain gage has a chamber containing a float that rises vertically
as the water level in the chamber rises. Vertical movement of the float is translated



FIGURE 6.2.2
Tipping bucket rain gage. (Source: Ministry of Works and Development, New Zealand.)

into movement of a pen on a chart. A device for siphoning the water out of the
gage is used so that the total amount of rainfall falling can be collected.

A tipping bucket type rain gage operates by means of a pair of buckets (Fig.
6.2.2). The rainfall first fills one bucket, which overbalances, directing the flow
of water into the second bucket. The flip-flop motion of the tipping buckets is
transmitted to the recording device and provides a measure of the rainfall intensity.

Whether a rain gage operates by the vertical rise of a float, the accumulation
of weight, or the tipping of a bucket, the movement can be recorded. A drum
or strip chart is rotated by a spring or electrically driven clock past a pen whose
motion is linked to that of the float, weighing device, or tipping bucket system.
The motion of the mechanism can also be converted into an electrical signal and

FIGURE 6.2.1
Recording rain gage with the top
removed. The gage records the weight
of precipitation received through the
circular opening, which is 4 inches in
diameter. (Source: L. A. Reed, U.S.
Geological Survey. First published as
Fig. 2 in USGS Water Supply Paper
1798-M, 1976.)



transmitted to a distant receiver. Rain gages commonly have a windbreak device
constructed around them in order to minimize the amount of distortion in the
measurement of rainfall caused by the wind flow pattern around the gage.

Radar can be used to observe the location and movement of areas of
precipitation. Certain types of radar equipment can provide estimates of rainfall
rates over areas within the range of the radar (World Meteorological Organiza-
tion, 1981). Radar is sometimes used to get a visual image of the pattern of
rainfall-producing thunderstorms and is particularly useful for tracking the move-
ment of tornadoes. The introduction of color digital radar has made it possible to
measure rainfall in distant thunderstorms with more precision than was formerly
possible. The phenomenon upon which weather radar depends is the reflection of
microwaves emitted by the radar transmitter by the droplets of water in the storm.
The degree of reflection is related to the density of the droplets and therefore to
the rainfall intensity.

Snowfall

Snowfall is recorded as part of precipitation in rain gages. In regions where there
is a continuous snow cover, the measurement of the depth and density of this
snow cover is important in predicting the runoff which will result when the snow
cover melts. This is accomplished by means of surveyed snow courses, which are
sections of the snow cover whose depth is determined by means of gages that have
been installed prior to the snowfall. The density of snow in the snowpack may
be determined by boring a hole through the pack or into the pack and measuring
the amount of liquid water obtained from the sample. Automated devices for
measuring the weight of the snow above a certain point in the ground have been
developed—these include snow pillows, which measure the pressure of snow on
a plastic pillow filled with a nonfreezing fluid.

Interception

The amount of precipitation captured by vegetation and trees is determined by
comparing the precipitation in gages beneath the vegetation with that recorded
nearby under the open sky. The precipitation detained by interception is dissipated
as stem flow down the trunks of the trees and evaporation from the leaf surface.
Stem flow may be measured by catch devices around tree trunks.

Evaporation

The most common method of measuring evaporation is by means of an evapora-
tion pan. There are various types of evaporation pans; however, the most widely
used are the U.S. Class A pan, the U.S.S.R. GGI-3000 pan, and the 20-m2 tank
(World Meteorological Organization, 1981). The Class A pan measures 25.4 cm
(10 in) deep and 120.67 cm (4 ft) in diameter and is constructed of Monel metal
or unpainted galvanized iron. The pan is placed on timber supports so that air



TABLE 6.2.1
Summary of pan coefficients (after
Linsley, Kohler, and ftiulhus, 1982)

Class A
Location: Pan Coefficient

Felt Lake, California 0.77
Ft. Collins, Colorado 0.70
Lake Colorado City, Texas 0.72
Lake Elsinora, California 0.77
Lake Hefner, Oklahoma 0.69
Lake Okeechobee, Florida 0.81
Red Bluff Res., Texas 0.68

circulates beneath it. The U.S.S.R. GGI-3000 pan is a 61.8-cm diameter tank
with a conical base fabricated of galvanized sheet iron. The surface area is 0.3
m2; the tank is 60 cm deep at the wall and 68.5 cm deep at the center. The tank
is sunk in the ground with the rim projecting approximately 7.5 cm above ground
level.

In addition to the pan, several other instruments are used at evaporation
stations: (1) an anemometer located 1 to 2 meters above the pan, for determining
wind movement; (2) a nonrecording precipitation gage; (3) a thermometer to
measure water temperature in the pan; and (4) a thermometer for air temperature,
or a psychrometer where temperature and humidity of the air are desired.

By measuring the water level in the pan each day, the amount of evaporation
which has occurred can be deduced after accounting for the precipitation during
that day. The depth of the water in the pan is measured to the nearest hundredth
of an inch by means of a hook gage or by adding the amount of water necessary
to raise its level to a fixed point. The evaporation recorded in a pan is greater
than that which would be recorded from the same area of water surface in a very
large lake. Adjustment factors or pan coefficients have been determined to convert
the data recorded in evaporation pans so that they correspond to the evaporation
from large open water surfaces. Table 6.2.1 lists pan evaporation coefficients for
various locations.

Evapotranspiration

Evaporation from the land surface plus transpiration through the plant leaves, or
evapotranspiration, may be measured by means of lysimeters. A lysimeter is a
tank of soil in which vegetation is planted that resembles the surrounding ground
cover. The amount of evapotranspiration from the lysimeter is measured by means
of a water balance of all moisture inputs and outputs. The precipitation on the
lysimeter, the drainage through its bottom, and the changes in the soil moisture
within the lysimeter are all measured. The amount of evapotranspiration is the
amount necessary to complete the water balance.



FIGURE 6.3.1(«)
Water level measurement using a bubble gage recorder. The water level is measured as the back
pressure on the bubbling stream of gas by using a mercury manometer. (Source: Rantz, et al., vol.
1, Fig. 31, p. 52, 1982.)

6.3 MEASUREMENT OF SURFACE WATER

Water Surface Elevation

Water surface elevation measurements include both peak levels (flood crest ele-
vations) and the stage as a function of time. These measurements can be made
manually or automatically. Crest stage gages are used to obtain a record of flood
crests at sites where recording gages are not installed. A crest stage gage consists
of a wooden staff gage or scale, situated inside a pipe that has small holes for
the entry of water. A small amount of cork is placed in the pipe, floats as the
water rises, and adheres to the staff or scale at the highest water level.

Manual observations of water level are made using staff gages, which are
graduated boards set in the water surface, or by means of sounding devices that
signal the level at which they reach the water surface, such as a weight on a wire
suspended from a bridge over the surface of a river.

Automatic records of water levels are made at about 10,000 locations in the
United States; the bubble gage is the sensor most widely used [Fig. 6.3.1(^)].
A bubble gage senses the water level by bubbling a continuous stream of gas
(usually carbon dioxide) into the water. The pressure required to continuously
push the gas stream out beneath the water surface is a measure of the depth of
the water over the nozzle of the bubble stream. This pressure is measured by
a manometer in the recorder house [Fig. 6.3.1(Z?)]. Continuous records of water
levels are maintained for the calculation of stream flow rates. The level of water
in a stream at any time is referred to as the gage height.

Orifice

Plastic tube
Pier

Gas cylinder

Manometer
assembly

Battery

Recorder



FIGURE 6.3.1(£)
The mercury manometer used to measure the gas pressure in a water level recorder. As the water
level and gas pressure change, an electric motor drives a pair of sensor wires up or down to follow
the motion of the mercury surface. (Source: G. N. Mesnier, US Geological Survey, USGS Water
Supp. Pap. 1669-Z, Fig. 7, 1963.)

Flow Velocity

The velocity of flow in a stream can be measured with a current meter. Current
meters are propeller devices placed in the flow, the speed with which the propeller
rotates being proportional to the flow velocity (Fig. 6.3.2). The current meter can
be hand-held in the flow in a small stream, suspended from a bridge or cable-way
across a larger stream, or lowered from the bow of a boat (Fig. 6.3.3). The flow
velocity varies with depth in a stream as shown in Fig. 6.3.4. Figure 6.3.5 shows
isovels (lines of equal velocity) for sections of the Kaskaskia River in Illinois.
The velocity rises from 0 at the bed to a maximum near the surface, with an
average value occurring at about 0.6 of the depth. It is a standard practice of the
U.S. Geological Survey to measure velocity at 0.2 and 0.8 of the depth when
the depth is more than 2 ft and to average the two velocities to determine the
average velocity for the vertical section. For shallow rivers and near the banks
on deeper rivers where the depths are less than 2 ft, velocity measurements are
made at 0.6 depth. On some occasions, it is desired to know the travel time of
flow from one location to another some distance away, perhaps several days flow



FIGURE 6.3.3
Current meter suspended from bow of a boat. (Source: Ministry of Works and Development, New
Zealand).

FIGURE 6.3.2
Current meters for measuring water velocity. The smaller one mounted on the base in the foreground
is attached to a vertical rod and used when wading across a shallow stream. The larger one in the
background is suspended on a wire and used for gaging a deeper river from a bridge or boat. Both
meters work on the principle that the speed of rotation of the cups is proportional to the flow velocity.
The operator attaches electrical wires to the two screws on the vertical shaft holding the cups. Each
time the cups complete a rotation, a contact is closed inside the shaft and the operator hears a click
in headphones to which the wires are attached. By counting the number of clicks in a fixed time
interval (say 40 seconds), the velocity is determined. (Source: T. J. Buchanan, U. S. Geological
Survey. First published as Fig. 4 in "Techniques of water-resources investigations of the United
States Geological Survey," Book 3, Chapter A8, 1969.)



time. For these purposes a float is used which is carried along with the water at
approximately its average velocity.

Velocity measurements can also be made based upon electromagnetic
sensing. The Velocity Modified Flow Measurement (VMFM) meter is a velocity-
sensing instrument based upon such principles (Marsh-McBirney, 1979). The
portable meter shown in Fig. 6.3.6 has a solid state electronics system housed
in a small box, an electromagnetic sensor, and connecting cable. The sensor is
placed on the same rod used for propeller-type current meters and the rod is hand
held for making velocity measurements. When the sensor is immersed in flowing
water, a magnetic field within the sensor is altered by the water flow, creating
a voltage variation which is measured by electrodes imbedded in the sensor.
The amplitude of the voltage variation is proportional to the water velocity. The
voltage variation is transmitted through the cable to the electronic processor sys-
tem, which automatically averages point velocity measurements made at different
locations in a stream cross section. The sensor also monitors water depth using
a bubble gage, and the processor integrates velocity and depth measurements to
produce discharge data. This meter can also be used to measure flows in sewer
pipes and in other types of open channels.

Stream Flow Rate

Stream flow is not directly recorded, even though this variable is perhaps the
most important in hydrologic studies. Instead, water level is recorded and stream
flow is deduced by means of a rating curve (Riggs, 1985). The rating curve
is developed using a set of measurements of discharge and gage height in the
stream, these measurements being made over a period of months or years so as
to obtain an accurate relationship between the stream flow rate, or discharge, and
the gage height at the gaging site.

DISCHARGE COMPUTATION. The discharge of a stream is calculated from
measurements of velocity and depth. A marked line is stretched across the stream.

FIGURE 6.3.4
Typical vertical variation of the flow velocity in a
stream. (Source: Rantz, et al., vol. 1, Fig. 88, p.
133, 1982.)
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FIGURE 6.3.5
Velocity profiles for sections of the Kaskaskia River, Illinois. These profiles are based upon point
velocity data which were converted to nondimensional velocities by dividing the point velocities by
the average velocity of the section. The nondimensional velocities were used to draw the isovels
(lines of equal velocity). The discharge for the isovels shown was 4000 cfs. (Source: Bhowmik,
1979. Used with permission.)

At regular intervals along the line, the depth of the water is measured with a
graduated rod or by lowering a weighted line from the surface to the stream bed,
and the velocity is measured using a current meter. The discharge at a cross
section of area A is found by

Q = J J VdA (6.3.1)
A
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FIGURE 6.3.7
Computation of discharge from stream gaging data.

FIGURE 6.3.6
VMFM (Velocity Modified Flow Measurement) meter. (Courtesy of Marsh-McBirney, Inc., 1987.
Used with permission.)

in which the integral is approximated by summing the incremental discharges
calculated from each measurement /, / = 1, 2, . . . , n, of velocity V1 and depth
d\ (Fig. 6.3.7). The measurements represent average values over width Aw/ of
the stream, so the discharge is computed as

n

Q = IL Vidibwt (6.3.2)
i = i

Example 6.3.1 At known distances from an initial point on the stream bank, the
measured depth and velocity of a stream are shown in Table 6.3.1. Calculate the
corresponding discharge at this location.

Vj = mean of velocities at
0.2 and 0.8 depth

Depth di



TABLE 6.3.1
Computation of discharge from stream gaging.

Measure- Distance Width Depth Mean Area Discharge
ment from velocity
number initial

point Aw d V dAw VdAw
i (ft) (ft) (ft) (ft/s) (ft2) (cfs)

1 0 6.0 0.0 0.00 4.7 0.0
2 12 16.0 3.1 0.37 49.6 18.4
3 32 20.0 4.4 0.87 88.0 76.6
4 52 20.0 4.6 1.09 92.0 100.3
5 72 20.0 5.7 1.34 114.0 152.8
6 92 20.0 4.5 0.71 90.0 63.9
7 112 20.0 4.4 0.87 88.0 76.6
8 132 20.0 5.4 1.42 108.0 153.4
9 152 17.5 6.1 2.03 106.8 216.7

10 167 15.0 5.8 2.22 87.0 193.1
11 182 15.0 5.7 2.51 85.5 214.6
12 197 15.0 5.1 3.06 76.5 234.1
13 212 15.0 6.0 3.12 90.0 280.8
14 227 15.0 6.5 2.96 97.5 288.6
15 242 15.0 7.2 2.62 108.0 283.0
16 257 15.0 7.2 2.04 108.0 220.3
17 272 15.0 8.2 1.56 123.0 191.9
18 287 15.0 5.5 2.04 82.5 168.3
19 302 15.0 3.6 1.57 54.0 84.8
20 317 11.5 3.2 1.18 36.8 43.4
21 325 4.0 0.0 0.00 3.2 0.0

Total 325.0 1693.0 3061.4

Data were provided by the U. S. Geological Survey from a gaging made on

the Colorado River at Austin, October 5, 1983.

Solution. Each measurement represents the conditions up to halfway between this
measurement and the adjacent measurements on either side. For example, the first
three measurements were made 0, 12, and 32 feet from the initial point, and so
Aw2 = [(32 - 12)/2] + [(12 - 0)12] = 16.0 ft. The corresponding area increment is
J2Aw2 = 3.1 x 16.0 = 49.6 ft2, and the resulting discharge increment is V 2J 2 Aw2 =
0.37 x 49.6 = 1 8 . 4 ft3/s. The other incremental areas and discharges are similarly
computed as shown in Table 6.3.1 and summed to yield discharge Q = 3061 ft3/s,
and total cross-sectional area A = 1693 ft2. The average velocity at this cross section
is V= QIA = 3061/1693 = 1.81 ft/s.

There are indirect methods of measuring stream flow not requiring the use
of current meters or water level records. These include the dye gaging method in
which a known quantity of dye is injected into the flow at an upstream site and
measured some distance downstream when it has become completely mixed in the
water. By comparing the concentrations at the downstream site with the mass of



the dye injected at the upstream site, the flow rate can be deduced. This method is
particularly suitable for stony mountain streams, where the dye is mixed quickly
and measurements by other methods are difficult.

RATING CURVE. The rating curve is constructed by plotting successive mea-
surements of the discharge and gage height on a graph such as that shown in Fig.
6.3.8. The rating curve is then used to convert records of water level into flow
rates. The rating curve must be checked periodically to ensure that the relation-
ship between the discharge and gage height has remained constant; scouring of
the stream bed or deposition of sediment in the stream can cause the rating curve
to change so that the same recorded gage height produces a different discharge.

The relationship between water level and the flow rate at a given site can
be maintained consistently by constructing a special flow control device in the
stream, such as a sharp crested weir or a flume.

FIGURE 6.3.8
Rating curve and table for
the Colorado River at Austin,
Texas, as applicable from
October 1974 to July 1982.
(Source: U. S. Geological
Survey, Austin, Texas.)

Discharge (1000 cfs)

Gage Discharge Gage Discharge
height (ft) (cfs) height (ft) (cfs)

1.5 20 10.0 8,000
2.0 131 11.0 9,588
2.5 307 12.0 11,300
3.0 530 13.0 13,100
3.5 808 14.0 15,000
4.0 1,130 15.0 17,010
4.5 1,498 16.0 19,110
5.0 1,912 17.0 21,340
6.0 2,856 18.0 23,920
7.0 3,961 19.0 26,230
8.0 5,212 20.0 28,610
9.0 6,561
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6.4 MEASUREMENT OF SUBSURFACE WATER

Soil Moisture

The amount of moisture in the soil can be found by taking a sample of soil
and oven drying it. By comparing the weight of the sample before and after
the drying and measuring the volume of the sample, the moisture content of
the soil can be determined. Some recording devices which record soil moisture
directly in the field have been developed, particularly for irrigation studies. These
include gypsum blocks and neutron probes. Neutron probes rely on the reflection
of neutrons emitted from a probe device inserted in a hole in the ground by the
moisture in the surrounding soil, the degree of reflection of the neutrons being
proportional to the moisture content (Shaw, 1983).

Infiltration

Measurements of infiltration are made using a ring infiltrometer, which is a metal
ring approximately two feet in diameter that is driven into the soil; water is placed
inside the ring and the level of the water is recorded at regular time intervals as
it recedes. This permits the construction of the cumulative infiltration curve, and
from this the infiltration rate as a function of time may be calculated. Sometimes
a second ring is added outside the first, filled with water and maintained at a
constant level so that the infiltration from the inner ring goes vertically down into
the soil. In some cases, measurements of infiltration can be made by using tracers
introduced at the surface of the soil and extracted from probes placed below the
surface.

Ground Water

The level of water in the saturated flow or ground water zone is determined by
means of observation wells. An observation well has a float device so that the
vertical movement of water in the well is transmitted by means of a pulley system
to the recorder house at the surface. Devices that drop a probe down the well on
a wire to sense the water level can be used to obtain instantaneous measurements.
The velocity of ground water flow can also be determined by tracers, including
common salt. A quantity of the tracer is introduced at an upstream well, and the
time for the pulse of tracer to reach a well somewhat downstream of the first is
recorded. This is the actual velocity and not the apparent or Darcy velocity. Such
measurements also assist in determining the amount of dispersion of contaminants
introduced into ground water.

6.5 HYDROLOGIC MEASUREMENT
SYSTEMS

Urban Hydrology Monitoring Systems

Urban stormwater investigations require well-designed data collection systems and
instrumentation, both for water quantity and water quality. Besides conventional



stream gaging and precipitation measurement, elaborate instruments employing
microprocessor technology are used to collect and record information at remote
locations such as in underground storm drains.

An instrumentation package called an urban hydrology monitoring system,
as used by the U. S. Geological Survey for urban stormwater investigations, is
shown in Fig. 6.5.1 (Jennings, 1982). This system is designed to collect storm
rainfall and runoff quantity and quality data. It was specifically designed for flow
gaging in underground storm sewers using a flow constriction as the discharge
control. The system is composed of five components: the system control unit,
rain gages, atmospheric sampling, stage sensing, and water quality sampling.

The system control unit is a microprocessor that records data at a central
site, controls an automatic water-sampling device, records rain gage readings via
telephone lines, and continuously monitors the stage in the storm sewers. The

FIGURE 6.5.1
Typical installation of a U. S. Geological Survey urban hydrology monitoring system (Source:
Jennings, 1982. Used Avith permission.)
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control unit operates in a standby mode between storms, so that data are collected
only if there is rainfall. The rain gage has an 8-in diameter orifice and a tipping
bucket mechanism coupled to a mercury switch. The buckets are calibrated to tip
after each 0.01 in of rainfall.

The atmospheric sampler is used to collect samples of atmospheric con-
stituents affecting water quality, as for acid rain studies. Two rectangular collec-
tors are used, one for sampling rainfall and the other for dry deposition of dust
and other constituents between rainfalls. Water quality samples are also taken
from storm sewers using automatic pump samplers. The samples are stored in a
freezer which maintains the water temperature at approximately 50C.

Real-time Data Collection Systems for River-Lake Systems

Real-time data collection and transmission can be used for flood forecasting on
large river-lake systems covering thousands of square miles, as shown in Fig.
6.5.2 for the lower Colorado River in central Texas. The data collection sys-
tem used there is called a Hydrometeorological Data Acquisition System (Hy-
dromet, EG&G Washington Analytical Services Center, Inc., 1981) and is used
to provide information for a flood forecasting model (Section 15.5). This infor-
mation is of two types: (a) the water surface elevations at various locations
throughout the river-lake system, and (b) rainfall from a rain gage network for
the ungaged drainage areas around the lakes. The Hydromet system consists
of (a) remote terminal unit (RTU) hydrometeorological data acquisition stations
installed at U.S. Geological Survey river gage sites, (b) microwave terminal unit
(MTU) microwave-to-UHF radio interface units located at microwave repeater
sites, which convert radio signals to microwave signals, and (c) a central control
station located at the operations control center in Austin, Texas, which receives
its information from the microwave repeating stations. The system is designed
to automatically acquire river level and meteorological data from each RTU;
telemeter this data on request to the central station via the UHF/microwave radio
system; determine the flow rate at each site by using rating tables stored in the
central system memory; format and output the data for each site; and maintain a
historical file of data for each site which may be accessed by the local operator, a
computer, or a remote dial-up telephone line terminal. The system also functions
as a self-reporting flood alarm network.

Flood Early Warning System for Urban Areas

Because of the potential for severe flash flooding and consequent loss of life
in many urban areas throughout the world, flood early warning systems have
been constructed and implemented. Flood early warning systems (Fig. 6.5.3) are
real-time event reporting systems that consist of remote gaging sites with radio
repeater sites to transmit information to a base station. The overall system is used
to collect, transport, and analyze data, and make a flood forecast in order to
maximize the warning time to occupants in the flood plain. Such systems have



FIGURE 6.5.2
Real-time data transmission network on the lower Colorado River, Texas. Water level and rainfall
data are automatically transmitted to the control center in Austin every 3 hours to guide releases
from the dams. During floods data are updated every 15 minutes.
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FIGURE 6.5.3
Example of a flood early warning system for urban areas.

been installed in Austin and Houston, Texas, and elsewhere (Sierra/Misco, Inc.,
1986).

The remote stations (Fig. 6.5.4) each have a tipping bucket rain gage, which
generates a digital input to a transmitter whenever 1 mm of rainfall drains through
the funnel assembly. A transmission to the base station is made for each tip of
the bucket. The rain gage is completely self-contained, consisting of a cylindrical
stand pipe housing for the rain gage, antenna mount, battery, and electronics.

Some remote stations have both rainfall and streamflow gages. The remote
stations can include a stilling well or a pressure transducer water level sensor
similar to the one illustrated in Fig. 6.5.5. The pressure transducer measures
changes of the water level above the pressure sensor's orifice. The electronic
differential pressure transducer automatically compensates for temperature and
barometric pressure changes with a one percent accuracy over the measured range.
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FIGURE 6.5.5
Self-reporting rain and water level gage on the Navidad River,
Texas. (Courtesy of Sierra/Misco, Inc., 1986. Used with
permission.)

Automatic repeater stations, located between the remote stations and the base
station, receive data from the remote stations, check the data for validity, and
transmit the data to the base station.

Incoming radio signals are transformed from radio analog form to digital
format and are forwarded to the base station computer through a communications

FIGURE 6.5.4
Remote station combining precipitation and
stream gages. (Courtesy of Sierra/Misco, Inc.,
1986. Used with permission.)Pressure transducer
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port. After data quality checks are made, the data are formatted and filed on either
hard or floppy disk media. Once the data filing is complete, the information can
be displayed or saved for analysis.

The base station has data management software which can handle up to
700 sensors with enough on-line storage to store three years of rainfall data. It
can cover 12 separate river systems with up to 25 forecast points possible in
each; each forecast point can receive inflow from up to 10 different sources.
Different future rainfall scenarios can be input for each individual forecast point,
and optional features can be added to control pumps, gates, wall maps, remote
alarms, and voice synthesized warnings (Sierra/Misco, Inc., 1986).

6.6 MEASUREMENT OF PHYSIOGRAPHIC CHARACTERISTICS

In hydrologic studies in which gaged data are sometimes not available, for exam-
ple in rainfall-runoff analysis, runoff characteristics are estimated from phys-
iographic characteristics. Watershed physiographic information can be obtained
from maps describing land use, soils maps, geologic maps, topographic maps,
and aerial photography. A typical inventory of physiographic characteristics is the
following list of 22 factors compiled for the USGS-EPA National Urban Studies
Program (Jennings, 1982):

1. Total drainage area in square miles (excluding noncontributing areas).
2. Impervious area as a percentage of drainage area.
3. Effective impervious area as a percentage of drainage area. Only impervious

surfaces connected directly to a sewer pipe or other stormwater conveyance
are included.

4. Average basin slope, in feet per mile, determined from an average of terrain
slopes at 50 or more equispaced points using the best available topographic
map.

5. Main conveyance slope, in feet per mile, measured at points 10 and 85
percent of the distance from the gaging station to the drainage divide along
the main conveyance channel.

6. Permeability of the A horizon of the soil profile, in inches per hour.
7. Soil moisture capacity average over the A, B, and C soil horizons, in inches

of water per inch of soil.
8. Soil water pH in the A horizon.
9. Hydrologic soil group (A, B, C, or D) according to the U.S. Soil Conserva-

tion Service methodology.
10. Population density in persons per square mile.
11. Street density, in lane miles per square mile (approximately 12-ft lanes).
12. Land use of the basins as a percentage of drainage area including: (a)

rural and pasture, (b) agricultural, (c) low-density residential {\ to 2 acres
per dwelling), (d) medium-density residential (3 to 8 dwellings per acre),



(e) high-density residential (9 or more dwellings per acre), (f) commercial,
(g) industrial, (h) under construction (bare surface), (i) vacant land, (j)
wetland, and (k) parkland.

13. Detention storage, in acre-feet of storage.
14. Percent of watershed upstream from detention storage.
15. Percent of area drained by a storm sewer system.
16. Percent of streets with ditch and gutter drainage.
17. Percent of streets with ditch and swale drainage.
18. Mean annual precipitation, in inches (long term).
19. Ten-year frequency, one-hour duration, rainfall intensity, in inches per hour

(long term).
20. Mean annual loads of water quality constituents in runoff, in pounds per

acre.
21. Mean annual loads of constituents in precipitation, in pounds per acre.
22. Mean annual loads of constituents in dry deposition, in pounds per acre.

These data are employed in modeling the water quantity and quality characteristics
of urban watersheds so that the conclusions drawn from field studies can be
extended to other locations.

REFERENCES

Bhowmik, N., Hydraulics of flow in the Kaskaskia River, Illinois, Report of Investigation 91,
Illinois State Water Survey, Urbana, 111., 1979.

EG&G Washington Analytical Services Center, Inc., Lower Colorado River Authority Software
User's Manual, Albuquerque, N. Mex., December 1981.

Jennings, M. E., Data collection and instrumentation, in Urban Stormwater Hydrology, ed. by
D. F. Kibler, Water Resources Monograph 7, American Geophysical Union, pp. 189-217,
Washington, D.C., 1982.

Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus, Hydrology for Engineers, McGraw-Hill, New
York, 1982.

Marsh-McBirney, Inc., The UMFM flowmeter, Product brochure, Gaithersburg, Md., 1979.
Rantz, S. E., et al., Measurement and computation of streamflow, vol. 1, Measurement of stage

and discharge, Water Supply Paper 2175, U. S. Geological Survey, 1982.
Riggs, H. C , Streamflow Characteristics, Elsevier, Amsterdam, Holland, 1985.
Shaw, E. M., Hydrology in Practice, Van Nostrand Reinhold (UK), Wokingham, England, 1983.
Sierra/Misco, Inc., Flood early warning system for city of Austin, Texas; Berkeley, Calif., 1986.
U. S. Geological Survey, National Handbook of Recommended Methods for Water-data Acquisition,

Office of Water Data Coordination, U. S. Geological Survey, Reston, Va., 1977.
World Meteorological Organization, Guide to Hydrological Practices, vol. 1: Data Acquisition and

Processing, Report no. 168, Geneva, Switzerland, 4th ed., 1981.

PROBLEMS

6.3.1 A discharge measurement made on the Colorado River at Austin, Texas, on June
11, 1981, yielded the following results. Calculate the discharge in ft3/s.



Distance from bank (ft) O 30 60 80 100 120 140 160

Depth (ft) O 18.5 21.5 22.5 23.0 22.5 22.5 22.0

Velocity (ft/s) 0 0.55 1.70 3.00 3.06 2.91 3.20 3.36

Distance 180 200 220 240 260 280 300 320 340

Depth 22.0 23.0 22.0 22.5 23.0 22.8 21.5 19.2 18.0

Velocity 3.44 2.70 2.61 2.15 1.94 1.67 1.44 1.54 0.81

Distance 360 380 410 450 470 520 570 615

Depth 14.7 12.0 11.4 9.0 5.0 2.6 1.3 0

Velocity 1.10 1.52 1.02 0.60 0.40 0.33 0.29 0

6.3.2 Plot a graph of velocity vs. distance from the bank for the data given in Prob.
6.3.1. Plot a graph of velocity vs. depth of flow.

6.3.3 The observed gage height during a discharge measurement of the Colorado River
at Austin is 11.25 ft. If the measured discharge was 9730 ft3/s, calculate the
percent difference between the discharge given by the rating curve (Fig. 6.3.8)
and that obtained in this discharge measurement.

6.3.4 The bed slope of the Colorado River at Austin is 0.03 percent. Determine, for
the data given in Example 6.3.1, what value of Manning's n would yield the
observed discharge for the data shown.

6.3.5 A discharge measurement on the Colorado River at Austin, Texas, on June 16,
1981, yielded the following results. Calculate the discharge in ft3/s.

Distance from bank (ft) 0 35 55 75 95 115 135 155

Depth (ft) 0 18.0 19.0 21.0 20.5 18.5 18.2 19.5

Velocity (ft/s) 0 0.60 2.00 3.22 3.64 3.74 4.42 3.49

Distance 175 195 215 235 255 275 295

Depth 20.0 21.5 21.5 21.5 22.0 21.5 20.5

Velocity 5.02 4.75 4.92 4.44 3.94 2.93 2.80

Distance 325 355 385 425 465 525 575

Depth 17.0 13.5 10.6 9.0 6.1 2.0 0

Velocity 2.80 1.52 1.72 0.95 0.50 0.39 0

6.3.6 If the bed slope is 0.0003, determine the value of Manning's n that would yield
the same discharge as the value you found in Problem 6.3.5.

6.3.7 The observed gage height for the discharge measurement in Prob. 6.3.5 was 19.70
ft above datum. The rating curve at this site is shown in Fig. 6.3.8. Calculate
the percent difference between the discharge found from the rating curve for this
gage height and the value found in Prob. 6.3.5.



UNIT
HYDROGRAPH

In the previous chapters of this book, the physical laws governing the operation
of hydrologic systems have been described and working equations developed to
determine the flow in atmospheric, subsurface, and surface water systems. The
Reynolds transport theorem applied to a control volume provided the mathematical
means for consistently expressing the various applicable physical laws. It may be
remembered that the control volume principle does not call for a description of
the internal dynamics of flow within the control volume; all that is required is
knowledge of the inputs and outputs to the control volume and the physical laws
regulating their interaction.

In Chap. 1, a tree classification was presented (Fig. 1.4.1), distinguishing
the various types of models of hydrologic systems according to the way each
deals with the randomness and the space and time variability of the hydrologic
processes involved. Up to this point in the book, most of the working equations
developed have been for the simplest type of model shown in this diagram,
namely a deterministic (no randomness) lumped (one point in space) steady-flow
model (flow does not change with time). This chapter takes up the subject of
deterministic lumped unsteady flow models; subsequent chapters (8-12) cover a
range of models in the classification tree from left to right. Where possible, use
is made of knowledge of the governing physical laws of the system. In addition
to this, methods drawn from other fields of study such as linear systems analysis,
optimization, and applied statistics are employed to analyze the input and output
variables of hydrologic systems.

In the development of these models, the concept of control volume remains
as it was introduced in Chap. 1: "A volume or structure in space, surrounded by
a boundary, which accepts water and other inputs, operates on them internally
and produces them as outputs." In this chapter, the interaction between rainfall
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and runoff on a watershed is analyzed by viewing the watershed as a lumped
linear system.

7.1 GENERAL HYDROLOGIC SYSTEM MODEL

The amount of water stored in a hydrologic system, 5 may be related to the rates
of inflow / and outflow Q by the integral equation of continuity (2.2.4):

f-/-s
Imagine that the water is stored in a hydrologic system, such as a reservoir

(Fig. 7.1.1), in which the amount of storage rises and falls with time in response
to / and Q and their rates of change with respect to time: dl/dt, d2l/dt2, . . . ,
dQ/dt,d2Q/dt2, . . . . Thus, the amount of storage at any time can be expressed
by a storage function as:

S-J1ZH Q^ ^ ) (712)
* f \ J ' d t ' d f i ' - - - ' Q ' d t ' d f i ' - - - j ( }

The function / is determined by the nature of the hydrologic system being
examined. For example, the linear reservoir introduced in Chap. 5 as a model for
baseflow in streams relates storage and outflow by S = kQ, where A: is a constant.

The continuity equation (7.1.1) and the storage function equation (7.1.2)
must be solved simultaneously so that the output Q can be calculated given the
input /, where / and Q are both functions of time. This can be done in two ways:
by differentiating the storage function and substituting the result for dSldt in
(7.1.1), then solving the resulting differential equation in / and Q by integration;
or by applying the finite difference method directly to Eqs. (7.1.1) and (7.1.2)
to solve them recursively at discrete points in time. In this chapter, the first, or
integral, approach is taken, and in Chap. 8, the second, or differential, approach
is adopted.

Linear System in Continuous Time

For the storage function to describe a linear system, it must be expressed as a
linear equation with constant coefficients. Equation (7.1.2) can be written

FIGURE 7.1.1
Continuity of water stored in a hydrologic system.
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in which a\9 «2, . . ., aw, b\, b2, . . ., bm are constants and derivatives of higher
order than those shown are neglected. The constant coefficients also make the
system time-invariant so that the way the system processes input into output does
not change with time.

Differentiating (7.1.3), substituting the result for dSldt in (7.1.1), and
rearranging yields

cfQ d"~lQ cfiQ dQ
an + an—\ r + • • • + «2—T + Gi h O =

dt" df1'1 dt2 dt ^
(7.1.4)

. dl , Sl . dm~xI (TI
I~bidt~b2dfi~---~bm-1^^~bm^

which may be rewritten in the more compact form

N(D)Q = M(D)I (7.1.5)

where D = dldt and N(D) and M(D) are the differential operators

dn dn~l d
N(D) = a n - + a n - 1 — + . . . + C1- + 1

and
dm dm~l d

M(D) = -bm- bm-x- r - . . . - bi- + 1mdtm df1'1 dt

Solving (7.1.5) for Q yields

<x» = m m (7-L6)

The function M(D)IN(D) is called the transfer function of the system; it describes
the response of the output to a given input sequence.

Equation (7.1.4) was presented by Chow and Kulandaiswamy (1971) as a
general hydrologic system model. It describes a lumped system because it contains
derivatives with respect to time alone and not spatial dimensions. Chow and
Kulandaiswamy showed that many of the previously proposed models of lumped
hydrologic systems were special cases of this general model. For example, for a
linear reservoir, the storage function (7.1.3) has a\ = k and all other coefficients
zero, so (7.1.4) becomes

k^ + Q = I (7.1.7)
at



7.2 RESPONSE FUNCTIONS OF LINEAR SYSTEMS

The solution of (7.1.6) for the transfer function of hydrologic systems follows two
basic principles for linear system operations which are derived from methods for
solving linear differential equations with constant coefficients (Kreyszig, 1968):

1. If a solution f(Q) is multiplied by a constant c, the resulting function cf(Q) is
also a solution (principle of proportionality).

2. If two solutions f\(Q) and /2(6) of the equation are added, the resulting
function/^Q) + /2(6) is also a solution of the equation (principle of additivity
or superposition).

The particular solution adopted depends on the input function N(D)I, and on the
specified initial conditions or values of the output variables at t = 0.

Impulse Response Function

The response of a linear system is uniquely characterized by its impulse response
function. If a system receives an input of unit amount applied instantaneously (a
unit impulse) at time r, the response of the system at a later time t is described by
the unit impulse response function u(t — r); t — r is the time lag since the impulse
was applied [Fig. 7.2.1 (a)]. The response of a guitar string when it is plucked
is one example of a response to an impulse; another is the response of the shock
absorber in a car after the wheel passes over a pothole. If the storage reservoir
in Fig. 7.1.1 is initially empty, and then the reservoir is instantaneously filled
with a unit amount of water, the resulting outflow function Q(t) is the impulse
response function.

Following the two principles of linear system operation cited above, if two
impulses are applied, one of 3 units at time T1 and the other of 2 units at time
T2, the response of the system will be 3u(t — T1) + 2u(t — T2), as shown in Fig.
7.2. l(b). Analogously, continuous input can be treated as a sum of infinitesimal
impulses. The amount of input entering the system between times r and r + dr
is I(r) dr. For example, if I(r) is the precipitation intensity in inches per hour and
dr is an infinitesimal time interval measured in hours, then I(r)dr is the depth in
inches of precipitation input to the system during this interval. The direct runoff
t— Ttime units later resulting from this input is I(r)u(t — r)dr. The response to the
complete input time function /(T) can then be found by integrating the response
to its constituent impulses:

Q(t)= I(T)u(t-r)dr (7.2.1)
Jo

This expression, called the convolution integral, is the fundamental equation for
solution of a linear system on a continuous time scale. Figure 7.2.2 illustrates
the response summation process for the convolution integral.

For most hydrologic applications, solutions are needed at discrete intervals
of time, because the input is specified as a discrete time function, such as an
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(b)

FIGURE 7.2.1
Responses of a linear system to impulse inputs, (a) Unit impulse response function, (b) The response
to two impulses is found by summing the individual response functions.

excess rainfall hyetograph. To handle such input, two further functions are need-
ed, the unit step response function and the unit pulse response function, as shown
in Fig. 7.2.3.

Step Response Function

A unit step input is an input that goes from a rate of 0 to 1 at time 0 and continues
indefinitely at that rate thereafter [Fig. 7.2.3(6)]. The output of the system, its
unit step response function g(t) is found from (7.2.1) with /(r) = 1 for r ^ 0, as

Q(f) = g(t) = )ou(t-T)dr (7.2.2)

If the substitution / = t — T is made in (7.2.2) then dr = —dl, the limit r — t
becomes / = t — t = 0, and the limit r = 0 becomes / = t — 0 = t. Hence,

f0

g{t)= - u(l)dl
Jt

or

g(t)= u(l)dl (7.2.3)
Jo

Timer

(a)

Impulse response function

Unit impulse



(a) Continuous time functions (b) Discrete time functions

FIGURE 7.2.2
The relationship between continuous and discrete convolution.

In words, the value of the unit step response function g(t) at time t equals the
integral of the impulse response function up to that time, as shown in Fig. 7.2.3(a)
and (b).

Pulse Response Function

A unit pulse input is an input of unit amount occurring in duration Ar. The rate
is /(T) = 1/Ar, 0 < T < Ar, and zero elsewhere. The unit pulse response function
produced by this input can be found by the two linear system principles cited
earlier. First, by the principle of proportionality, the response to a unit step input
of rate 1/Ar beginning at time 0 is (1/Ar)g(r). If a similar unit step input began
at time Ar instead of at 0, its response function would be lagged by time interval
Ar, and would have a value at time t equal to (1/Ar)g(r — Ar). Then, using the
principle of superposition, the response to a unit pulse input duration Ar is found
by subtracting the response to a step input of rate 1/Ar beginning at time Ar from

Time index n

Time index n-m + 1

Time index m



FIGURE 7.2.3
Response functions of a linear system. The response functions in (a), {b), and (c) are on a continuous
time domain and that in (d) on a discrete time domain.

the response to a step input of the same rate beginning at time 0, so that the unit

pulse response function h(t) is

h{t)=jt[g{t)-g(t-m {i.i A)

= -J- u(l)dl- u(l)dl
At Jo Jo

= - M u(Ddl (7.2.5)
ArJr-Ar

(c) Pulse response
Kt)

(b) Step response
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Input Output #(/)

Time
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Input

Time

Time

Output u{t)

Unit Input

(a) Impulse response, u{t)

Time
index

Output Un

Input

(d) Discrete pulse
response, Un
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As shown in Fig. 7 .2 .3 , g(t) — g(t—At) represents the area under the impulse
response function between t — At and £, and h(t) represents the slope of the unit
step response function g(t) between these two time points.

Example 7.2.1. Determine the impulse, step and pulse response functions of a
linear reservoir with storage constant k(S = kQ).

Solution, The continuity equation (7.1.1) is

§ = /(O -QiO

and differentiating the storage function S = kQ yields dS/dt = kdQIdt, so

dO
kdt = Kt) ~ Q(t)

or

S+ >=>
This is a first-order linear differential equation, and can be solved by multiplying
both sides of the equation by the integrating factor e tlk\

e"k^ + \e"kQ{t) = \e"km

so that the two terms on the left-hand side of the equation can be combined as

jt(Qe«k) = \e"kI(t)

Integrating from the initial conditions Q = Q0 at t = 0

•I d(Qet/k)= \ -ylkl{i)d7
JQ0S) JO k

where T is a dummy variable of time in the integration. Solving,

Q(t)e"k-Qo= I je«kI(T)dr
Jo k

and rearranging,

Q(t) = Qoe-t/k + I je~^/kI(r)dr
Jo k

Comparing this equation with the convolution integral (7.2.1), it can be seen that
the two equations are the same provided Q0 = 0 and

So if / is defined as the lag time t — r, the impulse response function of a linear

reservoir is

U(I) = Ie-"'



The requirement that Q0 = O implies that the system starts from rest when the
convolution integral is applied.

The unit step response is given by (7.2.3):

g(t)= u(l)dl
Jo

-LV*
=[-e-"kro

= l-e-"k

The unit pulse response is given by (7.2.4):

Kt) = J1Ig(I) - g(t - Af)]

1. For 0 < t < Af, g(t - Af) = 0, so

Kt)- jtg(t) = > - ' " " * )

2. For t > Ar,

h{t) = ~tt[1 " 6~tlk " (1 " *~('~A')//:)]

The impulse and step response functions of a linear reservoir with /: = 3 h are
plotted in Fig. 7.2.4, along with the pulse response function for At = 2 h.

Time (h)

FIGURE 7.2.4
Response function of a linear reservoir with k = 3 h. Pulse response function is for a pulse input of
two hours duration, (from Example 7.2.1.)
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Linear System in Discrete Time

The impulse, step, and pulse response functions have all been defined on a
continuous time domain. Now let the time domain be broken into discrete intervals
of duration Ar. As shown in Sec. 2.3, there are two ways to represent a continuous
time function on a discrete time domain, as a pulse data system or as a sample
data system. The pulse data system is used for precipitation and the value of its
discrete input function for the mth time interval is

pnAt

Pm= / ( T ) * m= 1 , 2 , 3 , . . . (7.2.6)
J(m- I)At

Pm is the depth of precipitation falling during the time interval (in inches or
centimeters). The sample data system is used for streamflow and direct runoff,
so that the value of the system output in the nth time interval (t — n At) is

Qn = Q(nAt) n = 1 , 2 , 3 , . . . (7.2.7)

Qn is the instantaneous value of the flow rate at the end of the nth time inter-
val (in cfs or m3/s). Thus the input and output variables to a watershed system
are recorded with different dimensions and using different discrete data
representations. The effect of an input pulse of duration Ar beginning at time
(m — I)Ar on the output at time t = nAt is measured by the value of the unit pulse
response function h[t - (m - I)Ar] = h[nAt - (m - I)Ar] = h[(n - m + I)Ar],
given, following Eq. (7.2.5), as

. r(n—m+l)At

h[(n - m + I)Ar] = — u(l)dl (7.2.8)
Ar J{n-m)At

On a discrete time domain, the input function is a series of M pulses of
constant rate: for pulse m, I(r) = Pm/Ar for (m - 1) Ar < r < m Ar. 7(r) = 0 for
T > MAr. Consider the case where the output is being calculated after all the input
has ceased, that is, at t = nAt > MAt [see Fig. 7.2.2(Z?)]. The contribution to the
output of each of the M input pulses can be found by breaking the convolution
integral (7.2.1) at t = nAt into M parts:

rnAt

Qn = I(T)u(nAt - r)dr
Jo

P fAr P (1^
= ~r\ u(nAt- T) dr+ - M u(nAt- r)dr+ . . . (7.2.9)

Ar Jo Ar JAt

p pnt" p CM^

+ -T u(nAt-T)dr+ . . . + -r \ u(nAt-T)dr
At J(m-I)At At J(M-I)At

where the terms PmIAt, m = 1,2, . . . , M, can be brought outside the integrals
because they are constants.

In each of these integrals, the substitution / = nAt — ris made, so dr= — dl,
the limit r = (m - 1) Ar becomes / = nAr - (m - 1) Ar = (n - m + I)Ar, and



the limit T= raAf becomes / = (n — m)At. The rath integral in (7.2.9) is now written
p rmkt p r(n-m)Ar

-T u(nAt - r) dr= -^ -U(I) dl
lit J(m-l)Ar Af J(n-m+l)Ar

rfn-m+l)Ar (7.2.10)

Af J(n-m)At

= Pmh[(n - m + I)Af]
by substitution from (7.2.7). After making these substitutions for each term in
(7.2.9),

Qn = P1HKnAt)] + P1HV(U - I)Af] + . . .

+ Pmh[(n - m + I)Af] + . . . (7.2.11)

+ PMH[(n-M + I)Af]

which is a convolution equation with input Pm in pulses and output Qn as a sample
data function of time.

Discrete Pulse Response Function

As shown in Fig. 7.2.3(<i), the continuous pulse response function h(t) may be
represented on a discrete time domain as a sample data function U where

t/n-m+i =f t [ ( / i - /n+ I)Af] (7.2.12)

It follows that Un = H[nAt], Un-X = h[(n - I)Af],. . . , and Un-M+\ =
h[(n — M + I)Af]. Substituting into (7.2.11), the discrete-time version of the
convolution integral is

Qn = PiUn + P2CZn-I + • • • + PmUn-m+i + . . . + PmUn-M+X

_ * (7.2.13)
/ , *mUn—m+\

Equation (7.2.13) is valid provided n > M; if n < M, then, in (7.2.9), one would
only need to account for the first n pulses of input, since these are the only pulses
that can influence the output up to time n Af. In this case, (7.2.13) is rewritten

n

Qn = Y,P™Un-m+l (7.2.14)
w = l

Combining (7.2.13) and (7.2.14) gives the final result



FIGURE 7.2.5
Application of the discrete convolution equation to the output from a linear system.
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Qn = Y,PrnUn-m+l (7.2.15)
m=\

which is the discrete convolution equation for a linear system. The notation
n < M as the upper limit of the summation shows that the terms are summed
for m = 1 , 2 , . . . , n for n < M, but for n > M, the summation is limited to
m = 1,2,. . . ,M.

As an example, suppose there are M = 3 pulses of input: P 1 , P 2 , and P 3 .
For the first time interval (/i = 1), there is only one term in the convolution, that
f or m = 1;

Qx = JWi-i + i = ^it/i

For n = 2, there are two terms, corresponding to m = 1,2:

Q2 = / W 2 - I + I + PiU2-I + I = PiU2 + P2CZ1

For n = 3, there are three terms:

G3 = / W 3 - I + I + / W 3 - 2 + l + / W 3 - 3 + 1 = PlCZ3 + P2CZ2 + P3CZ1

And for n = 4 ,5 , . . . there continue to be just three terms:

Qn = PiUn + P2Un-, + P3Un-2

The results of the calculation are shown diagramatically in Fig. 7.2.5. The
sum of the subscripts in each term on the right-hand side of the summation is
always one greater than the subscript of Q.

In the example shown in the diagram, there are 3 input pulses and 6 non-
zero terms in the pulse response function U, so there are 3 + 6 — 1 = 8 non-
zero terms in the output function Q. The values of the output for the final three
periods are:

Q6 = PiU6^P2U5 +P3U4

Q7 = P2U6^P3U5

Qs = PsU6

Qn and Pm are expressed in different dimensions, and U has dimensions
that are the ratio of the dimensions of Qn and Pm to make (7.2.15) dimensionally
consistent. For example, if Pm is measured in inches and Qn in cfs, then the
dimensions of CZ are cfs/in, which may be interpreted as cfs of output per inch of
input.

7,3 THEUNITHYDROGRAPH

The unit hydrograph is the unit pulse response function of a linear hydrologic
system. First proposed by Sherman (1932), the unit hydrograph (originally named
unit-graph) of a watershed is defined as a direct runoff hydrograph (DRH) result-
ing from 1 in (usually taken as 1 cm in SI units) of excess rainfall generated



uniformly over the drainage area at a constant rate for an effective duration.
Sherman originally used the word "unit" to denote a unit of time, but since that
time it has often been interpreted as a unit depth of excess rainfall. Sherman
classified runoff into surface runoff and groundwater runoff and defined the
unit hydrograph for use only with surface runoff. Methods of calculating excess
rainfall and direct runoff from observed rainfall and streamflow data are presented
in Chap. 5.

The unit hydrograph is a simple linear model that can be used to derive
the hydrograph resulting from any amount of excess rainfall. The following basic
assumptions are inherent in this model:

1. The excess rainfall has a constant intensity within the effective duration.
2. The excess rainfall is uniformly distributed throughout the whole drainage

area.
3. The base time of the DRH (the duration of direct runoff) resulting from an

excess rainfall of given duration is constant.
4. The ordinates of all DRH's of a common base time are directly proportional

to the total amount of direct runoff represented by each hydrograph.
5. For a given watershed, the hydrograph resulting from a given excess rainfall

reflects the unchanging characteristics of the watershed.

Under natural conditions, the above assumptions cannot be perfectly
satisfied. However, when the hydrologic data to be used are carefully selected so
that they come close to meeting the above assumptions, the results obtained by the
unit hydrograph model are generally acceptable for practical purposes (Heerde-
gen, 1974). Although the model was originally devised for large watersheds, it
has been found applicable to small watersheds from less than 0.5 hectares to 25
km2 (about 1 acre to 10 mi2). Some cases do not support the use of the model
because one or more of the assumptions are not well satisfied. For such reasons,
the model is considered inapplicable to runoff originating from snow or ice.

Concerning assumption (1), the storms selected for analysis should be of
short duration, since these will most likely produce an intense and nearly constant
excess rainfall rate, yielding a well-defined single-peaked hydrograph of short
time base.

Concerning assumption (2), the unit hydrograph may become inapplicable
when the drainage area is too large to be covered by a nearly uniform distribution
of rainfall. In such cases, the area has to be divided and each subarea analyzed
for storms covering the whole subarea.

Concerning assumption (3), the base time of the direct runoff hydrograph
(DRH) is generally uncertain but depends on the method of baseflow separation
(see Sec. 5.2). The base time is usually short if the direct runoff is considered
to include the surface runoff only; it is long if the direct runoff also includes
subsurface runoff.

Concerning assumption (4), the principles of superposition and proportion-
ality are assumed so that the ordinates Qn of the DRH may be computed by Eq.



TABLE 7.3.1
Comparison of linear system and unit hydrograph concepts

5. System starts from rest.

6. System is linear.

7. Transfer function has constant coefficients.

8. System obeys continuity.

^ = IU)-QU)

5. Direct runoff hydrograph starts from zero. All previous
rainfall is absorbed by watershed (initial abstraction or
loss).

6. Direct runoff hydrograph is calculated using principles
of proportionality and superposition.

7. Watershed response is time invariant, not changing from
one storm to another.

8. Total depths of excess rainfall and direct runoff are equal.

IQn = SP.

Linear system

System
OutputInput

Unit hydrograph

Excess rainfall Pm

Direct runoff Qn

Watershed

1 in or cm excess rainfall

Unit hydrograph of
duration At

Unit pulse input

Discrete pulse response
function

Unit step input

Unit step response
function

1 in/h or cm/h excess
rainfall

S-hydrograph

1 in or cm instantaneous
excess rainfall

Instantaneous unit
hydrograph

Unit impulse

Impulse response
function



(7.2.15). Actual hydrologic data are not truly linear; when applying (7.2.15) to
them, the resulting hydrograph is only an approximation, which is satisfactory in
many practical cases.

Concerning assumption (5), the unit hydrograph is considered unique for
a given watershed and invariable with respect to time. This is the principle
of time invariance, which, together with the principles of superposition and
proportionality, is fundamental to the unit hydrograph model. Unit hydrographs
are applicable only when channel conditions remain unchanged and watersheds
do not have appreciable storage. This condition is violated when the drainage
area contains many reservoirs, or when the flood overflows into the flood plain,
thereby producing considerable storage.

The principles of linear system analysis form the basis of the unit hydrograph
method. Table 7.3.1 shows a comparison of linear system concepts with the
corresponding unit hydrograph concepts. In hydrology, the step response function
is commonly called the S-hydrograph, and the impulse response function is called
the instantaneous unit hydrograph which is the hypothetical response to a unit
depth of excess rainfall deposited instantaneously on the watershed surface.

7.4 UNIT HYDROGRAPH DERIVATION

The discrete convolution equation (7.2.15) allows the computation of direct runoff
Qn given excess rainfall Pm and the unit hydrograph Un-m + \

Qn= ^PmUn-m+l (7.4.1)
m= 1

The reverse process, called deconvolution, is needed to derive a unit hydrograph
given data on Pm and Qn. Suppose that there are M pulses of excess rainfall and
N pulses of direct runoff in the storm considered; then Af equations can be written
for Qn, n = 1,2,. . .,N9 in terms of N — M + 1 unknown values of the unit
hydrograph, as shown in Table 7.4.1.

If Qn and Pm are given and Un-m+\ is required, the set of equations in Table
7.4.1 is overdetermined, because there are more equations (AO than unknowns
(N-M + 1).

Example 7.4.1. Find the half-hour unit hydrograph using the excess rainfall hyeto-
graph and direct runoff hydrograph given in Table 7.4.2. (these were derived in
Example 5.3.1.)

Solution. The ERH and DRH in Table 7.4.2 have M = 3 and N = 11 pulses
respectively. Hence, the number of pulses in the unit hydrograph is N - M + 1 =
1 1 - 3 + 1 = 9 . Substituting the ordinates of the ERH and DRH into the equations
in Table 7.4.1 yields a set of 11 simultaneous equations. These equations may be
solved by Gauss elimination to give the unit hydrograph ordinates. Gauss elimination
involves isolating the unknown variables one by one and successively solving for
them. In this case, the equations can be solved from top to bottom, working with
just the equations involving the first pulse Pi, starting with



TABLE 7.4.1

The set of equations for discrete time convolution Qn = ^T PmUn-m+i;

n= 1,2, . . . ,N

Q2 ^P2U1 +P1U2

Q3 = P3U{ +P2U2 +P1U3

QM =PMUi +PM-iU2 + +PiUM

QM+1 = 0 +PMU2 + . . . +P2UM+PiUM+i

QN-I = 0 + 0 + . . . + 0 + 0 +.-. +PMUN-M+PM-IUN-M+I
QN = 0 + 0 + . . . + 0 + 0 + . . . + 0 +PMUN-M+I

U2,&Zf2Hi , 1 9 2 3 - ' f *4 0 4 , ,079 cfs/in
Pi 1.06

^ = Q3-P3U1-P2U2 = 5297-1.81X404-1.93X1079 = ^ 4 3 ^

P i 1.06

and similarly for the remaining ordinates

TT 9131 - 1.81 x 1079 - 1.93 x 2343 ^ C A r f „
U4 = —— = 2506 cfs/in

1.06

T7 10625 - 1.81 x 2343 - 1.93 x 2506 i Arn r r
U5 = = 1460 cfs/in

1.06

7834 - 1.81 x 2506 - 1.93 x 1460 r .
U6 = - — = 453 cfs/in

i . Uo

TABLE 7.4.2
Excess rainfall hyetograph and direct
runoff hydrograph for Example 7.4.1

Time Excess rainfall Direct runoff
(j h) (in) (cfs)

1 1.06 428
2 1.93 1923
3 1.81 5297
4 9131
5 10625
6 7834
7 3921
8 1846
9 1402
10 830
11 313



TABLE 7.4.3
Unit hydrograph derived in Example 7.4.1

n 1 2 3 4 5 6 7 8 9
Un (cfs/in) 404 1079 2343 2506 1460 453 381 274 173

__ 3921-1.81 x 1460-1.93x453
U1 = —— = 381 cfs/in

1.06

tT 1 8 4 6 - 1 . 8 1 x 4 5 3 - 1 . 9 3 x 3 8 1 ^4Us = — = 274 cfs/in
1.Uu

1 4 0 2 - 1 . 8 1 x 3 8 1 - 1 . 9 3 x 2 7 4 ^ ^1 .
U9 = — = 173 cfs/in

1.06

The derived unit hydrograph is given in Table 7.4.3. Solutions may be similarly
obtained by focusing on other rainfall pulses. The depth of direct runoff in the
unit hydrograph can be checked and found to equal 1.00 inch as required. In cases
where the derived unit hydrograph does not meet this requirement, the ordinates are
adjusted by proportion so that the depth of direct runoff is 1 inch (or 1 cm).

In general the unit hydrographs obtained by solutions of the set of equations
in Table 7.4.1 for different rainfall pulses are not identical. To obtain a unique
solution a method of successive approximation (Collins, 1939) can be used, which
involves four steps: (1) assume a unit hydrograph, and apply it to all excess-
rainfall blocks of the hyetograph except the largest; (2) subtract the resulting
hydrograph from the actual DRH, and reduce the residual to unit hydrograph
terms; (3) compute a weighted average of the assumed unit hydrograph and the
residual unit hydrograph, and use it as the revised approximation for the next
trial; (4) repeat the previous three steps until the residual unit hydrograph does
not differ by more than a permissible amount from the assumed hydrograph.

The resulting unit hydrograph may show erratic variations and even have
negative values. If this occurs, a smooth curve may be fitted to the ordinates to
produce an approximation of the unit hydrograph. Erratic variation in the unit
hydrograph may be due to nonlinearity in the effective rainfall-direct runoff
relationship in the watershed, and even if this relationship is truly linear, the
observed data may not adequately reflect this. Also, actual storms are not always
uniform in time and space, as required by theory, even when the excess rainfall
hyetograph is broken into pulses of short duration.

7.5 UNIT HYDROGRAPH APPLICATION

Once the unit hydrograph has been determined, it may be applied to find the
direct runoff and streamflow hydrographs. A rainfall hyetograph is selected, the
abstractions are estimated, and the excess rainfall hyetograph is calculated as
described in Sec. 5.4. The time interval used in defining the excess rainfall
hyetograph ordinates must be the same as that for which the unit hydrograph was
specified. The discrete convolution equation



Qn- 2 > m ^ - m + l (7.5.1)
m=\

may then be used to yield the direct runoff hydrograph. By adding an estimated
baseflow to the direct runoff hydrograph, the streamflow hydrograph is obtained.

Example 7.5.1. Calculate the streamflow hydrograph for a storm of 6 in excess
rainfall, with 2 in in the first half-hour, 3 in in the second half-hour and 1 in in
the third half-hour. Use the half-hour unit hydrograph computed in Example 7.4.1
and assume the baseflow is constant at 500 cfs throughout the flood. Check that the
total depth of direct runoff is equal to the total excess precipitation (watershed area
= 7.03 mi2).

Solution. The calculation of the direct runoff hydrograph by convolution is shown
in Table 7.5.1. The unit hydrograph ordinates from Table 7.4.3 are laid out along
the top of the table and the excess precipitation depths down the left side. The time
interval is in At = 0.5 h intervals. For the first time interval, n = 1 in Eq. (7.5.1),
and

Qi=PiU1

= 2.00 x 404

= 808 cfs

For the second time interval,

Q2 = P2U1 +P1U2

= 3.00X404 + 2.00 x 1079

= 1212 + 2158

TABLE 7.5.1
Calculation of the direct runoff hydrograph and streamflow hydrograph for Example
7.5.1

Unit hydrograph ordinates (cfs/in)
Excess Direct Streamflow*

Time Precipitation 1 2 3 4 5 6 7 8 9 runoff (cfs)
({--h) (in) 404 1079 2343 2506 1460 453 381 274 173 (cfs)

n = 1 2.00 808 808 1308
2 3.00 1212 2158 3370 3870
3 1.00 404 3237 4686 8327 8827
4 1079 7029 5012 13,120 13,620
5 2343 7518 2920 12,781 13,281
6 2506 4380 906 7792 8292
7 1460 1359 762 3581 4081
8 453 1143 548 2144 2644
9 381 822 346 1549 2049
10 274 519 793 1293
11 173 173 673

Total 54,438

*Baseflow =500 cfs.



= 3370 cfs

as shown in the table. For the third time interval,

Q3=P3Ui +P2U2 +PiU3

= 1.00 x 404 + 3.00 x 1079 + 2.00 x 2343

= 404 + 3237 + 4686

= 8327 cfs

The calculations for n = 4, 5, . . ., follow in the same manner as shown in Table
7.5.1 and graphically in Fig. 7.5.1. The total direct runoff volume is

Vd=^QnAt
n=l

= 54,438 x 0.5 cfs -h

= 5 4 , 4 3 8 X 0 . 5 - ^ x ^
s I h

= 9.80 x 107 ft3

and the corresponding depth of direct runoff is found by dividing by the watershed
area A = 7.03 mi2 = 7.03 x 52802 ft2 = 1.96 x 108 ft2:

r-Vd

rd~~K
9.80 x IQ7

~ 1.96 x 108 t

= 0.500 ft

= 6.00 in

Time (h)

FIGURE 7.5.1
Streamflow hydrograph from a storm with excess rainfall pulses of duration 0.5 h and amount 2 in,
3 in, and 1 in, respectively. Total streamflow = baseflow + direct runoff (Example 7.5.1).
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which is equal to the total depth of excess precipitation as required.
The streamflow hydrograph is found by adding the 500 cfs baseflow to the

direct runoff hydrograph, as shown on the right-hand side of Table 7.5.1 and
graphically in Fig. 7.5.1.

7.6 UNIT HYDROGRAPH BY MATRIX CALCULATION

Deconvolution may be used to derive the unit hydrograph from a complex mul-
tipeaked hydrograph, but the possibility of errors or nonlinearity in the data is
greater than for a single-peaked hydrograph. Least-squares fitting or an opti-
mization method can be used to minimize the error in the fitted direct runoff
hydrograph. The application of these techniques is facilitated by expressing Eq.
(7.4.1) in matrix form:

> i 0 0 . . . 0 0 . . . 0 0 1 F Gi
P2 Pi 0 . . . 0 0 . . . 0 0 Q2

P3 P2 P1 . . . 0 0 . . . 0 0 Q3

[U1 ]
U2

PMPM-IPM-2--PI0 . . . 0 0 -U3 = QM (7.6.1)

0 PM P M - I . . . P 2 P I . . . 0 0 : QM+l

L UN-M+il

0 0 0 . . . 0 0 . . .PMPM-I QN-I

0 0 0 . . . 0 0 . . . 0 P M J L QN _

or

[P][U] = [Q] (7.6.2)

Given [P] and [Q], there is usually no solution for [U] that will satisfy all
N equations (7.6.1). Suppose that a solution [U] is given that yields an estimate
[Q] of the DRH as

[F][U] = [Q] (7.6.3a)

or

Qn = PnU1 + P n - J t Z 2 + . . . + Pn-M+iUM n=l,...,N (7.6.3b)

with all equations now satisfied. A solution is sought which minimizes the error
[Q] ~ [Q] between the observed and estimated DRH's.

Solution by Linear Regression

The solution by linear regression produces the least-squares error between [Q]
and [Q] (Snyder, 1955). To solve Eq. (7.6.2) for [U]9 the rectangular matrix [P]



is reduced to a square matrix [Z] by multiplying both sides by the transpose of
[P], denoted by [P] r , which is formed by interchanging the rows and columns of
[P]. Then both sides are multiplied by the inverse [Z] ~1 of matrix [Z], to yield

[U] = [Zrl[P]T[Q] (7.6.4)

where [Z] = [P]T[P]. However, the solution is not easy to determine by this
method, because the many repeated and blank entries in [P] create difficulties in
the inversion of [Z] (Bree, 1978). Newton and Vinyard (1967) and Singh (1976)
give alternative methods of obtaining the least-squares solution, but these methods
do not ensure that all the unit hydrograph ordinates will be nonnegative.

Solution by Linear Programming

Linear programming is an alternative method of solving for [U] in Eq. (7.6.2)
that minimizes the absolute value of the error between [Q] and [Q] and also
ensures that all entries of [U] are nonnegative (Eagleson, Mejia, and March,
1966; Deininger, 1969; Singh, 1976; Mays and Coles, 1980).

The general linear programming model is stated in the form of a linear
objective function to be optimized (maximized or minimized) subject to linear
constraint equations. Linear programming provides a method of comparing all
possible solutions that satisfy the constraints and obtaining the one that optimizes
the objective function (Hillier and Lieberman, 1974; Bradley, Hax, and Magnanti,
1977).

Example 7.6.1. Develop a linear program to solve Eq. (7.6.2) for the unit hydro-
graph given the ERH Pm,m = 1,2,. . .,M, and the DRH Qmn = 1,2,. . .,N.

Solution. The objective is to minimize S n=1 |€n | where en = Qn — Qn. Linear
programming requires that all the variables be nonnegative; to accomplish this task,
en is split into two components, a positive deviation On and a negative deviation /3n.
In the case where en > 0, that is, when the observed direct runoff Qn is greater
than the calculated value Qn, On = en and fin = 0; where en < 0, fin = -en and
On = 0 (see Fig. 7.6.1). If en = 0 then On = /3n = 0 also. Hence, the solution must
obey

Qn = Qn- Pn + On Tl= 1,2 iV (7.6.5)

and the objective is

N

minimize ^(On + pn) (7.6.6)

n=i

The constraints (7.6.5) can be written

[Qn] + [On] - Wn] = [Qn] (7.6.7)

or, expanding as in Eq. (1.6.3b),

P n U x + P n - V U 2 + . . . + P n - M + i U M + 0 n - p n = Qn n = l , . . . , N ( 7 . 6 . 8 )

To ensure that the unit hydrograph represents one unit of direct runoff an additional



constraint equation is added:
M

J^Um=K (7.6.9)
m=l

where £ is a constant which converts the units of the ERH into the units of the DRH.
Equations (7.6.6) to (7.6.9) constitute a linear program with decision variables (or
unknowns) Umt Sn and /3n which may be solved using standard linear programming
computer programs to produce the unit hydrograph. Linear programming requires
all the decision variables to be non-negative, thereby ensuring the unit hydrograph
ordinates will be non-negative.

The linear programming method developed in Example 7.6.1 is not lim-
ited in application to a single storm. Several ERHs and their resulting DRHs
can be linked together as if they comprised one event and used to find a com-
posite unit hydrograph best representing the response of the watershed to this set
of storms. Multistorm analysis may also be carried out using the least-squares
method (Diskin and Boneh, 1975; Mawdsley and Tagg, 1981).

In determination of the unit hydrograph from complex hydrographs, the
abstractions are a significant source of error—although often assumed constant,
the loss rate is actually a time-varying function whose value is affected by the
moisture content of the watershed prior to the storm and by the storm pattern
itself. Different unit hydrographs result from different assumptions about the
pattern of losses. Newton and Vinyard (1967) account for errors in the loss
rate by iteratively adjusting the ordinates of the ERH as well as those of the unit
hydrograph so as to minimize the error in the DRH. Mays and Taur (1982) used
nonlinear programming to simultaneously determine the loss rate for each storm
period and the composite unit hydrograph ordinates for a multistorm event. Unver
and Mays (1984) extended this nonlinear programming method to determine the
optimal parameters for the loss-rate functions, and the composite unit hydrograph.

7.7 SYNTHETIC UNIT HYDROGRAPH

The unit hydrograph developed from rainfall and streamflow data on a watershed
applies only for that watershed and for the point on the stream where the

FIGURE 7.6.1
Deviation en between observed and
estimated direct runoff hydrographs
is the sum of a positive deviation Sn

and a negative deviation /3n for
solution by linear programming.Time

Estimated DRH
Observed DRH
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streamflow data were measured. Synthetic unit hydrograph procedures are used to
develop unit hydrographs for other locations on the stream in the same watershed
or for nearby watersheds of a similar character. There are three types of synthetic
unit hydrographs: (1) those relating hydrograph characteristics (peak flow rate,
base time, etc.) to watershed characteristics (Snyder, 1938; Gray, 1961), (2) those
based on a dimensionless unit hydrograph (Soil Conservation Service, 1972), and
(3) those based on models of watershed storage (Clark, 1943). Types (1) and (2)
are described here and type (3) in Chap. 8.

Snyder's Synthetic Unit Hydrograph

In a study of watersheds located mainly in the Appalachian highlands of the United
States, and varying in size from about 10 to 10,000 mi2 (30 to 30,000 km2),
Snyder (1938) found synthetic relations for some characteristics of a standard
unit hydrograph [Fig. 7.7.Ia]. Additional such relations were found later (U.S.
Army Corps of Engineers, 1959). These relations, in modified form are given
below. From the relations, five characteristics of a required unit hydrograph [Fig.
1.1 Ab] for a given excess rainfall duration may be calculated: the peak discharge
per unit of watershed area, qPR, the basin lag tPR (time difference between the
centroid of the excess rainfall hyetograph and the unit hydrograph peak), the
base time fy, and the widths W (in time units) of the unit hydrograph at 50 and
75 percent of the peak discharge. Using these characteristics the required unit
hydrograph may be drawn. The variables are illustrated in Fig. 7.7.1.

Snyder defined a standard unit hydrograph as one whose rainfall duration tr

is related to the basin lag tp by

tp = 5.5tr (7.7.1)

For a standard unit hydrograph he found that:

Time Time

(a) (b)

FIGURE 7.7.1
Snyder's synthetic unit hydrograph. (a) Standard unit hydrograph (tp = 5.5tr). (b) Required unit
hydrograph (tpR ¥^ 5.5tR).
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1. The basin lag is

tp = C1C1(LLc)03 (7.7.2)

where tp is in hours, L is the length of the main stream in kilometers (or miles)
from the outlet to the upstream divide, Lc is the distance in kilometers (miles)
from the outlet to a point on the stream nearest the centroid of the watershed
area, C\ = 0.75 (1.0 for the English system), and Ct is a coefficient derived
from gaged watersheds in the same region.

2. The peak discharge per unit drainage area in m3/s-km2 (cfs/mi2) of the standard
unit hydrograph is

IP = ^ (7-7.3)
Ip

where C2 = 2.75 (640 for the English system) and Cp is a coefficient derived
from gaged watersheds in the same region.

To compute Ct and Cp for a gaged watershed, the values of L and
Lc are measured from the basin map. From a derived unit hydrograph of
the watershed are obtained values of its effective duration tR in hours, its
basin lag tpR in hours, and its peak discharge per unit drainage area, qpRy in
m3/s*km2-cm (cfs/mi2-in for the English system). If tpR = 5.5tR, then tR =
trJpR = tp, and qpR = qp, and Ct and Cp are computed by Eqs. (7.7.2) and
(7.7.3). If tpR is quite different from 5 .5^ , the standard basin lag is

tP = tpR + ^ * (7.7.4)

and Eqs. (7.7.1) and (7.7.4) are solved simultaneously for tr and tp. The
values of Ct and Cp are then computed from (7.7.2) and (7.7.3) with qpR = qp

and tpR = tp.
When an ungaged watershed appears to be similar to a gaged watershed,

the coefficients Ct and Cp for the gaged watershed can be used in the above
equations to derive the required synthetic unit hydrograph for the ungaged
watershed.

3. The relationship between qp and the peak discharge per unit drainage area qpR

of the required unit hydrograph is

qpR = ^ (7.7.5)
tpR

4. The base time t^ in hours of the unit hydrograph can be determined using the
fact that the area under the unit hydrograph is equivalent to a direct runoff of
1 cm (1 inch in the English system). Assuming a triangular shape for the unit
hydrograph, the base time may be estimated by

tb = — (7.7.6)
QpR

where C3 = 5.56 (1290 for the English system).



5. The width in hours of a unit hydrograph at a discharge equal to a certain
percent of the peak discharge qPR is given by

W = Cwq;R
im (7.7.7)

where Cw = 1.22 (440 for English system) for the 75-percent width and 2.14
(770, English system) for the 50-percent width. Usually one-third of this width
is distributed before the unit hydrograph peak time and two-thirds after the
peak.

Example 7.7.1. From the basin map of a given watershed, the following quantities
are measured: L = 150 km, Lc = 75 km, and drainage area = 3500 km2. From the
unit hydrograph derived for the watershed, the following are determined: tR = 12
h, tpR = 34 h, and peak discharge = 157.5 m3/s-cm. Determine the coefficients Ct

and Cp for the synthetic unit hydrograph of the watershed.

Solution, From the given data, 5.5^ = 66 h, which is quite different from tPR (34
h). Equation (7.7.4) yields

Solving (7.7.1) and (7.7.8) simultaneously gives tr = 5.9 h and tp = 32.5 h.
To calculate Cu use (7.7.2):

^ = C1Ct(LL0)
0-3

32.5 = 0.75C/(150x75)0-3

Ct = 2.65

The peak discharge per unit area is qPR = 157.5/3500 = 0.045 m3/s-km2-cm. The
coefficient Cp is calculated by Eq. (7.7.3) with qp = qpR, and tp = tpR\

C2Cp
VPR = -

tpR

2 75T

34.0

Cp = 0.56

Example 7.7.2. Compute the six-hour synthetic unit hydrograph of a watershed
having a drainage area of 2500 km2 with L = 100 km and Lc = 50 km. This
watershed is a sub-drainage area of the watershed in Example 7.7.1.

Solution. The values Ct = 2.64 and Cp = 0.56 determined in Example 7.7.1
can also be used for this watershed. Thus, Eq. (7.7.2) gives tp = 0.75 x 2.64 x
(100 x 5O)0-3 = 25.5 h, and (7.7.1) gives tr = 25.5/5.5 = 4.64 h. For a six-hour
unit hydrograph, tR = 6 h, and Eq. (7.7.4) gives tpR — tp — (tr - tR)IA = 25.5 -
(4.64-6)/4 = 25.8 h. Equation (7.7.3) gives qp = 2.75 x 0.56/25.5 = 0.0604



m3/s-km*cm and (7.7.5) gives # ^ = 0.0604x25.5/25.8 = 0.0597 m3/s-km2-cm; the
peak discharge is 0.0597 x 2500 = 149.2 m3/s-cm. The widths of the unit hydrograph
are given by Eq. (7.7.7). At 75 percent of peak discharge, W= \.22q~£m = 1.22 x
0.0597"108 = 25.6 h. A similar computation gives a W = 44.9 h at 50 percent of
peak. The base time, given by Eq. (7.7.6), is tb = 5.56/qpR = 5.56/0.0597 = 93h.
The hydrograph is drawn, as in Fig. 7.7.2, and checked to ensure that it represents
a depth of direct runoff of 1 cm.

A further innovation in the use of Snyder's method has been the regionaliza-
tion of unit hydrograph parameters. Espey, Altman and Graves (1977) developed
a set of generalized equations for the construction of 10-minute unit hydrographs
using a study of 41 watersheds ranging in size from 0.014 to 15 mi2, and in
impervious percentage from 2 to 100 percent. Of the 41 watersheds, 16 are located
in Texas, 9 in North Carolina, 6 in Kentucky, 4 in Indiana, 2 each in Colorado
and Mississippi, and 1 each in Tennessee and Pennsylvania. The equations are:

r p = 3.1L0-235-0-25/-°'18cDL57 (7.7.9)

Qp = 31.62 x 1 0 3 A 0 9 6 ^ 1 07 (7.7.10)

TB = 125.89 x 103AQp0'95 (7.7.11)

W50 = 16.22 x 103A093 Q " 0 9 2 (7.7.12)

FIGURE 7.7.2
Synthetic unit hydrograph calculated by Snyder's method in Example 7.7.2
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W15 = 3.24 x 1O3A0'792~0-78 (7.7.13)

where

L = the total distance (in feet) along the main channel from the point being
considered to the upstream watershed boundary

5 = the main channel slope (in feet per foot), defined by H/O.SL, where H is
the difference in elevation between A and B. A is the point on the channel
bottom at a distance of 0.2L downstream from the upstream watershed
boundary; B is a point on the channel bottom at the downstream point
being considered

/ = the impervious area within the watershed (in percent), assumed equal to
5 percent for an undeveloped watershed

O = the dimensionless watershed conveyance factor, which is a function of
percent impervious and roughness (Fig. 7.7.3)

A = the watershed drainage area (in square miles)

Tp = the time of rise to the peak of the unit hydrograph from the beginning
of runoff (in minutes)

Qp = the peak flow of the unit hydrograph (in cfs/in)

TB = the time base of the unit hydrograph (in minutes)

W50 = the width of the hydrograph at 50 percent of Qp (in minutes)

W75 = the width of at 75 percent of Qp (in minutes)

SCS Dimensionless Hydrograph

The SCS dimensionless hydrograph is a synthetic unit hydrograph in which the
discharge is expressed by the ratio of discharge q to peak discharge qp and the

FIGURE 7.7.3
Watershed conveyance factor <f>
as a function of channel
roughness and watershed
imperviousness. (Adapted with
permission from Espey,
Altman, and Graves, 1977.)Main channel Manning n value
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time by the ratio of time t to the time of rise of the unit hydrograph, Tp. Given the
peak discharge and lag time for the duration of excess rainfall, the unit hydrograph
can be estimated from the synthetic dimensionless hydrograph for the given basin.
Figure 1.1 A{a) shows such a dimensionless hydrograph, prepared from the unit
hydrographs of a variety of watersheds. The values of qp and Tp may be estimated
using a simplified model of a triangular unit hydrograph as shown in Figure
7.7.4(fc), where the time is in hours and the discharge in m3/s-cm (or cfs/in) (Soil
Conservation Service, 1972).

From a review of a large number of unit hydrographs, the Soil Conservation
Service suggests the time of recession may be approximated as 1.67 Tp. As the
area under the unit hydrograph should be equal to a direct runoff of 1 cm (or 1
in), it can be shown that

Vp = ^T (7.7.14)
1P

where C = 2.08 (483.4 in the English system) and A is the drainage area in
square kilometers (square miles).

Further, a study of unit hydrographs of many large and small rural water-
sheds indicates that the basin lag tp — 0.6rc, where Tc is the time of concentration
of the watershed. As shown in Fig. 7.7.4(£), time of rise Tp can be expressed in
terms of lag time tp and the duration of effective rainfall tr

Tp=
fj+tp (7.7.15)

FIGURE 7.7.4
Soil Conservation Service synthetic unit hydrographs (a) Dimensionless hydrograph and (b) trian-
gular unit hydrograph. (Source: Soil Conservation Service, 1972.)

Direct runoff

Excess rainfall



Example 7.7.3. Construct a 10-minute SCS unit hydrograph for a basin of area
3.0 km2 and time of concentration 1.25 h.

Solution. The duration tr = 10 min =0.166 h, lag time tp = 0.6Tc = 0.6 x 1.25 =
0.75 h, and rise time Tp = trl2 + tp = 0.166/2 + 0.75 = 0.833 h. From Eq.
(7.7.14), qp = 2.08 x 3.0/0.833 = 7.49 m3/s-cm. The dimensionless hydrograph in
Fig. 7.7.4 may be converted to the required dimensions by multiplying the values
on the horizontal axis by Tp and those on the vertical axis by qp. Alternatively, the
triangular unit hydrograph can be drawn with tb = 2.61Tp = 2.22 h. The depth of
direct runoff is checked to equal 1 cm.

7.8 UNIT HYDROGRAPHS FOR DIFFERENT
RAINFALL DURATIONS

When a unit hydrograph of a given excess-rainfall duration is available, the unit
hydrographs of other durations can be derived. If other durations are integral
multiples of the given duration, the new unit hydrograph can be easily computed
by application of the principles of superposition and proportionality. However,
a general method of derivation applicable to unit hydrographs of any required
duration may be used on the basis of the principle of superposition. This is the
S-hydrograph method.

The theoretical S-hydrograph is that resulting from a continuous excess
rainfall at a constant rate of 1 cm/h (or 1 in/h) for an indefinite period. This is the
unit step response function of a watershed system. The curve assumes a deformed
S shape and its ordinates ultimately approach the rate of excess rainfall at a time
of equilibrium. This step response function g(t) can be derived from the unit pulse
response function h(t) of the unit hydrograph, as follows.

From Eq. (7.2.4), the response at time t to a unit pulse of duration At
beginning at time 0 is

Kt) = jt[g(t) - g(t - At)] (7.8.1)

Similarly, the response at time t to a unit pulse beginning at time At is equal
to h(t - At), that is, h(t) lagged by At time units:

h(t - At) = jt[g(t - At) - g(t - 2At)] (7.8.2)

and the response at time t to a third unit pulse beginning at time 2At is

h(t - 2At) = jf[g(t - 2At) -g(t-3 At)] (7.8.3)

Continuing this process indefinitely, summing the resulting equations, and
rearranging, yields the unit step response function, or S-hydrograph, as shown in
Fig. 7.8. l(a):

g(t) = Ar [h(t) + hit - At) + h(t - 2 At) + . . .] (7.8.4)



(C)

FIGURE 7.8.1
Using the S-hydrograph to find a unit hydrograph of duration Ar' from a unit hydrograph of duration
Ar.

where the summation is multiplied by Ar so that g(t) will correspond to an input
rate of 1, rather than 1/Ar as used for each of the unit pulses.

Theoretically, the S-hydrograph so derived should be a smooth curve,
because the input excess rainfall is assumed to be at a constant, continuous rate.
However, the summation process will result in an undulatory form if there are
errors in the rainfall abstractions or baseflow separation, or if the actual duration
of excess rainfall is not the derived duration for the unit hydrograph. A dura-
tion which produces minimum undulation can be found by trial. Undulation of
the curve may be also caused by nonuniform temporal and areal distribution of

Unit hydrograph of duration Ar'

Offset S-hydrograph

Single pulse of duration Af'

S-hydrograph

Continuous rainfall as a sequence of pulses



rainfall; furthermore, when the natural data are not linear, the resulting unstable
system oscillations may produce negative ordinates. In such cases, an optimization
technique may be used to obtain a smoother unit hydrograph.

After the S-hydrograph is constructed, the unit hydrograph of a given
duration can be derived as follows: Advance, or offset, the position of the S-
hydrograph by a period equal to the desired duration At' and call this S-hydrograph
an offset S-hydrograph, g'(t) [Fig. 7.8.1(6)], defined by

g'(t) = g(t-At') (7.8.5)

The difference between the ordinates of the original S-hydrograph and the offset
S-hydrograph, divided by At', gives the desired unit hydrograph [Fig. 7.8.l(c)]:

h\t) = jplgW ~ g(t - Af)] (7.8.6)

Example 7.8.1. Use the 0.5-hour unit hydrograph in Table 7.4.3 (from Example
7.4.1) to produce the S-hydrograph and the 1.5-h unit hydrograph for this watershed.

Solution. The 0.5-h unit hydrograph is shown in column 2 of Table 7.8.1. The S-
hydrograph is found using (7.8.4) with At = 0.5 h. For t = 0.5 h, g(t) = Ath(t) =
0.5 x404 = 202 cfs; for t = 1 h, g(t) = At[h(t) + h(t-0.5)] = 0.5 x (1079 + 404) = 742
cfs; for t = 1.5 h, g(t) = At[h(f) + /z(f-0.5) + h(t- LO)] = 0.5 x (2343 + 1079 +
404) =1913 cfs; and so on, as shown in column 3 of Table 7.8.1. The S-hydrograph
is offset by Ar' = 1.5 h (column 4) to give g(t - At'), and the difference divided
by At' to give the 1.5-h unit hydrograph h'(t) (column 5). For example, for t = 2.0
h, hit) = (3166 - 202)/1.5 = 1976 cfs/in.

TABLE 7.8.1
Calculation of a 1.5-h unit hydrograph by the S-hydrograph
method (Example 7.8.1)

1 2 3 4 5
Time 0.5-h unit S-hydrograph Lagged 1.5-h unit

hydrograph S-hydrograph hydrograph
t h(t) g(t) g(t~At') h'(t)
(h) (cfs/in) (cfs) (cfs) (cfs/in)

0.5 404 202 0 135
1.0 1079 742 0 495
1.5 2343 1913 0 1275
2.0 2506 3166 202 1976
2.5 1460 3896 742 2103
3.0 453 4123 1913 1473
3.5 381 4313 3166 765
4.0 274 4450 3896 369
4.5 173 4537 4123 276
5.0 0 4537 4313 149
5.5 0 4537 4450 58
6.0 0 4537 4537 0



Instantaneous Unit Hydrograph

If the excess rainfall is of unit amount and its duration is infinitesimally small,
the resulting hydrograph is an impulse response function (Sec. 7.2) called the
instantaneous unit hydrograph (IUH). For an IUH, the excess rainfall is applied
to the drainage area in zero time. Of course, this is only a theoretical concept
and cannot be realized in actual watersheds, but it is useful because the IUH
characterizes the watershed's response to rainfall without reference to the rain-
fall duration. Therefore, the IUH can be related to watershed geomorphology
(Rodriguez-Iturbe and Valdes, 1979; Gupta, Waymire, and Wang, 1980).

The convolution integral (7.2.1) is

Q(t)= u(t-T)HT)JLT (7.8.7)
Jo

If the quantities I(r) and Q(t) have the same dimensions, the ordinate of the
IUH must have dimensions [T~1]. The properties of the IUH are as follows, with
I = t-r.

0 < w(/)< some positive peak value for / > 0

w(/) = 0 for/<0

K(/)->0 as/->oo (7.8.8)

u(l)dl = \ and u(l)ldl = tL

Jo Jo
The quantity ti is the lag time of the IUH. It can be shown that ti gives the

time interval between the centroid of an excess rainfall hyetograph and that of
the corresponding direct runoff hydrograph. Note the difference between tL and
the variable tp used for synthetic unit hydrograph lag time—tp measures the time
from the centroid of the excess rainfall to the peak, not the centroid, of the direct
runoff hydrograph. The ideal shape of an IUH as described above resembles that
of a single-peaked direct-runoff hydrograph, however, an IUH can have negative
and undulating ordinates.

There are several methods to determine an IUH from a given ERH and
DRH. For an approximation, the IUH ordinate at time t is simply set equal to the
slope at time t of an S-hydrograph constructed for an excess rainfall intensity of
unit depth per unit time. This procedure is based on the fact that the S-hydrograph
is an integral curve of the IUH; that is, its ordinate at time t is equal to the integral
of the area under the IUH from 0 to t. The IUH so obtained is in general only
an approximation because the slope of an S-hydrograph is difficult to measure
accurately.

The IUH can be determined by various methods of mathematical inversion,
using, for example, orthogonal functions such as Fourier series (O'Donnell, 1960)
or Laguerre functions (Dooge, 1973); integral transforms such as the ,Laplace
transform (Chow, 1964), the Fourier transform (Blank, Delleur, and Giorgini,



1971), and the Z transform (Bree, 1978); and mathematical modeling related to
watershed geomorphology (Sec. 8.5).
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PROBLEMS

7.2.1 A system has a discrete pulse response function with ordinates 0.1, 0.5, 0.3, and
0.1 units. Calculate the output from this system if it has a pulse input of (a) 3
units, (b) 4 units, (c) 3 units in the first time interval followed by 4 units in the
second.

7.2.2 A system has the following unit pulse response function: 0.27, 0.36, 0.18, 0.09,
0.05, 0.03, 0.01, 0.01. Calculate the output from this system if it has input (a)
2 units, (b) 3 units, (c) 2 units in the first time interval followed by 3 units in
the second time interval.

7.2.3 Calculate and plot the impulse response function u(t), the step response function
g(0, the continuous pulse response function h(t), and the discrete pulse response
function Un for a linear reservoir having k — 1 h and Af = 2 h.

7.2.4 A watershed is modeled as a linear reservoir with k = 1 h. Calculate its impulse
response function and its pulse response functions for unit pulses of durations
0.5, 1.0, 1.5 and 2.0 h. Plot the response functions for 0 < t < 6 h.

7.2.5 A watershed modeled as a linear reservoir with k = 3 h receives 3 in of excess
rainfall in the first two hours of a storm and 2 in of excess rainfall in the second
two hours. Calculate the direct runoff hydrograph from this watershed.

7.2.6 Show that the lag time t^ between the centroids of the excess rainfall hyetograph
and the direct runoff hydrograph is equal to the storage constant k for a watershed
modeled as a linear reservoir.

7.3.1 A watershed has a drainage area of 450 km2, and its three-hour unit hydrograph
has a peak discharge of 150 m3/s*cm. For English units, what is the peak discharge
in cfs/in of the three-hour unit hydrograph?

7.4.1 The excess rainfall and direct runoff recorded for a storm are as follows:

Time(h) 1 2 3 4 5 6 7 8 9

Excess rainfall (in) 1.0 2.0 1.0

Direct runoff (cfs) 10 120 400 560 500 450 250 100 50

Calculate the one-hour unit hydrograph.



7.4.2 What is the area of the watershed in Prob. 7.4.1?
7.4.3 Derive by deconvolution the six-hour unit hydrograph from the following data

for a watershed having a drainage area of 216 km2, assuming a constant rainfall
abstraction rate and a constant baseflow of 20 m3/s.

S i x - h o u r p e r i o d 1 2 3 4 5 6 7 8 9 1 0 1 1

R a i n f a l l ( c m ) 1 . 5 3 . 5 2 . 5 1 . 5

Streamflow (nr7s) 26 71 174 226 173 99 49 33 26 22 21

7.4.4 Given below is the flood hydrograph from a storm on a drainage area of 2.5 mi2.

Hour 1 2 3 4 5 6 7

Discharge (cfs) 52 48 44 203 816 1122 1138

Hour 8 9 10 11 12 13

Discharge (cfs) 685 327 158 65 47 34

Excess rainfall of nearly uniform intensity occurred continuously during the
fourth, fifth, and sixth hours. Baseflow separation is accomplished by plotting the
logarithm of the discharge against time. During the rising flood, the logarithm of
baseflow follows a straight line with slope determined from the flow in hours 1-
3. From the point of inflection of the falling limb of the flood hydrograph (hour
8), the logarithm of baseflow follows a straight line with slope determined from
the flow in hours 11-13. Between the peak of the flood hydrograph and the point
of inflection, the logarithm of baseflow is assumed to vary linearly. Derive the
one-hour unit hydrograph by decon volution.

7.4.5 An intense storm with approximately constant intensity lasting six hours over a
watershed of area 785 km2 produced the following discharges Q in m3/s:

Hour 0 2 4 6 8 10 12 14 16 18 20

Q 18 21 28 44 70 118 228 342 413 393 334

Qb 18 20 25 32 40 47 54 61 68 75 79

Hour 22 24 26 28 30 32 34 36 38 40

Q 270 216 171 138 113 97 84 75 66 59

Qb 11 73 69 66 63 60 57 55 52 49

Hour 42 44 46 48 50 52 54 56 58 60

Q 54 49 46 42 40 38 36 34 33 33

Qb 47 44 42 40 38 37 35 34 33 33

The baseflow Qb has been estimated from the appearance of the observed
hydrograph. Use deconvolution to determine the two-hour unit hydrograph.

7.5.1 Use the unit hydrograph developed in Prob. 7.4.3 to calculate the streamflow
hydrograph from a 12-hour-duration storm having 2 cm of rainfall excess in the



first six hours and 3 cm in the second six hours. Assume a constant baseflow rate
of 30 m3/s.

7.5.2 Use the one-hour unit hydrograph developed in Prob. 7.4.4 to calculate the
streamflow hydrograph for a three-hour storm with a uniform rainfall intensity of
in/h. Assume abstractions are constant at 0.5 in/h and baseflow is the same as
determined in Prob. 7.4.4.

7.5.3 Use the two-hour unit hydrograph determined in Prob. 7.4.5 to calculate the
streamflow hydrograph from a four-hour storm in which 5 cm of excess rainfall
fell in the first two hours and 6 cm in the second two hours. Assume the same
baseflow rate as given in Prob. 7.4.5.

7.5.4 The six-hour unit hydrograph of a watershed having a drainage area equal to 393
km2 is as follows:

Time(h) 0 6 12 18 24 30 36 42

Unit hydrograph (m3/scm) 0 1.8 30.9 85.6 41.8 14.6 5.5 1.8

For a storm over the watershed having excess rainfall of 5 cm for the first six
hours and 15 cm for the second six hours, compute the streamflow hydrograph,
assuming constant baseflow of 100 m3/s.

7.5.5 The one-hour unit hydrograph for a watershed is given below. Determine the
runoff from this watershed for the storm pattern given. The abstractions have a
constant rate of 0.3 in/h. What is the area of this watershed?

Time(h) 1 2 3 4 5 6

Precipitation (in) 0.5 1.0 1.5 0.5

Unit hydrograph (cfs/in) 10 100 200 150 100 50

7.5.6 Use the same unit hydrograph as in Prob. 7.5.5 and determine the direct runoff
hydrograph for a two-hour storm with 1 in of excess rainfall the first hour and 2
in the second hour. What is the area of this watershed?

7.5.7 An agricultural watershed was urbanized over a period of 20 years. A triangular
unit hydrograph was developed for this watershed for an excess rainfall duration
of one hour. Before urbanization, the average rate of infiltration and other losses
was 0.30 in/h, and the unit hydrograph had a peak discharge of 400 cfs/in at
3 h and a base time of 9 h. After urbanization, because of the increase in
impervious surfaces, the loss rate dropped to 0.15 in/h, the peak discharge of the
unit hydrograph was increased to 600 cfs/in, occurring at 1 h, and the base time
was reduced to 6 h. For a two-hour storm in which 1.0 in of rain fell the first
hour and 0.50 in the second hour, determine the direct runoff hydrographs before
and after urbanization.

7.5.8 The ordinates at one-hour intervals of a one-hour unit hydrograph are (in cfs%):
269, 538, 807, 645, 484, 323, and 161. Calculate the direct runoff hydrograph
from a two-hour storm in which 4 in of excess rainfall occurs at a constant rate.
What is the watershed area (mi2)?

7.5.9 The 10-minute triangular unit hydrograph from a watershed has a peak discharge
of 100 cfs/in at 40 min and a total duration of 100 min. Calculate the



streamflow hydrograph from this watershed for a storm in which 2 in of rain falls
in the first 10 minutes and 1 in in the second 10 minutes, assuming that the loss
rate is </> = 0.6 in/h and the baseflow rate is 20 cfs.

7.6.1 The July 19-20, 1979, storm on the Shoal Creek watershed at Northwest Park
in Austin, Texas, resulted in the following rainfall-runoff values.

Time(h) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Rainfall (in) 1.17 0.32 0.305 0.67 0.545 0.10 0.06

Direct runoff (cfs) 11.0 372.0 440.0 506.0 2110.0 1077.0 429.3

Time (h) 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Direct runoff (cfs) 226.6 119.0 64.7 39.7 28.0 21.7 16.7

Time (h) 7.5 8.0 8.5 9.0

Direct runoff (cfs) 13.3 9.2 9.0 7.3

Determine the half-hour unit hydrograph using linear programming. Assume that
a uniform loss rate is valid. The watershed area is 7.03 mi2. Compare the unit
hydrograph with that determined in Example 7.4.1 for this watershed.

7.6.2 A storm on April 16, 1977, on the Shoal Creek watershed at Northwest Park in
Austin, Texas, resulted in the following rainfall-runoff values:

Time(h) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Rainfall (in) 0.28 0.12 0.13 0.14 0.18 0.14 0.07

Direct runoff (cfs) 32 67 121 189 279 290 237 160 108

Time(h) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

Direct runoff (cfs) 72 54 44 33 28 22 20 18 16

Determine the half-hour unit hydrograph by linear programming. Assume that
a uniform loss rate is valid. The watershed area is 7.03 mi2. Compare the unit
hydrograph with that developed in Example 7.4.1 for this watershed.

7.6.3 Combine the data from Probs. 7.6.1 and 7.6.2 and calculate a composite unit
hydrograph from this watershed by linear programming. Compare the composite
unit hydrograph with those determined from the individual storms.

7.6.4 Solve Prob. 7.6.1 by linear regression.
7.6.5 Solve Prob. 7.6.2 by linear regression.
7.6.6 Solve Prob. 7.6.3 by linear regression.
7.7.1 The City of Austin, Texas, uses generalized equations (7.7.9)-(7.7.13) to

determine the parameters for 10-minute-duration unit hydrographs for small
watersheds. Determine the 10-minute unit hydrographs for levels of impervious-
ness 10, 40, and 70 percent, on a watershed that has an area of 0.42 mi2 with a
main channel length of 5760 ft. The main channel slope is 0.015 ft/ft as defined
in Sec. 7.7. Assume 4> = 0.8. Plot the three unit hydrographs on the same graph.

7.7.2 Using the 10-minute unit hydrograph equations (7.7.9)-(7.7.13), develop the
unit hydrograph for a small watershed of 0.3 mi2 that has a main channel



slope of 0.009 ft/ft. The main channel area is 2000 feet long and the percent
imperviousness is 25. Next, develop the 10-minute unit hydrograph for the same
watershed assuming the main channel length is 6000 feet long. Plot and compare
the two unit hydrographs. Assume n = 0.05 for the main channel.

7.7.3 Determine direct runoff hydrographs using the two 10-minute unit hydrographs
derived in the previous problem for the watersheds with main channel lengths
of 2000 ft and 6000 ft. Consider a storm having 1.2 inches rainfall uniformly
distributed over the first 30 minutes and 1.5 inches in the second 30 minutes.
The infiltration losses are to be determined using the SCS method described in
Chap. 5 for curve number CN = 85.

7.7.4 The 10-minute unit hydrograph for a 0.86-mi2 watershed has 10-minute ordinates
in cfs/in of 134, 392, 475, 397, 329, 273, 227, 188, 156, 129, 107, 89, 74, 61,
51, 42, 35, 29, 24, 10, 17, 14, 11, . . . . Determine the peaking coefficient Cp

for Snyder's method. The main channel length is 10,500 ft, and Lc = 6000 ft.
Determine the coefficient Ct.

7.7.5 Several equations for computing basin lag have been reported in the literature.
One such equation that also considers the basin slope was presented by Linsley,
Kohler, and Paulhus (1982):

For a basin slope of S = 0.008 and n = 0.4, determine the coefficient Ct for the
unit hydrograph in the previous problem.

7.7.6 The following information for watershed A and its two-hour unit hydrograph has
been determined: area = 100 mi2, Lc = 10 mi, L = 2 4 mi, tR = 2 h, tpR = 6 h,
Qp = 9750 cfs/in, W50 = 4.1 h, and W15 = 2 h. Watershed B, which is assumed
to be hydrologically similar to watershed A, has the following characteristics:
area = 70 mi2, L = 15.6 mi, and Lc = 9.4 mi. Determine the one-hour synthetic
unit hydrograph for watershed B.

7.7.7 (a) Determine the coefficients Cp and Ct for a watershed of area 100 mi2 with
L = 20 mi and Lc = 12 mi, for tR = 2 h and tpR = 5 h. The peak of the unit
hydrograph is 9750 cfs/in. Assume Snyder's synthetic unit hydrograph applies.
(b) Determine the two-hour unit hydrograph for the upper 70-mi2 area of the
same watershed, which has L = 12.6 mi and Lc = 7.4 mi. The values of W15

and W50 for the entire 100-mi2-area watershed are 2.0 h and 4.2 h, respectively.
7.7.8 The Gimlet Creek watershed at Sparland, Illinois, has a drainage area of 5.42

mi2; the length of the main stream is 4.45 mi and the main channel length from
the watershed outlet to the point opposite the center of gravity of the watershed
is 2.0 mi. Using Ct = 2.0 and Cp = 0.625, determine the standard synthetic unit
hydrograph for this basin. What is the standard duration? Use Snyder's method
to determine the 30-minute unit hydrograph for this watershed.

7.7.9 The Odebolt Creek watershed near Arthur, Ohio, has a watershed area of 39.3
mi2; the length of the main channel is 18.10 mi, and the main channel length
from the watershed outlet to the point opposite the centroid of the watershed is
6.0 mi. Using Ct = 2.0 and Cp = 0.625, determine the standard synthetic unit
hydrograph and the two-hour unit hydrograph for this watershed.

7.7.10 An 8-mi2 watershed has a time of concentration of 1.0 h. Calculate a 10-minute
unit hydrograph for this watershed by the SCS triangular unit hydrograph method.



Determine the direct runoff hydrograph for a 20-minute storm having 0.6 in of
excess rainfall in the first 10 minutes and 0.4 in in the second 10 minutes.

7.7.11 A triangular synthetic unit hydrograph developed by the Soil Conservation Service
method has qp = 2900 cfs/in, Tp = 50 min, and rr = 10 min. Compute the direct
runoff hydrograph for a 20-minute storm, having 0.66 in rainfall in the first 10
minutes and 1.70 in in the second 10 minutes. The rainfall loss rate is (f> = 0.6
in/h throughout the storm.

7.8.1 For the data given in Prob. 7.4.4, use the assumption of constant rainfall intensity
in hours 4-6 to construct the S-hydrograph. Use the S-hydrograph to calculate
the one-, three-, and six-hour unit hydrographs.

7.8.2 For the data given in Prob. 7.4.5, use the assumption of constant rainfall inten-
sity for six hours to construct the S-hydrograph for this watershed. From the S-
hydrograph, determine the 2-, 6-, and 12-hour unit hydrographs for this water-
shed.

7.8.3 The ordinates of a one-hour unit hydrograph specified at one-hour intervals are
(in cfs/in): 45, 60, 22, 8, and 1. Calculate the watershed area, the S-hydrograph
and the two-hour unit hydrograph for this watershed.



LUMPED
FLOW
ROUTING

Flow routing is a procedure to determine the time and magnitude of flow (i.e., the
flow hydrograph) at a point on a watercourse from known or assumed hydrographs
at one or more points upstream. If the flow is a flood, the procedure is specifically
known d& flood routing. In a broad sense, flow routing may be considered as an
analysis to trace the flow through a hydrologic system, given the input. The
difference between lumped and distributed system routing is that in a lumped
system model, the flow is calculated as a function of time alone at a particular
location, while in a distributed system routing the flow is calculated as a function
of space and time throughout the system. Routing by lumped system methods is
sometimes called hydrologic routing, and routing by distributed systems methods
is sometimes referred to as hydraulic routing. Flow routing by distributed-system
methods is described in Chaps. 9 and 10. This chapter deals with lumped system
routing.

8.1 LUMPED SYSTEM ROUTING

For a hydrologic system, input /(O, output Q{i), and storage S(t) are related by
the continuity equation (2.2.4):

^ = / (O-Q(O (8.1.1)

If the inflow hydrograph, /(O, is known, Eq. (8.1.1) cannot be solved directly
to obtain the outflow hydrograph, Q{i), because both Q and 5 are unknown. A
second relationship, or storage function, is needed to relate S, I, and Q; coupling
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the storage function with the continuity equation provides a solvable combination
of two equations and two unknowns. In general, the storage function may be
written as an arbitrary function of /, Q, and their time derivatives as shown by
Eq. (7.1.2):

S ~ T ^ ' ^ 2 " " ' * ' dfi'---j ( 8 'L 2 )

In Chapter 7, these two equations were solved by differentiating a linearized form
of Eq. (8.1.2), substituting the result for dS/dt into Eq. (8.1.1), then integrating
the resulting differential equation to obtain Q{f) as a function of /(O. In this
chapter, a finite difference solution method is applied to the two equations. The
time horizon is divided into finite intervals, and the continuity equation (8.1.1)
is solved recursively from one time point to the next using the storage function
(8.1.2) to account for the value of storage at each time point.

The specific form of the storage function to be employed in this procedure
depends on the nature of the system being analyzed. In this chapter, three partic-
ular systems are analyzed. First, reservoir routing by the level pool method, in
which storage is a nonlinear function of Q only:

S= /(G) (8.1.3)

and the function f{Q) is determined by relating reservoir storage and outflow
to reservoir water level. Second, storage is linearly related to / and Q in the
Muskingum method for flow routing in channels. Finally, several linear reservoir
models are analyzed in which (8.1.2) becomes a linear function of Q and its time
derivatives.

The relationship between the outflow and the storage of a hydrologic system
has an important influence on flow routing. This relationship may be either
invariable or variable, as shown in Fig. 8.1.1. An invariable storage function
has the form of Eq. (8.1.3) and applies to a reservoir with a horizontal water
surface. Such reservoirs have a pool that is wide and deep compared with its
length in the direction of flow. The velocity of flow in the reservoir is very low.
The invariable storage relationship requires that there be a fixed discharge from
the reservoir for a given water surface elevation, which means that the reservoir
outlet works must be either uncontrolled, or controlled by gates held at a fixed
position. If the control gate position is changed, the discharge and water surface
elevation change at the dam, and the effect propagates upstream in the reservoir to
create a sloping water surface temporarily, until a new equilibrium water surface
elevation is established throughout the reservoir.

When a reservoir has a horizontal water surface, its storage is a function of
its water surface elevation, or depth in the pool. Likewise, the outflow discharge
is a function of the water surface elevation, or head on the outlet works. By com-
bining these two functions, the reservoir storage and discharge can be related to
produce an invariable, single-valued storage function, S =f(Q), as shown in Fig.
8.1.1 (a). For such reservoirs, the peak outflow occurs when the outflow hydro-
graph intersects the inflow hydrograph, because the maximum storage occurs



(a) Invariable relationship (b) Variable relationship

FIGURE 8.1.1
Relationships between discharge and storage.

when dS/dt = I — Q = 0, and the storage and outflow are related by S = / (Q).
This is indicated in Fig. 8.1. \{a) where the points denoting the maximum storage,
R, and maximum outflow, P, coincide.

A variable storage-outflow relationship applies to long, narrow reservoirs,
and to open channels or streams, where the water surface profile may be signif-
icantly curved due to backwater effects. The amount of storage due to backwater
depends on the time rate of change of flow through the system. As shown in Fig.
8.1.1 (ft), the resulting relationship between the discharge and the system storage
is no longer a single-valued function but exhibits a curve usually in the form of
a single or twisted loop, depending on the storage characteristics of the system.
Because of the retarding effect due to backwater, the peak outflow usually occurs
later than the time when the inflow and outflow hydrographs intersect, as indi-
cated in Fig. 8.1.1(Z?), where the points R and P do not coincide. If the backwater
effect is not very significant, the loop shown in Fig. 8.1.1(Z?) may be replaced
by an average curve shown by the dashed line. Thus, level pool routing methods
can also be applied in an approximate way to routing with a variable discharge-
storage relationship.

The preceding discussion indicates that the effect of storage is to redistribute
the hydrograph by shifting the centroid of the inflow hydrograph to the position of
that of the outflow hydrograph in a time of redistribution. In very long channels,
the entire flood wave also travels a considerable distance and the centroid of
its hydrograph may then be shifted by a time period longer than the time of
redistribution. This additional time may be considered as time of translation. As
shown in Fig. 8.1.2, the total time of flood movement between the centroids of the
outflow and inflow hydrographs is equal to the sum of the time of redistribution
and the time of translation. The process of redistribution modifies the shape of
the hydrograph, while translation changes its position.

Outflow

Inflow

Outflow

Inflow



8.2 LEVEL POOL ROUTING

Level pool routing is a procedure for calculating the outflow hydrograph from a
reservoir with a horizontal water surface, given its inflow hydrograph and storage-
outflow characteristics. A number of procedures have been proposed for this
purpose (e.g., Chow, 1951, 1959), and with the advance of computerization,
graphical procedures are being replaced by tabular or functional methods so that
the computational procedure can be automated.

The time horizon is broken into intervals of duration Af, indexed by j , that
is, t = 0, Af, 2Af, . . . , y'Af, (j + I)Af,. . . , and the continuity equation (8.1.1)
is integrated over each time interval, as shown in Fig. 8.2.1. For the j-th time
interval:

rSj + i rt/ + l)Af f t /+ DAr

dS = \ I(t)dt- Q(t)dt (8.2.1)
JSj JjAt JjAt

The inflow values at the beginning and end of the j-th time interval are T7 and
Ij + i, respectively, and the corresponding values of the outflow are Qj and Qj+ i-
Here, both inflow and outflow are flow rates measured as sample data, rather
than inflow being pulse data and outflow being sample data as was the case for
the unit hydrograph. If the variation of inflow and outflow over the interval is

FIGURE 8.1.2
Conceptual interpretation of the time of flood
movement.Time of translation

Outflow

Time of redistribution

Inflow

Time of flood movement

Outflow

Inflow



FIGURE 8.2.1
Change of storage during a routing period At.

approximately linear, the change in storage over the interval, Sj + \ — Sj, can be
found by rewriting (8.2.1) as

SJ + 1-SJ = ! ^ * - ? ^ ^ * (8.2.2)

The values of T7 and /̂  + 1 are known because they are prespecified. The values of
Qj and Sj are known at the yth time interval from calculation during the previous
time interval. Hence, Eq. (8.2.2) contains two unknowns, Qj+ \ and S/ + i, which
are isolated by multiplying (8.2.2) through by 2/At, and rearranging the result to
produce:

( ^ A T + Q j + l ) = (Ij + Ij+l) + ( lT " Qj) (8-23)

In order to calculate the outflow, Qj + \, from Eq. (8.2.3), a storage-outflow
function relating 2S/At + Q and Q is needed. The method for developing this
function using elevation-storage and elevation-outflow relationships is shown in
Fig. 8.2.2. The relationship between water surface elevation and reservoir storage
can be derived by planimetering topographic maps or from field surveys. The
elevation-discharge relation is derived from hydraulic equations relating head and
discharge, such as those shown in Table 8.2.1, for various types of spillways
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FIGURE 8.2.2
Development of the storage-outflow function for level pool routing on the basis of storage-elevation
and elevation-outflow curves.

and outlet works. The value of Af is taken as the time interval of the inflow
hydrograph. For a given value of water surface elevation, the values of storage 5
and discharge Q are determined [parts (a) and (b) of Fig. 8.2.2], then the value
of 25/Ar + Q is calculated and plotted on the horizontal axis of a graph with the
value of the outflow Q on the vertical axis [part (c) of Fig. 8.2.2].

In routing the flow through time interval j , all terms on the right side of
Eq. (8.2.3) are known, and so the value of 2Sy + i/Af + Qj + I can be computed.
The corresponding value of Qj+ \ can be determined from the storage-outflow
function 25/Af + Q versus Q, either graphically or by linear interpolation of
tabular values. To set up the data required for the next time interval, the value
of 25, + i/Af - Qj + i is calculated by

(2Sj + i \ (2Sj + i \H r " H = ("ir + H ~2Qj+1 (8*2-4)
The computation is then repeated for subsequent routing periods.

Example 8.2.1. A reservoir for detaining flood flows is one acre in horizontal
area, has vertical sides, and has a 5-ft diameter reinforced concrete pipe as the

Water surface
elevation

Storage

Water surface
elevation outflow

function
Storage

OutflowOutflow



Source: Design of Small Dams, Bureau of Reclamation, U. S. Department of the Interior, 1973.

outlet structure. The headwater-discharge relation for the outlet pipe is given in
columns 1 and 2 of Table 8.2.2. Use the level pool routing method to calculate the
reservoir outflow from the inflow hydrograph given in columns 2 and ,3 of Table
8.2.3. Assume that the reservoir is initially empty.

Solution. The inflow hydrograph is specified at 10-min time intervals, so Ar = 10
min = 600 s. For all elevations, the horizontal area of the reservoir water surface
is 1 acre = 43,560 ft2, and the storage is calculated as 43,560 x (depth of water).
For example, for a depth of 0.5 ft, S = 0.5 x 43,560 = 21,780 ft3, as shown
in column 3 of Table 8.2.2. The corresponding value of 2S/At + Q can then be
determined. For a depth 0.5 ft, the discharge is given in column 2 of Table 8.2.2
as 3 cfs, so the storage-outflow function value is

IS 2 X 2 1 , 7 8 0 , r

Â  + e = ^ 5 ^ + 3 = 7 6 c f s

TABLE 8.2.1
Spillway discharge equations

Spillway type

Uncontrolled over-
flow ogee crest

Gate controlled ogee
crest

Morning glory spill-
way

Culvert (submerged
inlet control)

Equation

Q = CLHm

Q=I^TgCL{Hl/2-H^)

Q = C0(27rRs)H
m

Q = CdWD^H

Notation

Q = discharge, cfs
C = variable coefficient of

discharge
L = effective length of crest
H = total head on the crest

including velocity of
approach head.

H\ = total head to bottom of
the opening

H2 = total head to top of the
opening

C = coefficient which dif-
fers with gate and crest
arrangement

C0 = coefficient related to H
and Rs

Rs = radius of the over-
flow crest

H = total head

W = entrance width
D = height of opening
Cd — discharge coefficient



TABLE 8.2.2
Development of the storage-outflow function for a
detention reservoir (Example 8.2.1).

Column: 1 2 3 4
Elevation Discharge Storage (2S/A*)* + Q
H Q S
(ft) (CfS) (ft3) (CfS)

0.0 0 0 0
0.5 3 21,780 76
1.0 8 43,560 153
1.5 17 65,340 235
2.0 30 87,120 320
2.5 43 108,900 406
3.0 60 130,680 496
3.5 78 152,460 586
4.0 97 174,240 678
4.5 117 196,020 770
5.0 137 217,800 863
5.5 156 239,580 955
6.0 173 261,360 1044
6.5 190 283,140 1134
7.0 205 304,920 1221
7.5 218 326,700 1307
8.0 231 348,480 1393
8.5 242 370,260 1476
9.0 253 392,040 1560
9.5 264 413,820 1643

10.0 275 435,600 1727

*Time interval Ar = 10 min.

as shown in column 4 of Table 8.2.2. The storage-outflow function is plotted in
Fig. 8.2.3.

The flow routing calculations are carried out using Eq. (8.2.3). For the first
time interval, Si = Q\ = 0 because the reservoir is initially empty; hence (2S \/At —
Qi) = O also. The inflow values are / i = 0 and I2 = 60 cfs, so (I1 + I 1 ) = 0 + 60 = 60
cfs. The value of the storage-outflow function at the end of the time interval is
calculated from (8.2.3) withy = 1:

( f + ft)-c + w + ( f -a )
= 60 + 0

= 60 cfs

The value of Qj +1 is found by linear interpolation given 2Sj + i/Af + Qj+ \. If there
is a pair of variables (x,y), with known pairs of values (xi,yi) and (^2,^2)» then the
interpolated value of y corresponding to a given value of x in the range x 1 < x < X1

is

(x2 -X1)



TABLE 8.2.3
Routing of flow through a detention reservoir by the level pool method
(Example 8.2.1). The computational sequence is indicated by the arrows in
the table.

Column;
1 2 3 4 5 6 7

IS IS
Time Time Inflow Ij + T7-+ 1 - ^ - Qj J.+l + Qj + i Outflow
index j (min) (cfs) (cfs) (cfs) (cfs) (cfs)

1 0 C 0 + _ ^ - 0.0 - ^ 0.0
2 10 ^ 60 = 60 -^" 55.2 ^ " ^ - 60.0 > 2 . 4 - ,
3 20 120 180 201.1 235.2 17.1
4 30 180 300 378.9 501.1 61.1
5 40 240 420 552.6 798.9 123.2
6 50 300 540 728.2 1092.6 182.2
7 60 360 660 927.5 1388.2 230.3
8 70 320 680 1089.0 1607.5 259.3
9 80 280 600 1149.0 1689.0 270.0
10 90 240 520 1134.3 1669.0 267.4
11 100 200 440 1064.4 1574.3 254.9
12 110 160 360 954.1 1424.4 235.2
13 120 120 280 820.2 1234.1 206.9
14 130 80 200 683.3 1020.2 168.5
15 140 40 120 555.1 803.3 124.1
16 150 0 40 435.4 595.1 79.8
17 160 0 338.2 435.4 48.6
18 170 272.8 338.2 32.7
19 180 227.3 272.8 22.8
20 190 194.9 227.3 16.2
21 200 169.7 194.9 12.6
22 210 169.7 9.8

FIGURE 8.2.3
Storage-outflow function for a detention reservoir (Example 8.2.1).
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In this case, x = 2SIAt + Q and y = Q. Two pairs of values around 25/Af + Q = 60
are selected from Table 8.2.2; they are (xuyi) = (0,0) and (x2,yi) = (76,3). The
value of y for x = 60 is, by linear interpolation,

^0 + J^ ( 6 ° - 0 )

= 2.4 cfs

So, Q2 = 2.4 cfs, and the value of 2S2IAt — Q2 needed for the next iteration is
found using Eq. (8.2.4) withy = 2:

(f-a)=(i+*)-^
= 60 - 2 x 2.4

= 55.2 cfs

The sequence of computations just described is indicated by the arrows in the first
two rows of Table 8.2.3.

Proceeding to the next time interval, (I2 + /3) = 60 + 120 = 180 cfs, and
the routing is performed withy = 2 in (8.2.3).

( f +fl,)-№ + /,) + (f-0,)
= 180 + 55.2

= 235.2 cfs

By linear interpolation in Table 8.2.2, the value of Q3 = 17.1 cfs and by Eq.
(8.2.4), 2S3IAt - Q3 = 201.1 cfs, as shown in the third row of Table 8.2.3. The
calculations for subsequent time intervals are performed in the same way, with the
results tabulated in Table 8.2.3 and plotted in Fig. 8.2.4. The peak inflow is 360
cfs and occurs at 60 min; the detention reservoir reduces the peak outflow to 270 cfs
and delays it until 80 min. As discussed in Sec. 8.1, the outflow is maximized at
the point where the inflow and outflow are equal, because storage is also maximized

FIGURE 8.2.4
Routing of flow through a detention
reservoir (Example 8.2.1).
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at that time, and there is a single-valued function relating storage and outflow for
a reservoir with a level pool.

The maximum depth in the storage reservoir is calculated by linear interpo-
lation from Table 8.2.2 as 9.77 ft at the peak discharge of 270 cfs. If this depth is
too great, or if the discharge of 270 cfs in the 5-ft outlet pipe is too large, either
the outlet structure or the surface area of the basin must be enlarged. An equivalent
size of elliptical or arch pipe would also tend to lower the headwater elevation.

8.3 RUNGE-KUTTAMETHOD

An alternative method for level pool routing can be developed by solving the
continuity equation using a numerical method such as the Runge-Kutta method.
The Runge-Kutta method is more complicated than the method described in the
previous section, but it does not require the computation of the special storage-
outflow function, and it is more closely related to the hydraulics of flow through
the reservoir. Various orders of Runge-Kutta schemes can be adopted (Carnahan,
et al., 1969). A third order scheme is described here; it involves breaking each
time interval into three increments and calculating successive values of water
surface elevation and reservoir discharge for each increment.

The continuity equation is expressed as

^ = I(t)-Q(H) (8.3.1)

where S is the volume of water in storage in the reservoir; I(t) is the inflow into
the reservoir as a function of time; and Q(H) is the outflow from the reservoir,
which is determined by the head or elevation (H) in the reservoir. The change in
volume, dS, due to a change in elevation, dH, can be expressed as

dS = A(H)dH (8.3.2)

where A(H) is the water surface area at elevation H. The continuity equation is
then rewritten as

dH I(t) - Q(H)

~Jt A(H) ( 8 J - 3 )

The solution is extended forward by small increments of the independent variable,
time, using known values of the dependent variable H. For a third order scheme,
there are three such increments in each time interval At, and three successive
approximations are made for the change in head elevation, dH.

Fig. 8.3.1 illustrates how the three approximate values AH\, AH2, and AH3
are defined for the j-th interval. The slope, dHldt, approximated by AH/At, is
first evaluated at (HjJj), then at (Hj + AHxl3,tj + A//3), and finally at (Hj +
2AH1I'3, tj + 2AtI3). In equations,

/(*,•) - Q(Hj)



The value of Hj +1 is given by

(8.3.46)

(8.3.4c)

Time FIGURE 8.3.1
Steps to define elevation increments in
the third-order Runge-Kutta method.
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FIGURE 8.3.2
Flowchart of detention basin routing using the third-order Runge-Kutta technique.
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Hj + i = Hj + AH (8.3.5)

where

AH=^f + 2^1 (8.3.6)

A flowchart of the third order Runge-Kutta method is shown in Fig. 8.3.2.

Example 8.3.1. Use the third order Runge-Kutta method to perform the reservoir
routing through the one-acre detention reservoir with vertical walls, as described in
Example 8.2.1. The elevation-discharge relationship is given in columns 1 and 2
of Table 8.2.2 and the inflow hydrograph in columns 1 and 2 of Table 8.3.1.

Solution. The function A (77) relating the water surface area to the reservoir eleva-
tion is simply A(H) = 43,560 ft2 for all values of H because the reservoir has a base
area of one acre and vertical sides. A routing interval of At = 10 min is used. The
procedure begins with the determination of 7(0), /(O + 10/3), and 7(0 + (2/3) x (10)),
which are found by linear interpolation between the values of 0 and 60 cfs found
in column 2 of Table 8.3.1; they are 0, 20, and 40 cfs, respectively. Next, ATZ1

is computed using Eq. (8.3.4a) with At = 10 min =600 s, A = 43,560 ft2, and
7(0) = 0 cfs; since the reservoir is initially empty, Hj = 0 and Q(Hj) = 0:

= 0

TABLE 8.3.1

Routing an inflow hydrograph through a detention reservoir by
the Runge-Kutta method (Example 8.3.1).
Column: 1 2 3 4 5 6 7

Time Inflow Depth Outflow
(min) (cfs) AHi AH2 AH3 (ft) (cfs)

0 0 - - - 0 0
10 60 0 0.28 0.54 0.40 2.4
20 120 0.79 1.04 1.24 1.53 17.9
30 180 1.41 1.51 1.59 3.08 62.8
40 240 1.61 1.62 1.61 4.69 124.5
50 300 1.59 1.58 1.60 6.28 182.6
60 360 1.62 1.66 1.72 7.98 230.4
70 320 1.79 1.42 1.13 9.27 259.0
80 280 0.84 0.57 0.36 9.75 269.5
90 240 0.15 -0.05 -0.21 9.63 266.8

100 200 -0.37 -0.52 -0.63 9.06 254.3
110 160 -0.75 -0.86 -0.94 8.17 234.7
120 120 -1.03 -1.10 -1.14 7.05 206.4
130 80 -1.19 -1.21 -1.21 5.85 167.8
140 40 -1.21 -1.20 -1.18 4.66 123.5
150 0 -1.15 -1.12 -1.11 3.54 80.0



For the next time increment, using (8.3.4/?) with /(O + 10/3) = 20 ft3/s,

^ + A,) -efr + q . )
A(HJ + ^ )

= ^ ^ X 6 O O
43,560

= 0.28 ft

For the last increment, Hj + (2/3) AH2 = 0 + (2/3) (0.28) = 0.18 ft. By linear
interpolation from Table 8.2.2, Q(0.18) =1 .10 cfs. By substitution in (8.3.4c)

A#3 = 1 jrjp: Ar

A(HJ + *fi)

= ( 4 0 ^ L l O )

43,560

= 0.54 ft

The values of AZZ1, AH2 and AH 3 are found in columns 3,4, and 5 of Table 8.3.1.
Then, for the whole ten-minute time interval, A// is computed using Eq. (8.3.6):

AH= M i + M^a
4 4

= 7 + 7(0.54) = 0.40 ft
4 4

So, H at 10 min is given by H2 = H1 + AH{ = 0 + 0.40 = 0.40 ft (column 6),
and the corresponding discharge from the pipe is interpolated from Table 8.2.2 as
Q = 2.4 cfs (column 7).

The routing calculations for subsequent periods follow the same procedure,
and the solution, extended far enough to cover the peak outflow, is presented in
Table 8.3.1. The result is very similar to that obtained in Example 8.2.1 by the

FIGURE 8.4.1
Prism and wedge storages in a
channel reach.

Prism storage
= KQ

.Wedge storage

= KX(I-Q)



level pool routing method. As before, the peak inflow of 360 cfs at 60 min is
reduced to 270 cfs occurring at 80 minutes.

8.4 HYDROLOGIC RIVER ROUTING

The Muskingum method is a commonly used hydrologic routing method for han-
dling a variable discharge-storage relationship. This method models the storage
volume of flooding in a river channel by a combination of wedge and prism stor-
ages (Fig. 8.4.1). During the advance of a flood wave, inflow exceeds outflow,
producing a wedge of storage. During the recession, outflow exceeds inflow,
resulting in a negative wedge. In addition, there is a prism of storage which
is formed by a volume of constant cross section along the length of prismatic
channel.

Assuming that the cross-sectional area of the flood flow is directly propor-
tional to the discharge at the section, the volume of prism storage is equal to
KQ where K is a proportionality coefficient, and the volume of wedge storage is
equal to KX(I- 0 , where X is a weighting factor having the range 0 < X < 0.5.
The total storage is therefore the sum of two components,

S = KQ + KX(I- Q) (8.4.1)

which can be rearranged to give the storage function for the Muskingum method

S = K[XI+ (1 -X)Q] (8.4.2)

and represents a linear model for routing flow in streams.
The value of X depends on the shape of the modeled wedge storage. The

value of X ranges from 0 for reservoir-type storage to 0.5 for a full wedge. When
X = O, there is no wedge and hence no backwater; this is the case for a level-pool
reservoir. In this case, Eq. (8.4.2) results in a linear-reservoir model, S = KQ.
In natural streams, X is between 0 and 0.3 with a mean value near 0.2. Great
accuracy in determining X may not be necessary because the results of the method
are relatively insensitive to the value of this parameter. The parameter K is the
time of travel of the flood wave through the channel reach. A procedure called the
Muskingum-Cunge method is described in Chapter 9 for determining the values
of K and X on the basis of channel characteristics and flow rate in the channel.
For hydrologic routing, the values of K and X are assumed to be specified and
constant throughout the range of flow.

The values of storage at timej and j + 1 can be written, respectively, as

Sj = K[XIj + (1-X)Qj] (8.4.3)

and

Sj + 1 = K[XIj + 1 + (1 -X)Qj + 1] (8.4.4)

Using Eqs. (8.4.3) and (8.4.4), the change in storage over time interval At (Fig.
8.2.1) is

Sj + 1 - Sj = K{[XIj + l + (1 -X)Qj + 1] - [XIj + (X-X)Qj]) (8.4.5)



The change in storage can also be expressed, using Eq. (8.2.2), as

{Ij+Ii + l) (Qj + Qj + 1)
Sj + i - Sj = J~Y A; - 2 Af (8.4.6)

Combining (8.4.5) and (8.4.6) and simplifying gives

Qj + 1 = C,/J + 1 + C2Ij + C3Qj (8.4.7)

which is the routing equation for the Muskingum method where

«- W^t,
Note that Cx + C2 + C3 = 1.

If observed inflow and outflow hydrographs are available for a river reach,
the values of K and X can be determined. Assuming various values of X and using
known values of the inflow and outflow, successive values of the numerator and
denominator of the following expression for K, derived from (8.4.5) and (8.4.6),
can be computed.

0.5 Af[QQ + 1 +Ij)-(Qj + I +Qj)]

X(Ij + 1 - Ij) + (1 - X)(Qj + l -Qj) ( * ' }

The computed values of the numerator and denominator are plotted for each
time interval, with the numerator on the vertical axis and the denominator on
the horizontal axis. This usually produces a graph in the form of a loop. The
value of X that produces a loop closest to a single line is taken to be the correct
value for the reach, and K, according to Eq. (8.4.11), is equal to the slope of
the line. Since K is the time required for the incremental flood wave to traverse
the reach, its value may also be estimated as the observed time of travel of peak
flow through the reach.

If observed inflow and outflow hydrographs are not available for determin-
ing K and X, their values may be estimated using the Muskingum-Cunge method
described in Sec. 9.7.

Example 8.4.1. The inflow hydrograph to a river reach is given in columns 1 and
2 of Table 8.4.1. Determine the outflow hydrograph from this reach if K = 2.3 h,
X = 0.15, and Af = 1 h. The initial outflow is 85 ft3/s.

Solution, Determine the coefficients C1, C2, and C3 using Eqs. (8.4.8) - (8.4.10):

l-2(2.3)(0.15) 0.31
C l = 2(2.3)(l-0.15)+ 1 = 4M = °-°631



c, - 2 ( " ) "; 9 r 5 > " - Sr - *™
Check to see that the sum of the coefficients Ci, C2, and C3 is equal to 1.

Ci + C2 + C3 = 0.0631 + 0.3442 + 0.5927 = 1.0000

For the first time interval, the outflow is determined using values for Z1 and I2 from
Table 8.4.1, the initial outflow Q1 = 85 cfs, and Eq. (8.4.7) withy = 1.

Q2 = C1I2 + C2Zi + C3Gi

= 0.0631(137) + 0.3442(93) + 0.5927(85)

= 8.6 + 32.0 + 50.4

= 91 cfs

as shown in columns (3) to (6) of Table 8.4.1. Computations for the following time
intervals use the same procedure withy = 2 , 3 , . . . to produce the results shown
in Table 8.4.1. The inflow and outflow hydrographs are plotted in Fig. 8.4.2. It
can be seen that the outflow lags the inflow by approximately 2.3 h, which was the
value of K used in the computations and represents the travel time in the reach.

TABLE 8.4.1
Flow routing through a river reach by the Muskingum method
(Example 8.4.1).

Column: (1) (2) (3) (4) (5) (6)
Routing Inflow Outflow
period j I C1Ij + 1 C2Ij C3Qj Q
(h) (cfs) (C1 = 0.0631) (C2 = 0.3442) (C3 = 0.5927) (cfs)

1 93 85
2 137 8.6 32.0 50.4 91
3 208 13.1 47.2 54.0 114
4 320 20.2 71.6 67.7 159
5 442 27.9 110.1 94.5 233
6 546 34.5 152.1 137.8 324
7 630 39.8 187.9 192.3 420
8 678 42.8 216.8 248.9 509
9 691 43.6 233.4 301.4 578

10 675 42.6 237.8 342.8 623
11 634 40.0 232.3 369.4 642
12 571 36.0 218.2 380.4 635
13 477 30.1 196.5 376.1 603
14 390 24.6 164.2 357.3 546
15 329 20.8 134.2 323.6 479
16 247 15.6 113.2 283.7 413
17 184 11.6 85.0 244.5 341
18 134 8.5 63.3 202.2 274
19 108 6.8 46.1 162.4 215
20 90 5.7 37.2 127.6 170



8.5 LINEAR RESERVOIR MODEL

A linear reservoir is one whose storage is linearly related to its output by a
storage constant k, which has the dimension of time because S is a volume while
Q is a flow rate.

S = kQ (8.5.1)

The linear reservoir model can be derived from the general hydrologic system
model [Eq. (7.1.6)] by letting M(D) = 1 and letting N(D) have a root of - Uk by
making N(D) = 1 + kD. It can be shown further that if, in Eq. (7.1.6), M(D) = 1
and N(D) has n real roots — 1/fci, —1/&2> • • •» ~Hkn, the system described is a
cascade of n linear reservoirs in series, having storage constants fci,&2> • • •»&«>

Hydrographs

FIGURE 8.5.1
Linear reservoirs in series.

FIGURE 8.4.2
Routing of flow through a river
reach by the Muskingum method
(Example 8.4.1).
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respectively. The concept of a linear reservoir was first introduced by Zoch (1934,
1936, 1937) in an analysis of the rainfall and runoff relationship. A single linear
reservoir is a simplified case of the Muskingum model with X = O. The impulse,
pulse, and step response functions of a linear reservoir are plotted in Fig. 7.2.4.

Linear Reservoirs in Series

A watershed may be represented by a series of n identical linear reservoirs (Fig.
8.5.1) each having the same storage constant k (Nash, 1957). By routing a unit-
volume inflow through the n linear reservoirs, a mathematical model for the
instantaneous unit hydrograph (IUH) of the series can be derived. The impulse
response function of a linear reservoir was derived in Ex. (7.2.1) as u(t — r) =
(l/fc)exp[—(t — r)lk\. This will be the outflow from the first reservoir, and
constitutes the inflow to the second reservoir with r substituted for t — T, that is
for the second reservoir I(r) = (1/k) exp {—rlk). The convolution integral (7.2.1)
gives the outflow from the second reservoir as

q2{t) = J /(T)w(f - r)dr

= U-\~Tlk\e~{t~T)lkd^ (8.5.2)
Jo\k) k

- Lp~tlk

This outflow is then used as the inflow to the third reservoir. Continuing this
procedure will yield the outflow qn from the n-th reservoir as

where T(ri) = (n— 1)! When n is not an integer, T(ri) can be interpolated from tables
of the gamma function (Abramowitz and Stegun, 1965). This equation expresses
the instantaneous unit hydrograph of the proposed model; mathematically, it is
a gamma probability distribution function. The integral of the right side of the
equation over t from zero to infinity is equal to 1.

It can be shown that the first and second moments of the IUH about the
origin t = 0 are respectively

M1 = nk (8.5.4)

and

M2 = n(n + \)k2 (8.5.5)

The first moment, M\, represents the lag time of the centroid of the area under the
IUH. Applying the IUH in the convolution integral to relate the excess rainfall
hyetograph (ERH) to the direct runoff hydrograph (DRH), the principle of linearity



requires each infinitesimal element of the ERH to yield its corresponding DRH
with the same lag time. In other words, the time difference between the centroids
of areas under the ERH and the DRH should be equal to Mi.

By the method of moments, the values of k and n can be computed from a
given ERH and DRH, thus providing a simple but approximate calculation of the
IUH as expressed by Eq. (8.5.3). IfMz1 is the first moment of the ERH about the
time origin divided by the total effective rainfall, and MQ1 is the first moment of
the DRH about the time origin divided by the total direct runoff, then

MQ1 - Mh = nk (8.5.6)

If Mi2 is the second moment of the ERH about the time origin divided by the
total excess rainfall, and MQ2 is the second moment of the DRH about the time
origin divided by the total direct runoff, it can be shown that

MQ2 ~ Mh = n(n + I)*2 + 2nkMh (8.5.7)

Since the values of Mz1, MQ1, MJ2 and MQ2 can be computed from given hydrologic
data, the values of n and k can be found using Eqs. (8.5.6) and (8.5.7), thus
determining the IUH. It should be noted that the computed values of n and k may
vary somewhat even for small errors in the computed moments; for accuracy, a
small time interval and many significant figures must be used in the computation.

Time

FIGURE 8.5.2
Excess rainfall hyetograph (ERH) and direct runoff hydrograph (DRH) for calculation of n and K in
a linear reservoir model (Example 8.5.1).
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Example 8.5.1. Given the ERH and the DRH shown in Figure 8.5.2, determine n
and k for the IUH.

Solution, Determine the moments of the excess rainfall hyetograph and the direct
runoff hydrograph. Each block in the ERH and DRH has duration 6 h = 6 x 3600 s =
21,600 s. The rainfall has been converted to units of m3/s by multiplying by the
watershed area to be dimensionally consistent with the runoff. The sum of the
ordinates in the ERH and in the DRH is 700 m3/s, so the area under each graph
= 700 x 6 = 4200 (m3/s)-h.

_ ^ [incremental area x moment arm!
h ^ l total area J

= Tf-[IOO x 3 + 300 x 9 + 200 x 15 + 100 x 21]
4.ZuU

= 11.57h

The second moment of area is calculated using the parallel axis theorem.

Mi1 = I 2__j [incremental area x (moment arm)2]

+ 2_^ [second moment about centroid of each increment] \ / total area

= — M 6[100 x 32 + 300 x 92 + 200 x 152 + 100 x 212]
4200 [

+ "j^63[100 + 300 + 200 + 100]

= 166.3 h2

By a similar calculation for the direct runoff hydrograph

MQl = 28.25 h

Mg2 = 882.gh2

Solve for nk using (8.5.6):

nk = MQ1 - Mix

= 28.25 - 11.57

= 16.68

Solve for n and k using (8.5.7):

Mg2 - M12 = n(n + I)J^ + 2nkMh

= H2Jc1 + nk x k + 2nkMh

Hence

882.8 - 166.3 = (16.68)2 + 16.68& + 2 x 16.68 x 11.57

and solving yields



k = 3.14h

Thus

16.68
n=~ir

_ 16.68
3.14

= 5.31

These values of n and k can be substituted into Eq. (8.5.3) to determine the IUH
of this watershed. By using the methods described in Sec. 7.2, the corresponding
unit hydrograph can be determined for a specified rainfall duration.

Composite Models

In hydrologic modeling, linear reservoirs may also be linked in parallel. Linear
reservoirs may be used to model subsurface water in a saturated phase (Krai-
jenhoff van der Leur, 1958), as well as surface water problems. Diskin et al.
(1978) presented a parallel cascade model for urban watersheds. The input to the
model is the total rainfall hyetograph, which feeds two parallel cascades of linear
reservoirs, for the impervious and pervious areas of the watershed, respectively.
Separate excess rainfall hyetographs are determined for the impervious and per-
vious areas, and used as input to the two cascades of linear reservoirs.

Linear reservoirs in series and parallel may be combined to model a hydro-
logic system. The use of linear reservoirs in series represents the storage effect
of a hydrologic system, resulting in a time shift of nk between the centroid of the
inflow and that of the outflow as given by Eq. (8.5.6). A linear channel is an
idealized channel in which the time required to translate a discharge through the
channel is constant (Chow, 1964). To model the combined effect of storage and
translation, the linear reservoir may be used jointly with a linear channel. Other
more elaborate composite models have been proposed. Dooge (1959) suggested
a series of alternating linear channels and linear reservoirs. For this model, the
drainage area of a watershed is divided into a number of subareas, by isochrones,
which are lines of constant travel time to the watershed outlet. Each subarea is
represented by a linear channel in series with a linear reservoir. The outflow
from the linear channel is represented by the portion of a time-area diagram cor-
responding to the subarea. This outflow, together with outflow from the preceding
subareas, serves as the inflow to the linear reservoir.

Randomized linear reservoir models have also been developed, in which the
storage constant k is related to the Horton stream order (Sec. 5.8) of the subarea
being drained. By considering the network of streams draining a watershed as
being a random combination of linear reservoirs, with the mechanism of the
combination being governed by Horton's stream ordering laws, it is possible
to develop a geomorphic instantaneous unit hydrograph, the shape of which is
related to the stream pattern of the watershed (Boyd, et al., 1979; Rodriguez-



Iturbe, and Valdes, 1979; Gupta, et al., 1980; Gupta, Rodriguez-Iturbe, and
Wood, 1986).
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PROBLEMS

8.2.1 Storage vs. outflow characteristics for a proposed reservoir are given below.
Calculate the storage-outflow function 2S/At + Q vs. Q for each of the tabulated
values if Ar = 2 h. Plot a graph of the storage-outflow function.

Storage (106 m3) 75 81 87.5 100 110.2

Outflow (m3/s) 57 227 519 1330 2270

8.2.2 Use the level pool routing method to route the hydrograph given below through the
reservoir whose storage-outflow characteristics are given in Prob. 8.2.1. What is
the maximum reservoir discharge and storage? Assume that the reservoir initially
contains 75 x 106 m3 of storage.

Time (h) 0 2 4 6 8 10 12 14 16 18

Inflow (m3/sec) 60 100 232 300 520 1,310 1,930 1,460 930 650



8.2.3 Solve Prob. 8.2.2 assuming the initial reservoir storage is 87.5 X 106 m3.
8.2.4 Solve Example 8.2.1 in the text if the initial depth in the reservoir is 2 ft. How

much higher does this make the maximum water level in the reservoir compared
with the level found in Example 8.2.1?

8.2.5 The storage capacity and stage-outflow relationship of a flood-control reservoir
are given in the following tables. Route the design flood hydrograph given below
through the reservoir up to time 6:00. The initial reservoir level is 3.15 m. Use
a routing interval of At = 15 min.

Stage (m) 3.15 3.30 3.45 3.60 3.75 3.90 4.05
Storage (m3) 15 49 110 249 569 1180 2180
Discharge (m3/s) 0 0.21 0.72 1.25 1.89 2.61 3.40

Stage 4.08 4.15 4.20 4.27 4.35 4.50
Storage 2440 3140 4050 5380 8610 18600
Discharge 3.57 3.91 4.25 4.62 5.21 6.20

Time (h:min) 0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00
Inflow (m3/s) 0 0.04 0.12 0.25 0.53 1.10 3.00 6.12 8.24

Time 2:15 2:30 2:45 3:00 3:15 3:30 3:45 4:00 4:15
Inflow 9.06 9.20 8.75 8.07 7.36 6.66 5.98 5.32 4.67

Time 4:30 4:45 5:00 5:15 5:30 5:45 6:00
Inflow 4.11 3.65 3.29 3.00 2.73 2.49 2.27

8.2.6 Consider a 2-acre detention basin with vertical walls. The triangular inflow
hydrograph increases linearly from zero to a peak of 540 cfs at 60 min and then
decreases linearly to a zero discharge at 180 min. Route the inflow hydrograph
through the detention basin using the head-discharge curve for the 5-ft pipe
spillway in Table 8.2.2. The pipe is located at the bottom of the basin. Assuming
the basin is initially empty, use the level pool routing procedure with a 10-minute
time interval to determine the maximum depth in the detention basin.

8.3.1 Solve Prob. 8.2.6 using the third order Runge-Kutta method, with a 10-minute
time interval, to determine the maximum depth.

8.3.2 Write a computer program to perform routing using the third order Runge-Kutta
method. Then solve Prob. 8.3.1.

8.3.3 Use the third order Runge-Kutta method to route the inflow hydrograph given
below through an urban detention basin site with the following characteristics.
Use a 3-minute time interval for the routing.

Elevation above MSL (ft) 1000 1010 1020 1030 1040 1050

Surface area (acres) 1 10 15 20 25 30

The detention basin has a conduit spillway 20 ft2 in area with the inlet elevation
at 1002 ft, and an overflow spillway 80 ft in length at elevation 1011 ft. The
discharge equations for conduit and overflow spillways are given in Table 8.2.1.
Assume the conduit spillway functions as a culvert with submerged inlet



control having discharge coefficient Cd = 0.7, and the overflow spillway has the
coefficients C(Q = CLHm) tabulated below.

Head H (ft) 0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Spillway Coefficient C 2.69 2.72 2.95 2.85 2.98

Head H 1.0-1.2 1.2-1.4 1.4-1.6 1.6-1.8 >1.8
Spillway Coefficient C 3.08 3.20 3.28 3.31 3.35

Inflow hydrograph

Time(min) 0 3 6 9 12 15 18 21 24
Inflow (cfs) 0 60 133 222 321 427 537 650 772

Time 27 30 33 36 39 42 45 48 51
Inflow 902 1036 1174 1312 1451 1536 1571 1580 1568

Time 54 57 60 63 66 69 72 75 78
Inflow 1548 1526 1509 1493 1479 1464 1443 1417 1384

Time 81 84 87 90 93 96 99 102 105
Inflow 1345 1298 1244 1184 1120 1051 979 904 827

Time 108 111 114 117 120 123 126 129 132
Flow 748 669 588 508 427 373 332 302 278

Time 135 138 141 144 147
Inflow 260 246 235 225 217

8.3.4 Solve Prob. 8.3.3 for time intervals of 6 and 12 minutes. Compare the results
for the 3-, 6-, and 12-minute routing time intervals.

8.3.5 Write a computer program for detention basin routing using the fourth order
Runge-Kutta method by Gill (Carnahan et al., 1969). The continuity equation is
approximated as:

AH _ 7ft) - Q(H) _
A? " A(H) ~fit'm

The unknown depth H1+\, at time t + A;, is expressed as

tf,+A, = H, + % *, + 2 1 - — L + 2 1 + — L + k4

where

h = 7 T-V
A H + Ar

\ 2 /



l(t+% -Q(H1))

h = Mfh)

\ I(t+ At)-Q(H1)]

*4i—Am—J
where

H1 =H, + At -0.5 + — U1 + 1 - — Lt2
A V5/ V2/ _

H2=H,-—k2+ 1 + -(Az)Jt3

V2 \ V2/
A(Tf) is interpolated from the elevation-water surface area relationship.

8.3.6 Using the computer program written in Prob. 8.3.5, solve Prob. 8.3.1.
8.3.7 Using the computer program written in Prob. 8.3.5, solve Prob. 8.3.3.
8.3.8 In this problem, you are to determine the runoff from a particular watershed and

route the runoff hydrograph through a reservoir at the downstream end of the
watershed. The reservoir has the following storage-outflow characteristics:

Storage (ac-ft) 0 200 300 400 500 600 700 1100
Outflow (cfs) 0 2 20 200 300 350 450 1200

The rainfall is:

Time(h) 0 0.5 1.0 1.5 2.0
Accumulated rainfall depth (in) 0 1.0 3.0 4.0 4.5

The half-hour unit hydrograph is:

Time(h) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Discharge (cfs/in) 0 200 500 800 700 600 500 400

Time 4.0 4.5 5.0 5.5 6.0
Discharge 300 200 100 50 0

The </>-index of 0.8 in/h is to be used to account for losses. Determine the peak
discharge from the reservoir assuming zero baseflow. What is the area in square
miles of the watershed?

8.4.1 Show that the interval between the centroids of the input and the output in the
Muskingum method is a constant having the dimension of time.

8.4.2 Assuming K = 24 h and X = 0.2, route a hypothetical flood having a constant
flow rate of 1000 units and lasting one day, through a reservoir whose storage is



simulated by the Muskingum equation. Plot the inflow and outflow hydrographs.
Assume initial outflow is zero.

8.4.3 Using the inflow and outflow hydrograph given below for a channel, determine
K and X.

Time(min) 0 3 6 9 12 15 18 21
Channel inflow (cfs) 0 60 120 180 240 300 364 446
Channel outflow (cfs) 0 0 13 42 81 127 178 231

Time 24 27 30 33 36 39 42 45
Channel inflow 530 613 696 776 855 932 948 932
Channel outflow 293 363 437 514 593 672 757 822

Time 48 51 54 57 60 63 66 69
Channel inflow 914 911 921 941 958 975 982 980
Channel outflow 861 879 888 897 910 924 940 954

Time 72 75 78 81 84 87 90 93
Channel inflow 969 951 925 890 852 810 767 717
Channel outflow 964 968 965 956 938 919 884 851

Time 96 99 102 105 108 111 114 117
Channel inflow 668 618 566 514 462 410 359 309
Channel outflow 812 769 725 677 629 579 528 478

Time 120 123 126 129 132 135 138 141
Channel inflow 261 248 238 229 222 216 210 205
Channel outflow 427 373 332 302 278 260 246 235

Time 144 147
Channel inflow 199 194
Channel outflow 225 217

8.4.4 A 4400-foot reach of channel has a Muskingum K = 0.24 h and X = 0.25. Route
the following inflow hydrograph through this reach. Assume the initial outflow
= 739 cfs.

Time(h) 0 0.5 1.0 1.5 2.0 2.5 3.0
Inflow (cfs) 819 1012 1244 1537 1948 2600 5769

Time 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Inflow 12866 17929 20841 21035 20557 19485 14577

Time 7.0 7.5 8.0
Inflow 9810 6448 4558

8.4.5 A watershed is divided into two subareas A and B. The surface runoff from
subarea A enters a channel at point 1 and flows to point 2 where the runoff from
subarea B is added to the hydrograph and the combined flow routed through a
reservoir. Determine the discharge hydrograph from the reservoir, assuming that
the reservoir is initially empty. What are the areas of subareas A and B in square
miles?

The reservoir has the following storage-outflow characteristics:



Storage (acft) 0 220 300 400 500 600 700 1100

Outflow (cfs) 0 2 20 200 300 350 450 1200

The channel from point 1 to point 2 has Muskingum parameters K = 0.5 hours and
X = 0.25. Subarea A is undeveloped and subarea B has residential development.
As a result the </>-index for subarea A is 0.8 in/h and the 0-index for B is 0.2
in/h. The storm is

Time(h) 0 0.5 1.0 1.5 2.0

Accumulated rainfall depth (in) 0 1.0 3.0 4.0 4.5

The half-hour unit hydrographs for subareas A and B are

Subarea A Subarea B
Time unit hydrograph unit hydrograph
(h) (cfs/in) (cfs/in)

0 0 0
0.5 100 200
1.0 200 500
1.5 300 800
2.0 400 700
2.5 350 600
3.0 300 500
3.5 250 400
4.0 200 300
4.5 150 200
5.0 100 100
5.5 50 50
6.0 0 0

8.5.1 For a linear hydrologic system, it is assumed that the system storage S(t) is
directly proportional to the output Q(t), or S(t) = kQ(t) where k is a storage
constant. At the initial condition, the output is zero. Derive an equation for the
output Q(t) in terms of the input I{t) and the storage constant k.

8.5.2 What is the dimension of the storage constant in Prob. 8.5.1? Taking k = 1
unit, construct a curve showing the relationship between the ratio QII and time.
Assume inflow is constant.

8.5.3 Assuming that the input I{t) to a linear reservoir terminates at to, derive an
equation for the output for t > t0.

8.5.4 Show that the peak discharge of the IUH of a hydrologic system modeled by a
series of n linear reservoirs, each having storage constant k, is

M W - = H ^ " ( n - i r I

8.5.5 Show that the first and second moments of the area of the IUH modeled by a
series of n linear reservoirs, each having storage constant k, about the time origin
are

M1 = nk



and

M2 = n(n + I)/;2

8.5.6 If C/2, CQ2 and C2 are the second moments about the centroids of the areas of
the ERH, DRH and IUH, respectively, show that

8.5.7 If the first and second moments of the areas of the ERH and DRH about the time

origin are Mi1, Mi2, MQX, and MQ2, respectively, show that for n linear reservoirs

in series

MQ2 - Mh = n(n + \)k2 + 2nkMh

8.5.8 Determine the IUH by the ̂ -linear-reservoir method for a watershed having a
drainage area of 36 km2 assuming abstractions of 0.5 cm/h and a constant base
flow of 5 m3/s. Use the following data.

6-h period 1 2 3 4 5 6 7 8 9 10

Rainfall cm/h 1.5 3.5 2.5 1.5

Sreamflow m3/s 15 75 170 185 147 84 43 18 8

8.5.9 Formulate the IUH for a hydrologic system model composed of two linear
reservoirs with respective constants kx and k2 (a) in series; and (b) in parallel,
having the system input divided between the reservoirs in the ratio of x to y where
x + y = 1. Determine their centroids.

8.5.10 Show that the following is a solution of the Muskingum equation:

+wrYn^e~T'm~x>Iit-T)dT

A(I - xy J0

with T equal to the duration of /(O and 7(0) = Q(O). Show that the IUH is

u(t\ = l- e-t/K(i-x) *_ 8(t)
m K(X-X)*6 \-Xm

where 8(t) is the unit-impulse input, that is, the limit of I(r) as r approaches zero.



DISTRIBUTED
FLOW
ROUTING

The flow of water through the soil and stream channels of a watershed is a
distributed process because the flow rate, velocity, and depth vary in space
throughout the watershed. Estimates of the flow rate or water level at important
locations in the channel system can be obtained using a distributed flow routing
model. This type of model is based on partial differential equations (the Saint-
Venant equations for one-dimensional flow) that allow the flow rate and water
level to be computed as functions of space and time, rather than of time alone as
in the lumped models described in Chaps. 7 and 8.

The computation of flood water level is needed because this level delineates
the flood plain and determines the required height of structures such as bridges
and levees; the computation of flood flow rate is also important; first, because the
flow rate determines the water level, and second, because the design of any flood
storage structure such as a detention pond or reservoir requires an estimate of
its inflow hydrograph. The alternative to using a distributed flow routing model
is to use a lumped model to calculate the flow rate at the desired location, then
compute the corresponding water level by assuming steady nonuniform flow along
the channel at the site. The advantage of a distributed flow routing model over this
alternative is that the distributed model computes the flow rate and water level
simultaneously instead of separately, so that the model more closely approximates
the actual unsteady nonuniform nature of flow propagation in a channel.

Distributed flow routing models can be used to describe the transformation
of storm rainfall into runoff over a watershed to produce a flow hydrograph for the
watershed outlet, and then to take this hydrograph as input at the upstream end of
a river or pipe system and route it to the downstream end. Distributed models can
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also be used for routing low flows, such as irrigation water deliveries through a
canal or river system. The true flow process in either of these applications varies
in all three space dimensions; for example, the velocity in a river varies along
the river, across it, and also from the water surface to the river bed. However,
for many practical purposes, the spatial variation in velocity across the channel
and with respect to the depth can be ignored, so that the flow process can be
approximated as varying in only one space dimension—along the flow channel,
or in the direction of flow. The Saint-Venant equations, first developed by Barre
de Saint-Venant in 1871, describe one-dimensional unsteady open channel flow,
which is applicable in this case.

9.1 SAINT-VENANT EQUATIONS

The following assumptions are necessary for derivation of the Saint-Venant equa-
tions:

1. The flow is one-dimensional; depth and velocity vary only in the longitudinal
direction of the channel. This implies that the velocity is constant and the water
surface is horizontal across any section perpendicular to the longitudinal axis.

2. Flow is assumed to vary gradually along the channel so that hydrostatic
pressure prevails and vertical accelerations can be neglected (Chow, 1959).

3. The longitudinal axis of the channel is approximated as a straight line.
4. The bottom slope of the channel is small and the channel bed is fixed; that is,

the effects of scour and deposition are negligible.
5. Resistance coefficients for steady uniform turbulent flow are applicable so that

relationships such as Manning's equation can be used to describe resistance
effects.

6. The fluid is incompressible and of constant density throughout the flow.

Continuity Equation

The continuity equation for an unsteady variable-density flow through a control
volume can be written as in Eq. (2.2.1):

° = JJ J J pdV+ J \pY'dA ( 9 L 1 )

CV. CS.

Consider an elemental control volume of length dx in a channel. Fig. 9.1.1
shows three views of the control volume: (a) an elevation view from the side, (b)
a plan view from above, and (c) a channel cross section. The inflow to the control
volume is the sum of the flow Q entering the control volume at the upstream end
of the channel and the lateral inflow q entering the control volume as a distributed
flow along the side of the channel. The dimensions of q are those of flow per
unit length of channel, so the rate of lateral inflow is qdx and the mass inflow
rate is



FIGURE 9.1.1
An elemental reach of channel for derivation of the Saint-Venant equations.

jjpV-dA= -p{Q + qdx) (9.1.2)
inlet

This is negative because inflows are considered to be negative in the Reynolds
transport theorem. The mass outflow from the control volume is

outlet ^ '

(c ) Cross section.

(b) Plan view.

(a ) Elevation view.Datum

Energy grade line

Control Volume

Datum



where dQIdx is the rate of change of channel flow with distance. The volume of
the channel element is A Ac, where A is the average cross-sectional area, so the
rate of change of mass stored within the control volume is

CV.

where the partial derivative is used because the control volume is defined to be
fixed in size (though the water level may vary within it). The net outflow of
mass from the control volume is found by substituting Eqs. (9.1.2) to (9.1.4) into
(9.1.1):

^ - p ( e + ^ ) + p ( G + f ^ = 0 (9.1.5)

Assuming the fluid density p is constant, (9.1.5) is simplified by dividing through
by pdx and rearranging to produce the conservation form of the continuity equa-
tion,

which is applicable at a channel cross section. This equation is valid for a
prismatic or a nonprismatic channel; a prismatic channel is one in which the cross-
sectional shape does not vary along the channel and the bed slope is constant.

For some methods of solving the Saint-Venant equations, the nonconserva-
tion form of the continuity equation is used, in which the average flow velocity
V is a dependent variable, instead of Q. This form of the continuity equation can
be derived for a unit width of flow within the channel, neglecting lateral inflow,
as follows. For a unit width of flow A = y x 1 = y and Q — VA — Vy. Substituting
into (9.1.6),

^ + ^ = 0 (9.1.7)
dx dt

or

Vf+^f+I = O (9.1.8)
dx dx dt

Momentum Equation

Newton's second law is written in the form of Reynold's transport theorem as in
Eq. (2.4.1):

SF = j \ J \\pdV + J J VpVdA (9.1.9)
CV. CS.

This states that the sum of the forces applied is equal to the rate of change of



momentum stored within the control volume plus the net outflow of momentum
across the control surface. This equation, in the form 2 F = O, was applied to
steady uniform flow in an open channel in Chap. 2. Here, unsteady nonuniform
flow is considered.

FORCES. There are five forces acting on the control volume:

S F = Fg + Ff + Fe + Fw + Fp (9.1.10)

where Fg is the gravity force along the channel due to the weight of the water
in the control volume, Ff is the friction force along the bottom and sides of
the control volume, Fe is the contraction/expansion force produced by abrupt
changes in the channel cross section, Fw is the wind shear force on the water
surface, and Fp is the unbalanced pressure force [see Fig. 9.1.1 (ft)]. Each of
these five forces is evaluated in the following paragraphs.

Gravity. The volume of fluid in the control volume is A dx and its weight is pgA
dx. For a small angle of channel inclination 6, S0 ~ sin# and the gravity force
is given by

Fg = pgAdx sin 6 « pgASo dx (9.1.11)

where the channel bottom slope S0 equals -dzldx.

Friction. Frictional forces created by the shear stress along the bottom and sides
of the control volume are given by — T^Pdx, where To is the bed shear stress and
P is the wetted perimeter. From Eq. (2.4.9), T0 = yRSf = pg(A/P)Sf, hence the
friction force is written as

Ff = -pgASfdx (9.1.12)

where the friction slope Sf is derived from resistance equations such as Manning's
equation.

Contraction/expansion. Abrupt contraction or expansion of the channel causes
energy loss through eddy motion. Such losses are similar to minor losses in a
pipe system. The magnitude of eddy losses is related to the change in velocity
head V2I2g = (QIA)1IIg through the length of channel causing the losses. The
drag forces creating these eddy losses are given by

Fe = -pgASedx (9.1.13)

where Se is the eddy loss slope

S, - f ^ (9.1.14)
2g dx

in which Ke is the nondimensional expansion or contraction coefficient, negative
for channel expansion [where S(QIA)2IdX is negative] and positive for channel
contraction.



Wind Shear. The wind shear force is caused by frictional resistance of wind
against the free surface of the water and is given by

Fw = rwBdx (9.1.15)

where TW is the wind shear stress. The shear stress of a boundary on a fluid may
be written in general as

-pCf\Vr\Vr
Tw = 3 (9.1.16)

where Vr is the velocity of the fluid relative to the boundary, the notation | V\ Vr

is used so that TW will act opposite to the direction of Vn and Cf is a shear stress
coefficient. As shown in Fig. 9.1.1(Z?), the average water velocity is QIA, and the
wind velocity is Vw in a direction at angle co to the water velocity, so the velocity
of the water relative to the air is

Vr= - -Vwcosco (9.1.17)
A

The wind force is, from above,

-pCf\Vr\VrBdx
Fw= -

= -WfBpdx (9.1.18)

where the wind shear factor Wf equals Cf\Vr\Vr/2. Note that from this equation
the direction of the wind force will be opposite to the direction of the water flow.

Pressure. Referring to Fig. 9.1.1(Z?), the unbalanced pressure force is the resul-
tant of the hydrostatic force on the left side of the control volume, FPh the
hydrostatic force on the right side of the control volume, Fpn and the pressure
force exerted by the banks on the control volume, Fpy:

Fp = Fpl-Fpr + Fpb (9.1.19)

As shown in Fig. 9.1.1(c), an element of fluid of thickness dw at elevation
w from the bottom of the channel is immersed at depth y — w, so the hydrostatic
pressure on the element is pg(y — w) and the hydrostatic force is pg(y — w)bdw,
where Z? is the width of the element across the channel. Hence, the total hydrostatic
force on the left end of the control volume is

Fpi = ] pg(y-w)bdw (9.1.20)

The hydrostatic force on the right end of the control volume is

Fpr = I Fpi + ^dx\ (9.1.21)

where dFp\l dx is determined using the Leibnitz rule for differentiation of an
integral (Abramowitz and Stegun, 1972):



dFpi P dy ^ P db.

dx Jo dx Jo 6bc
(9.1.22)

dy P <№
= pgA— + P ^ ( J - W ) - J w

#c Jo (̂ c

because A = JQ bdw. The force due to the banks is related to the rate of change
in width of the channel, dbldx, through the element dx as

FPb = [J 0 PS(y ~ w^Jx

dw\ dx (9.1.23)

Substituting Eq. (9.1.21) into (9.1.19) gives

Fp = Fpl-[Fpl + ̂ d^ + Fpb

dF i
= -—£dx + Fpb (9.1.24)

Now substituting Eqs. (9.1.22) and (9.1.23) into (9.1.24) and simplifying gives

Fp= ~PgAjxdx (9.1.25)

The sum of the five forces in Eq. (9.1.10) can be expressed, after substi-
tuting (9.1.11), (9.1.12), (9.1.13), (9.1.18), and (9.1.25), as

2 F = pgASodx - pgASfdx - pgASedx - WfBpdx - pgA jjx (9.1.26)

MOMENTUM. The two momentum terms on the right-hand side of Eq. (9.1.9)
represent the rate of change of storage of momentum in the control volume, and
the net outflow of momentum across the control surface, respectively.

Net momentum outflow. The mass inflow rate to the control volume [Eq.
(9.1.2)] is — p(Q + qdx), representing both stream inflow and lateral inflow.
The corresponding momentum is computed by multiplying the two mass inflow
rates by their respective velocities and a momentum correction factor ft:

J J VpV-dA = -p{/3VQ + pvjfldx) (9.1.27)
inlet

where pfiVQ is the momentum entering from the upstream end of the channel,
and pfivxqdx is the momentum entering the main channel with the lateral inflow,
which has a velocity vx in the x direction. The term /3 is known as the momentum
coefficient or Boussinesq coefficient, it accounts for the nonuniform distribution
of velocity at a channel cross section in computing the momentum. The value of
j8 is given by



^ ^ - A \ \ v 2 d A ( 9 - L 2 8 )

where v is the velocity through a small element of area dA in the channel cross
section. The value of /3 ranges from 1.01 for straight prismatic channels to 1.33
for river valleys with floodplains (Chow, 1959; Henderson, 1966).

The momentum leaving the control volume is

J J VpV dA = p /3VQ + d^VQ)dx\ (9.1.29)
outlet

The net outflow of momentum across the control surface is the sum of (9.1.27)
and (9.1.29):

J J VpV dA = -P[f3VQ + /3vxqdx] + p[/3VQ + ^ p * * * ]
cs- (9.1.30)

Momentum storage. The time rate of change of momentum stored in the control
volume is found by using the fact that the volume of the elemental channel is A
dx, so its momentum is pAdxV, or pQdx, and then

|Jjjvp^=p|U (9.1.31)
CV.

After substituting the force terms from (9.1.26), and the momentum terms from
(9.1.30) and (9.1.31) into the momentum equation (9.1.9), it reads

dy
pgASo dx — pgASfdx — pgASe dx — WfB pdx — pgA — dx

dx

= - p k - ^ U + Pf* (9.1.32)
L dx J at

Dividing through by pdx, replacing V with QIA, and rearranging produces the
conservation form of the momentum equation:

dQ + d((3Q2/A) + / ^ _s^Sf+ A _ ̂  + WfB = 0 ( 9 . L 3 3 )
at uX \OX j

The depth 3; in Eq. (9.1.33) can be replaced by the water surface elevation h,
using [see Fig. 9.1.1 (a)]:

h = y + z (9.1.34)

where z is the elevation of the channel bottom above a datum such as mean sea



level. The derivative of Eq. (9.1.34) with respect to the longitudinal distance x
along the channel is

T = T + T ^9-1-35)
dx dx dx

But Bzldx = -S0, so

f = f-So (9.1.36)
dx dx

The momentum equation can now be expressed in terms of h by using (9.1.36)
in (9.1.33):

8~Jt + frM + g A \ t + Sf + Se] " ^ + W/B = ° (9-1-37)
The Saint-Venant equations, (9.1.6) for continuity and (9.1.37) for momen-

tum, are the governing equations for one-dimensional, unsteady flow in an open
channel. The use of the terms Sf and Se in (9.1.37), which represent the rate
of energy loss as the flow passes through the channel, illustrates the close rela-
tionship between energy and momentum considerations in describing the flow.
Strelkoff (1969) showed that the momentum equation for the Saint-Venant equa-
tions can also be derived from energy principles, rather than by using Newton's
second law as presented here.

The nonconservation form of the momentum equation can be derived in a
similar manner to the nonconservation form of the continuity equation. Neglecting
eddy losses, wind shear effect, and lateral inflow, the nonconservation form of
the momentum equation for a unit width in the flow is

~£ + V T + SIT ~ S° + Sf) = ° ( 9 ' L 3 8 )

Bt dx \dx J)

9.2 CLASSIFICATION OF DISTRIBUTED ROUTING
MODELS

The Saint-Venant equations have various simplified forms, each defining a one-
dimensional distributed routing model. Variations of Eqs. (9.1.6) and (9.1.37) in
conservation and nonconservation forms, neglecting lateral inflow, wind shear,
and eddy losses, are used to define various one-dimensional distributed routing
models as shown in Table 9.2.1.

The momentum equation consists of terms for the physical processes that
govern the flow momentum. These terms are: the local acceleration term, which
describes the change in momentum due to the change in velocity over time, the
connective acceleration term, which describes the change in momentum due to
change in velocity along the channel, the pressure force term, proportional to the
change in the water depth along the channel, the gravity force term, proportional
to the bed slope S0, and the friction force term, proportional to the friction slope



* N e g l e c t i n g l a t e r a l i n f l o w , w i n d s h e a r , a n d e d d y l o s s e s , a n d a s s u m i n g / 3 = 1 .

Sf. The local and convective acceleration terms represent the effect of inertial
forces on the flow.

When the water level or flow rate is changed at a particular point in
a channel carrying a subcritical flow, the effects of these changes propagate
back upstream. These backwater effects can be incorporated into distributed
routing methods through the local acceleration, convective acceleration, and
pressure terms. Lumped routing methods may not perform well in simulating
the flow conditions when backwater effects are significant and the river slope is
mild, because these methods have no hydraulic mechanisms to describe upstream
propagation of changes in flow momentum.

As shown in Table 9.2.1, alternative distributed flow routing models are
produced by using the full continuity equation while eliminating some terms of the
momentum equation. The simplest distributed model is the kinematic wave model,
which neglects the local acceleration, convective acceleration, and pressure terms
in the momentum equation; that is, it assumes S0= Sj and the friction and
gravity forces balance each other. The diffusion wave model neglects the local
and convective acceleration terms but incorporates the pressure term. The dynamic
wave model considers all the acceleration and pressure terms in the momentum
equation.

The momentum equation can also be written in forms that take into account
whether the flow is steady or unsteady, and uniform or nonuniform, as shown

Kinematic wave
Diffusion wave
Dynamic wave

Nonconservation form (unit width element)

Continuity equation

Conservation form

Nonconservation form

Momentum equation

Conservation form

TABLE 9.2.1
Summary of the Saint-Venant equations*

Local
acceleration
term

Convective
acceleration
term

Pressure
force
term

Gravity
force
term

Friction
force
term



in Eqs. (9.2.1). In the continuity equation, dAldt = 0 for a steady flow, and the
lateral inflow q is zero for a uniform flow.

Conservation form:

1 SQ 1 SiQ2IA) dy _
~^A~dt ~^A~Tx Tx + S°~ Sf (9.2.1«)

Nonconservation form:

g dt gdx dx + *° 1V (9.2Ab)

|— Steady, uniform flow
I Steady, nonuniform flow

I Unsteady, nonuniform flow

9.3 WAVE MOTION

Kinematic waves govern flow when inertial and pressure forces are not important.
Dynamic waves govern flow when these forces are important, such as in the
movement of a large flood wave in a wide river. In a kinematic wave, the gravity
and friction forces are balanced, so the flow does not accelerate appreciably.
Fig. 9.3.1 illustrates the difference between kinematic and dynamic wave motion
within a differential element from the viewpoint of a stationary observer on the

Stationary
observer

FIGURE 9.3.1
Kinematic and dynamic waves in a short reach of channel as seen by a stationary observer.

Observer sees this for
kinematic wave

Observer sees this for
dynamic wave



river bank. For a kinematic wave, the energy grade line is parallel to the channel
bottom and the flow is steady and uniform (S0 = Sf) within the differential length,
while for a dynamic wave the energy grade line and water surface elevation are
not parallel to the bed, even within a differential element.

Kinematic Wave Celerity

A wave is a variation in a flow, such as a change in flow rate or water surface
elevation, and the wave celerity is the velocity with which this variation travels
along the channel. The celerity depends on the type of wave being considered
and may be quite different from the water velocity. For a kinematic wave the
acceleration and pressure terms in the momentum equation are negligible, so the
wave motion is described principally by the equation of continuity. The name
kinematic is thus applicable, as kinematics refers to the study of motion exclusive
of the influence of mass and force; in dynamics these quantities are included.

The kinematic wave model is defined by the following equations.
Continuity:

Momentum:

S0 = Sf (9.3.2)

The momentum equation can also be expressed in the form

A = aQP (9.3.3)

For example, Manning's equation written with S0 = Sf and R = AIP is

\A9S]12 ,.,

Q = -^tA <9-3-4)
which can be solved for A as

/ nPm 3/5

A = \-^— Q315 (9.3.5)
\1A9JS~O

so a = [«P2/3/(1.49V^)]°-6 and /3 = 0.6 in this case.
Equation (9.3.1) contains two dependent variables, A and Q, but A can be

eliminated by differentiating (9.3.3):

>i - «r\%
and substituting for dAldt in (9.3.1) to give



Kinematic waves result from changes in Q. An increment in flow, dQ, can
be written as

dQ = ^dx + ^dt (9.3.8)
OX Ol

Dividing through by dx and rearranging produces:

T + 77 " f <«•»
dx dx dt dx

Equations (9.3.7) and (9.3.9) are identical if

dfc =q (93A0)

and

Differentiating Eq. (9.3.3) and rearranging gives

^ = 1 (9 3 12)
JA a/32/*-'

and by comparing (9.3.11) and (9.3.12), it can be seen that

f - § <9313)

dt dA

or

* - if - f <9-3-i4)
dA dt

where Q is the kinematic wave celerity. This implies that an observer moving
at a velocity dxldt =Ck with the flow would see the flow rate increasing at
a rate of dQIdx = q. If q =0 , the observer would see a constant discharge.
Eqs. (9.3.10) and (9.3.14) are the characteristic equations for a kinematic wave,
two ordinary differential equations that are mathematically equivalent to the
governing continuity and momentum equations.

The kinematic wave celerity can also be expressed in terms of the depth y
as

Ck = ~Y ( 9 - 3 - 1 5 )

B dy
where dA — Bdy.

Both kinematic and dynamic wave motion are present in natural flood
waves. In many cases the channel slope dominates in the momentum equation
(9.2.1); therefore, most of a flood wave moves as a kinematic wave. Lighthill



and Whitham (1955) proved that the velocity of the main part of a natural flood
wave approximates that of a kinematic wave. If the other momentum terms [dVldt,
V(SV/dx), and (l/g)dy/dx] are not negligible, then a dynamic wave front exists
which can propagate both upstream and downstream from the main body of the
flood wave, as shown in Fig. 9.3.2. Miller (1984) summarizes several criteria
for determining when the kinematic wave approximation is applicable, but there
is no single, universal criterion for making this decision.

As previously shown, if a wave is kinematic (5/ = S0) the kinematic wave
celerity varies with dQ/dA. For Manning's equation, wave celerity increases
as Q increases. As a result, the kinematic wave theoretically should advance
downstream with its rising limb getting steeper. However, the wave does not
get longer, or attenuate, so it does not subside, and the flood peak stays at
the same maximum depth. As the wave becomes steeper the other momentum
equation terms become more important and introduce dispersion and attenuation.
The celerity of a flood wave departs from the kinematic wave celerity because
the discharge is not a function of depth alone, and, at the wave crest, Q and y
do not remain constant.

Lighthill and Whitham (1955) illustrated that the profile of a wave front can
be determined by combining the Chezy equation (2.5.5)

Q = CA^jRSf (9.3.16)

with the momentum equation (9.2.1&) to produce

C = cJ^-f--Ff-if) (9.3.17)
V \ dx g dx gdtj

in which C is the Chezy coefficient and R is the hydraulic radius.

Dynamic Wave Celerity

The dynamic wave celerity can be found by developing the characteristic equa-
tions for the Saint-Venant equations. Beginning with the nonconservation form of

FIGURE 9.3.2
Motion of a flood wave.

Dynamic wave
moving upstream and

rapidly attenuating

Main body of flood wave
kinematic in nature

Dynamic wave
moving downstream and

rapidly attenuating



the Saint-Venant equations (Table 9.2.1), it may be shown that the corresponding
characteristic equations are (Henderson, 1966):

^ = V±cd (9.3.18)
at

and

jt(V±2cd) = g(So-Sf) (9.3.19)

in which cd is the dynamic wave celerity, given for a rectangular channel by
Cd= Jgy (9.3.20)

where y is the depth of flow. For a channel of arbitrary cross section, cd —
^JgAIB. This celerity cd measures the velocity of a dynamic wave with respect
to still water. As shown in Fig. 9.3.2, in moving water there are two dynamic
waves, one proceeding upstream with velocity V- cd and the other proceeding
downstream with velocity V -\-cd. For the upstream wave to move up the channel
requires V< cd, or, equivalently, that the flow be subcritical, since V = ^fgy is
the critical velocity of a rectangular, open-channel flow.

Example 9.3.1. A rectangular channel is 200 feet wide, has bed slope 1 percent
and Manning roughness 0.035. Calculate the water velocity V, the kinematic and
dynamic wave celerities Ck and c^, and the velocity of propagation of dynamic
waves V ± Cd at a point in the channel where the flow rate is 5000 cfs.

Solution. Manning's equation with R^y, S0 = S/, and channel width B is written

n J

which is solved for y as

\ l .49S1J2B J

_ I 0.035 x 5000 \3/5

~ 11.49 x0.011 /2 x 200/

= 2.89 ft

Hence, the water velocity is

V= ^
By

5000
~ 200 x 2.89

= 8.65 ft/s



The kinematic wave celerity c* is given by (9.3.15):

IdQ
B ay

Bdy\ n y J

llA9So2\l5\

_ 1.49 x 0 .01 m x 5 x (2.89)2/3

0.035 x 3

= 14.4 ft/s

The dynamic wave celerity is

Cd= ^gy

= V32.2 x 2.89

= 9.65 ft/s

The velocity of propagation of the upstream dynamic wave is

V-cd = 8.65-9.65 = -1.0 ft/s

and that of the downstream dynamic wave is

V+ Cd = 8.65 + 9.65 = 18.3 ft/s

In interpreting these results with Fig. 9.3.2, it can be seen that a flood wave traveling
at the kinematic wave celerity (14.4 ft/s) will move down the channel faster than
the water velocity (8.65 ft/s), while the dynamic waves move upstream (-1.0 ft/s)
and downstream (18.3 ft/s) at the same time.

In the event that the approximation S0= Sf is not valid, the various velocities
and celerities can be determined using the full momentum equation to describe Sf
as in Eq. (9.3.17).

9.4 ANALYTICAL SOLUTION OF THE
KINEMATIC WAVE

The solution of the kinematic wave equations specifies the distribution of the flow
as a function of distance x along the channel and time t. The solution may be
obtained numerically by using finite difference approximations to Eq. (9.3.7), or
analytically by solving simultaneously the characteristic equations (9.3.10) and
(9.3.14). In this section the analytical method is presented for the special case
when lateral inflow is negligible; numerical solution is discussed in Sec. 9.6.

The solution for Q(x,t) requires knowledge of the initial condition <2(JC,0),

or the value of the flow along the channel at the beginning of the calculations, and
the boundary condition Q(Oj), the inflow hydrograph at the upstream end of the
channel. The objective is to determine the outflow hydrograph at the downstream



FIGURE 9.4.1
Kinematic wave routing of a flow hydrograph through a channel reach of length L using propagation
of the flow along characteristic lines in the x-t plane. If flow rate were plotted on a third axis,
perpendicular to the x-t plane {b), then the inflow hydrograph (a) is the variation of flow through
time at JC = 0 folded down to the left of the x-t plane; the outflow hydrograph (c) is the variation
of flow rate through time at JC = L and is folded down to the right of the x-t plane in the figure.
The dashed lines indicate the propogation of specific flow rates along characteristic lines in the jc-r
plane.

end of the channel, Q(L, t), as a function of the inflow hydrograph, any lateral
flow occurring along the sides of the channel, and the dynamics of flow in the
channel as expressed by the kinematic wave equations.

If the lateral flow is neglected, (9.3.10) reduces to dQIdx = 0, or Q =a
constant. Thus, if the flow rate is known at a point in time and space, this flow
value can be propagated along the channel at the kinematic wave celerity, as
given by

The solution can be visualized on an x-t plane, as shown in Fig. 9.4.1(Z?),
where distance is plotted on the horizontal axis, and time on the vertical axis.
Each point in the x-t plane has a value of Q associated with it, which is the
flow rate at that location along the channel, at that point in time. These values
of Q may be thought of as being plotted on an axis coming out of the page
perpendicular to the x-t plane. In particular, the inflow hydrograph Q(O, t) is
shown in Fig. 9.4. \(a) folded down to the left, and the outflow hydrograph Q(L, i)
is shown in Fig 9.4.l(c) folded down to the right of the x-t plane. These two

(a)

Inflow hydrograph

(b)

x-t plane

(c)

Outflow hydrograph

Time (min)

Timer

Time (min)

Flow rate
(cfs, thousands)

Distance JC Flow rate
(cfs, thousands)



hydrographs are connected by the characteristic lines shown in part (b) of the
figure. The equations for these lines are found by solving (9.4.1):

\ dx= \ ckdt
Jo Jt0

or

x = ck(t - to) (9.4.2)

so the time at which a discharge Q entering a channel of length L at time to will
appear at the outlet is

t = to + - (9.4.3)
Ck

The slope of the characteristic line is Ck = dQIdA for the particular value
of flow rate being considered. The lines shown in Fig. 9.4. \{b) are straight
because g = 0, and Q is constant along them. If q # 0, Q and Ck vary along the
characteristic lines, which then become curved.

Rainfall-runoff Process

The kinematic wave method has been applied to describe flow over planes, as a
model of the rainfall-runoff process. In this application the lateral flow is equal
to the difference between the rates of rainfall and infiltration, and the channel
flow is taken to be flow per unit width of plane. The characteristic equations can
be solved analytically to simulate the outflow hydrograph in response to rainfall
of a specified duration. By accumulating the flow from many such planes laid
out over a watershed, an approximate model can be developed for the conversion
of rainfall into streamflow at the watershed outlet.

The kinematic wave model of the rainfall-runoff process offers the advan-
tage over the unit hydrograph method that it is a solution of the physical equa-
tions governing the surface flow, but the solution is only for one-dimensional
flow, whereas the actual watershed surface flow is two-dimensional as the water
follows the land surface contour. As a consequence, the kinematic wave param-
eters, such as Manning's roughness coefficient, must be adjusted to produce a
realistic outflow hydrograph. Eagleson (1970), Overton and Meadows (1976),
and Stephenson and Meadows (1986) present detailed information on kinematic
wave models for the rainfall-runoff process.

Example 9.4.1. A 200-foot-wide rectangular channel is 15,000 feet long, has a
bed slope of 1 percent, and a Manning's roughness factor of 0.035. The inflow
hydrograph to the channel is given in columns 1 and 2 of Table 9.4.1. Calculate
the outflow hydrograph by analytical solution of the kinematic wave equations.

Solution. The kinematic wave celerity for a given value of the flow rate is calculated
in the same manner as shown in Example 9.3.1, where it was shown that for this
channel, Ck = 14.4 ft/s for Q = 5000 cfs. The corresponding values for the other flow



TABLE 9.4.1
Routing of a flow hydrograph by analytical solution of the
kinematic wave (Example 9.4.1).
Column: 1 2 3 4 5

Inflow Inflow Kinematic Travel Outflow*
Time Rate wave time time

celerity
(min) (cfs) (Ws) (min) (min)

0 2000 10.0 25.1 25.1
12 2000 10.0 25.1 37.1
24 3000 11.7 21.3 45.3
36 4000 13.2 19.0 55.0
48 5000 14.4 17.4 65.4
60 6000 15.5 16.1 76.1
72 5000 14.4 17.4 89.4
84 4000 13.2 19.0 103.0
96 3000 11.7 21.3 117.3

108 2000 10.0 25.1 133.1
120 2000 10.0 25.1 145.1

*Outflow time = Inflow time + Travel time.

rates on the inflow hydrograph are shown in column 3 of Table 9.4.1. The travel
time through a reach of length L is LIck so for L = 15,000 ft and c* = 14.4 ft/s,
the travel time is 15,000/14.4 = 1042 s = 17.4 min, as shown in column 4 of the
table. The time when this discharge on the rising limb of the hydrograph will arrive
at the outlet of the channel is, by Eq. (9.4.3) t = to + L/ck=4S + 17.4 = 65.4 min,
as shown in column 5. The inflow and outflow hydrographs for this example are
plotted in Fig. 9.4.1. It can be seen that the kinematic wave is a wave of translation
without attenuation; the maximum discharge of 6000 cfs is undiminished by passage
through the channel.

9.5 FINITE-DIFFERENCE APPROXIMATIONS

The Saint-Venant equations for distributed routing are not amenable to analyti-
cal solution except in a few special simple cases. They are partial differential
equations that, in general, must be solved using numerical methods. Methods
for solving partial differential equations may be classified as direct numerical
methods and characteristic methods. In direct methods, finite-difference equa-
tions are formulated from the original partial differential equations for continuity
and momentum. Solutions for the flow rate and water surface elevation are then
obtained for incremental times and distances along the stream or river. In charac-
teristic methods, the partial differential equations are first transformed to a char-
acteristic form, and the characteristic equations are solved analytically, as shown
previously for the kinematic wave, or by using a finite-difference representation.

In numerical methods for solving partial differential equations, the calcula-
tions are performed on a grid placed over the x-t plane. The x-t grid is a network
of points defined by taking distance increments of length AJC and time increments
of duration At. As shown in Fig. 9.5.1, the distance points are denoted by index



i and the time points by index j . A time line is a line parallel to the x axis through
all the distance points at a given value of time.

Numerical schemes transform the governing partial differential equations
into a set of algebraic finite-difference equations, which may be linear or
nonlinear. The finite-difference equations represent the spatial and temporal
derivatives in terms of the unknown variables on both the current time line,
y ' + l , and the preceding time line, j , where all the values are known from pre-
vious computation (see Fig. 9.5.1). The solution of the Saint-Venant equations
advances from one time line to the next.

Finite Differences

Finite-difference approximations can be derived for a function u(x) as shown in
Fig. 9.5.2. A Taylor series expansion of u(x) at x + Ax produces

u(x + Ax) = M(JC) + Axuf(x) + ^AJC2M"(JC) + \AX*U'"(X) + . . . (9.5.1)
2 6

where u'(x) = duldx, u"(x) = fiu/dx?,. . . , and so on. The Taylor series expansion
at x — Ax is

u(x - Ax) = M(JC) - Axu'{x) + \AX2U"(X) - 4AJC3M'"(JC) + . . . (9.5.2)
2 6

A central-difference approximation uses the difference defined by subtract-
ing (9.5.2) from (9.5.1)

u(x + Ax) - u(x - Ax) = 2Axu'(x) + O(AJC3) (9.5.3)

where O(AJC3) represents a residual containing the third and higher order terms.
Solving for u'(x) assuming O(AJC3) ~ 0 results in

u(x + Ax) - u(x - Ax)
U {X) ~ 2Ai (9-5'4)

FIGURE 9.5.1
The grid on the x-t plane
used for numerical solution of
the Saint-Venant equations
by finite differences.Distance x
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which has an error of approximation of order Ax2. This approximation error, due
to dropping the higher order terms, is also referred to as a truncation error.

A forward difference approximation is defined by subtracting u(x) from
(9.5.1):

u(x + Ax) - M(JC) - Axu'(x) + 0(Ax2) (9.5.5)

Assuming second and higher order terms are negligible, solving for u'(x) gives

_ u(x + Ax) - uix)

Ax

which has an error of approximation of order Ax.
The backward-difference approximation uses the difference defined by sub-

tracting (9.5.2) from u(x),

M(JC) - u(x - Ax) = Axu'{x) + 0(Ax2) (9.5.7)

so that solving for u'{x) gives

«'(*) ~ "M-ff-**) (9.5.8)
A finite-difference method may employ either an explicit scheme or an

implicit scheme for solution. The main difference between the two is that in the
explicit method, the unknown values are solved sequentially along a time line
from one distance point to the next, while in the implicit method the unknown
values on a given time line are all determined simultaneously. The explicit method
is simpler but can be unstable, which means that small values of Ax and A^
are required for convergence of the numerical procedure. The explicit method is

FIGURE 9.5.2
Finite difference approximations for
the function u(x).Distance x



convenient because results are given at the grid points, and it can treat slightly
varying channel geometry from section to section, but it is less efficient than the
implicit method and hence not suitable for routing flood flows over a long time
period.

The implicit method is mathematically more complicated, but with the use
of computers this is not a serious problem once the method is programmed. The
method is stable for large computation steps with little loss of accuracy and hence
works much faster than the explicit method. The implicit method can also handle
channel geometry varying significantly from one channel cross section to the next.

Explicit Scheme

The finite-difference representation is shown by the mesh of points on the time-
distance plane shown in Fig. 9.5.1. Assuming that at time t (time line j), the
hydraulic quantities u are known, the problem is to determine the unknown
quantity at point (ij + 1) at time t + Ar, that is, u{ + l.

The simplest scheme determines the partial derivatives at point (ij + 1) in
terms of the quantities at adjacent points (/ - I J ) , (ij), and (i + IJ) using

duj +l uj + 1 - uj

and

duj u/+l - U1L1

-j- = ' (9.5.10)
dx 2Ax

A forward-difference scheme is used for the time derivative and a central-
difference scheme is used for the spatial derivative.

Note that the spatial derivative is written using known terms on time line
j . Implicit schemes on the other hand use finite-difference approximations for
both the temporal and spatial derivatives in terms of the unknown time line

j + 1.
The discretization of the x-t plane into a grid for the integration of the

finite-difference equations introduces numerical errors into the computation. A
finite-difference scheme is stable if such errors are not amplified during succes-
sive computation from one time line to the next. The numerical stability of the
computation depends on the relative grid size. A necessary but insufficient con-
dition for stability of an explicit scheme is the Courant condition (Courant and
Friedrichs, 1948). For the kinematic wave equations, the Courant condition is

Af < — (9.5.11)
Ck

where c* is the kinematic wave celerity. For the dynamic wave equations, Ck is
replaced by V + Q in (9.5.11). The Courant condition requires that the time step



be less than the time for a wave to travel the distance Ax/. If Af is so large that
the Courant condition is not satisfied, then there is, in effect, an accumulation or
piling up of water. The Courant condition does not apply to the implicit scheme.

For computational purposes in an explicit scheme, AJC is specified and kept
fixed throughout the computations, while Af is determined at each time step. To
do this, a Af/ just meeting the Courant condition is computed at each grid point
/ on time line y, and the smallest Af/ is used. Because the explicit method is
unstable unless Af is small, it is sometimes advisable to determine the minimum
Af/ at a time line j then reduce it by some percentage. The Courant condition
does not guarantee stability, and therefore is only a guideline.

Implicit Scheme

Implicit schemes use finite-difference approximations for both the temporal and
spatial derivative in terms of the dependent variable on the unknown time line. As
a simple example the space and time derivatives can be written for the unknown
point ( / + 1 , 7 + 1) as

du{+
+\ u{^-u{+l

— ^ = \ — (9.5.12)
dx Ax

and

du{+
+\ «{t!-«/+ i

-Ir = ̂ r-1 (9-5-13)
This scheme is used in Sec. 9.6 for the kinematic wave model. In Chap. 10 a
more complex implicit scheme, referred to as a weighted 4-point implicit scheme,
is used for the full dynamic wave model.

9.6 NUMERICAL SOLUTION OF THE
KINEMATIC WAVE

As shown in Eq. (9.3.7), the continuity and momentum equations for the kine-
matic wave can be combined to produce an equation with Q as the only dependent
variable:

f + aPQft-l% = q (9.6.1)
OX Ol

The objective of the numerical solution is to solve (9.6.1) for Q(x, t) at each point
on the x-t grid, given the channel parameters a and /3, the lateral inflow q(t),
and the initial and boundary conditions. In particular, the purpose of the solution
is to determine the outflow hydrograph Q(L,f). The numerical solution of the
kinematic wave equation is more flexible than the analytical solution described
in Sec. 9.4; it can more easily handle variation in the channel properties and in
the initial and boundary conditions, and it serves as an introduction to numerical
solution of the dynamic wave equations, presented in Chap. 10.



To solve Eq. (9.6.1) numerically, the time and space derivatives of Q are
approximated on the x-t grid as shown in Fig .9.6.1. The unknown value is Q {*}.
The values of Q on the 7th time line have been previously determined, and so has
Q1

 +1. Two schemes for setting up the finite difference equations are described in
this section: a linear scheme, in which Q\X\ *s computed as a linear function of
the known values of Q, and a nonlinear scheme, in which the finite-difference
form of (9.6.1) is a nonlinear equation.

Linear Scheme

The backward-difference method is used to set up the finite-difference equations.
The finite-difference form of the space derivative of Q\X \ is found by substituting
the values of Q on the (j + l)th time line into (9.5.12):

dx Ax

The finite-difference form of the time derivative is found likewise by substituting

FIGURE 9.6.1
Finite difference box for solution of the linear kinematic wave equation showing the finite difference
equations.

Known value of Q

Unknown value of Q
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the values of Q on the (/ + l)th distance line into (9.5.13):

If the value of Q\X\ were used for Q in the term a(3QP~l in Eq. (9.6.1), the
resulting equation would be nonlinear in <2J + i- To create a linear equation, the
value of Q used in a/3QP~l is found by averaging the values across the diagonal
in the box shown in Fig. 9.6.1:

The value of lateral inflow q is found by averaging the values on the (i + l)th
distance line (these are assumed to be given in the problem).

, - ^ 4 ^ P.6.5)
By substituting Eqs. (9.6.2) to (9.6.5) into (9.6.1), the finite-difference form of
the linear kinematic wave is obtained:

aa-a* ' + > + • ^"HeItI-Oi-.)_ M+<t« (9.6.6)

This equation, solved for the unknown G/ + }, is

« —[e .j?*r\—'""
A flow chart for routing a kinematic wave using this scheme is given in

Fig. 9.6.2. Q was chosen as the dependent variable because this results in smaller
relative errors than if cross-sectional area A were chosen as the dependent variable
(Henderson, 1966). This is shown by taking the logarithm of (9.3.3):

InA = In a + /3\nQ (9.6.8)

and differentiating:

to define the relationship between the relative errors dAIA and dQ/Q. Using either
Manning's equation or the Darcy-Weisbach equation, /3 is generally less than 1,
and it follows that the discharge estimation error would be magnified by the ratio



FIGURE 9.6.2
Flowchart for linear kinematic wave computation.

l/j8 if the cross-sectional area were the dependent variable instead of the flow
rate.

Example 9.6.1. Using the same data for the rectangular channel in Example 9.4.1
(width = 200 ft, length = 15,000 ft, slope = 1 percent, and Manning's n = 0.035),
develop a linear kinematic wave model and route the inflow hydrograph given in
columns 1 and 2 of Table 9.4.1 through the channel using Ax = 3000 ft and Ar =
3 min. There is no lateral inflow. The initial condition is a uniform flow of 2000
cfs along the channel.

Compute initial conditions defined by
baseflow, time t=0 on time line j - 1.

Apply Courant condition (9.5.11) to each
grid point on time line, and choose the

smallest: At = min At1.

Advance to next time step:
t = t + At, j = j + 1.

Use inflow hydrograph to determine
discharge <2/+1 at upstream boundary, / = 1.

Increment to next interior point (/ + 1) on time line j + 1,
x = x +Ax. Solve for the discharge

Q]W using Eq. (9.6.7).

Downstream
discharge

computed?

Last time
step?

Stop



Solution. The value of ft is 0.6, and a is found using n = 0.035, P « B = 200 ft,
and S0 = 0.01 following Eq. (9.3.5) as

( \ 0 6 r -,n *

rcP2/3
 = ro.O35x(2OO)2/3r =

1.49SJ'2] L 1.49(0.01)^ J
For Ar = 3 min = 180 s and Ax = 3000 ft, Eq. (9.6.7) with q = 0 gives

This problem is solved following the algorithm given in Fig. 9.6.2. Compu-
tations proceed from upstream to downstream as shown in Table 9.6.1, in which
the distance axis is laid out horizontally, i = 1, 2, . . . , 6, while the time axis
runs vertically down the page, 7 = 1 , 2 , . . . . The initial condition is Q ) = 2000
cfs, covering the first row of discharge values. The upstream boundary condition is
the inflow hydrograph Q\ in the first column of discharge values. The inflows at
r = 0, 12, 24, . . . min are obtained from Table 9.4.1, and the remainder are filled
in by linear interpolation between the tabulated values.

The first time the inflow departs from 2000 cfs is after t — 12 min, so
the calculations for Q on the 15-min time line are used as an illustration. The
computational sequence is indicated in Table 9.6.1 by the sequence of boxes. With
7 = 5 and / = 1, the first unknown value is Q\X\ = Q\, which is the discharge at
distance 3000 ft on the 15-min time line. It is found as a function of Q]• +1 = Q \ =
2000 cfs, the discharge at 3000 ft on the 12-min time line, and of Q{:+1 = Q \ =
2250 cfs, the value of the inflow hydrograph at x = 0 on the 15-min time line.
Substituting these values into the finite-difference equation:

3^(2250) + (3.49)(0.6)(2000)(2000 + 2 2^0J

Qi = T ^TT-TJ " = 2095 cfs

[3000 + (3-4 yXu-^ 2 j J

as shown in the table. Moving along the 15-min time line (J = 6), the second
unknown is Q\, the value at distance 6000 ft, calculated as a function of Q\ +1 =
Q3 = 2000 cfs, now at 6000 ft on the 12-min time line, and of Q]+1 = Q\ =
2095 cfs, the value just computed for 3000 ft at 15 min. The same procedure as
above produces Q\ = 2036 cfs as shown in Table 9.6.1. All the unknown values
are determined in the same manner. The outflow hydrograph is the column of flow
rates for i = 6 at 15,000 ft.

The values of Ar = 3 min and Ax = 3000 ft were chosen so that the Courant
condition (9.5.11) would be satisfied everywhere in the x-t plane. As shown in
Table 9.4-1, the maximum wave celerity is 15.5 ft/s, for a discharge of 6000 cfs.
Here Ax/At = 3000/180 = 16.7 ft/s, which is greater than the maximum wave
celerity, thus satisfying the Courant condition throughout.



TABLE 9.6.1
Numerical solution of the linear kinematic wave (Example 9.6.1.). Values
given in the table are flow rates in cfs. The italicized values show the
propagation of the peak discharge. The boxes show the computational
sequence for obtaining the flows along the 15-min time line.

Distance along channel (ft)
Time Time o 3000 6000 9000 12000 15000
(min) index

j i = l 2 3 4 5 6

0 1 2000 2000 2000 2000 2000 2000
3 2 2000 2000 2000 2000 2000 2000
6 3 2000 2000 2000 2000 2000 2000

9 4 2000 2000 2000 2000 2000 2000

12 5 2000 j 2000 j j 2000 j j 2000 j ; 2000 j • 2000 |

15 6 !2250 J2095 j_ j 2036 j J2013 j 12005 j 2002 j

18 7 2500 2252 2118 2053 2023 2010

21 8 2750 2449 2246 2127 2062 2030
24 9 3000 2672 2414 2238 2129 2067
27 10 3250 2910 2613 2385 2228 2129
30 11 3500 3158 2836 2566 2360 2218

48 17 5000 4695 4374 4037 3694 3358
51 18 5250 4952 4638 4307 3965 3620
54 19 5500 5209 4902 4578 4239 3892
57 20 5750 5465 5165 4848 4516 4171
60 21 6000 5720 5427 5118 4793 4452
63 22 5750 5734 5573 5332 5043 4723
66 23 5500 5623 5597 5457 5237 4961
69 24 5250 5447 5526 5489 5356 5145
72 25 5000 5238 5390 5443 5397 5263
75 26 4750 5012 5213 5335 5368 5312
78 27 4500 4777 5011 5184 5281 5298

144 49 2000 2001 2008 2028 2067 2133
147 50 2000 2001 2005 2019 2049 2101
150 51 2000 2001 2004 2013 2036 2076

Fig. 9.6.3(a) shows plots of the columns of Table 9.6.1, the flow hydrographs
at the various points along the channel. It can be seen that the peak discharge
diminishes as the wave passes down the channel, also marked by the italicized
values in the table. Fig. 9.6.3(Z?) shows plots of rows from Table 9.6.1, representing
the distribution of flow along the channel for various points in time, which shows
the rise and fall of the flow as the wave passes down the channel. Fig. 9.6.4
is a comparison of the analytical solution calculated in Example 9.4.1 with two



numerical solutions, the one calculated here with Ax = 3000 ft and At = 3 min,
and another solution similarly computed with Ax = 1000 ft and At = 1 min. It can
be seen that the numerical scheme introduces dispersion of the flood wave into the
solution, with the degree of dispersion increasing with the size of the Ax and At
increments.

Nonlinear Kinematic Wave Scheme

The finite-difference form of Eq. (9.6.1) can also be expressed as

<*">-<*" + M-I" - ^ 1 + *» (9.6.10,
Ax At 2

As for the linear scheme, Q is taken as the independent variable; using Eq.
(9.3.3),

FIGURE 9.6.3
Numerical solution of the
linear kinematic wave
equation in space and time
(Example 9.6.1).
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Ml\ = <W,X\f (9-6.11)
and

M+i = <>(&i+if (9-6-12)
Eqs. (9.6.11) and (9.6.12) are substituted into (9.6.10) to obtain, after rearrang-
ing,

£(2! S + a (Q{ tl f = £ ^ +1
 + CiQf1 J + A , | ^ i ± I J (9.6.13)

This equation has been arranged so that the unknown discharge Q\X\ *s o n * e

left-hand side, and all the known quantities are on the right-hand side. It is
nonlinear in Q\\}; so a numerical solution scheme such as Newton's method
will be required (see Sec. 5.6 for an introduction to Newton's method).

The known right-hand side at each finite-difference grid point is

c = ̂ : - + a ( G ; : + / + A r ( ^ ^ J (9.6.i4)

from which a residual error f(Q^\) is defined using Eq. (9.6.13) as

№X\) = ̂ X\ + MX\f - C (9.6.15)

The first derivative off{Q{+

+ J) is

/nv^^+^mif1 (9.6.16)

The objective is to find Q{+

+\ that forces/(Q^j) to equal 0.

FIGURE 9.6.4
Routing of the kinematic wave
by analytical and numerical
methods. The analytical solution
shows no wave attenuation,
while the numerical solutions
disperse the wave, the degree
of dispersion increasing with the
size of the time and distance
steps, (a) Inflow, (b) Numerical
solution, using At=I min and
Ax= 1000 ft. (c) Numerical
solution, At= 3 min, AJC = 3000 ft.
(d) Analytical solution.Time (min)
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Using Newton's method with iterations k = 1, 2, . . .

fiCV. +1)
Wi +Vk +1 ~ Wi +ik f,lnj +l] (^-o. 17)

The convergence criterion for the iterative process is

W G J t D 4 + 1 I = S * (9-6-18)

where e is an error criterion. A flowchart for the nonlinear kinematic wave scheme
is presented in Fig. 9.6.5.

The initial estimate for Q\ \ \ is important for the convergence of the iterative
scheme. One approach is to use the solution from the linear scheme, Eq. (9.6.7),
as the first approximation to the nonlinear scheme. Li, Simons, and Stevens
(1975) performed a stability analysis indicating that the scheme using Eq. (9.6.13)
is unconditionally stable. They also showed that a wide range of values of Ar/Ax
could be used without introducing large errors in the shape of the discharge
hydrograph.

9.7 MUSKINGUM-CUNGE METHOD

Several variations of the kinematic wave routing method have been proposed.
Cunge (1969) proposed a method based on the Muskingum method, a method
traditionally applied to linear hydrologic storage routing. Referring to the time-
space computational grid shown in Fig. 9.6.1, the Muskingum routing equation
(8.4.7) can be written for the discharge at JC = (i + 1) Ax and t = (j + I)Ar:

QZ+
+I1 = C 1Gl+ 1 +C2Qj: + C 3 ^ + 1 (9.7.1)

in which Ci, C2, and C3 are as defined in Eqs. (8.4.8) through (8.4.10). In those
equations, ^ is a storage constant having dimensions of time, and X is a factor
expressing the relative influence of inflow on storage levels. Cunge showed that
when K and Ar are taken as constant, Eq. (9.7.1) is an approximate solution of
the kinematic wave equations [Eqs. (9.3.1) and (9.3.2)]. He further demonstrated
that (9.7.1) can be considered an approximate solution of a modified diffusion
equation (Table 9.2.1) if

ck dQIdA

and

where c& is the celerity corresponding to Q and B, and B is the width of the
water surface. The right-hand side of (9.7.2) represents the time of propagation



FIGURE 9.6.5
Flowchart for nonlinear kinematic wave computation.

Determine f(Qk ) using (9.6.16). I

Solve for Qk+] using (9.6.17).

Determine/(Qk + \) using (9.6.15).

Increment to next interior point
x = x + Ax on time liney +1 .

Solve for initial estimate of Qk = 1 =(2/+Y
using the linear scheme estimate from (9.6.7);

find f(Qk)fork = 1 using (9.6.15).

Advance to next time step:
t = t+At, j =7 + 1

Use inflow hydrograph to determine discharge
Qi+1 at upstream boundary.

Compute initial conditions defined by
baseflow at time / = 0 on time line j = 1.

Check convergence;

Last interior point
(Downstream discharge

computed?)

Last time
step?

Stop



of a given discharge along a reach of length AJC. Cunge (1969) showed that for
numerical stability it is required that 0 < X < 1/2.

Muskingum-Cunge routing is carried out by solving the algebraic equation
(9.7.1). The coefficients in Eq. (9.7.1) are computed by using Eqs. (9.7.2) and
(9.7.3) along with Eqs. (8.4.8) through (8.4.10) for each time and space point of
computation, since K and X both change with respect to time and space.

The Muskingum-Cunge method offers two advantages over the standard
kinematic wave methods. First, the solution is obtained through a linear algebraic
equation (9.7.1) instead of a finite difference or characteristic approximation of
a partial differential equation; this allows the entire hydrograph to be obtained
at required cross sections instead of requiring solution over the entire length of
the channel for each time step, as in the kinematic wave method. Second, the
solution using (9.7.1) will tend to show less wave attenuation, permitting a more
flexible choice of time and space increments for the computations as compared
to the kinematic wave method.

The comprehensive British Flood Studies report (Natural Environment
Research Council, 1975) concluded that the Muskingum-Cunge method is prefer-
able to methods using a diffusion wave model (see Table 9.2.1) because of
its simplicity; its accuracy is similar. Disadvantages of the Muskingum-Cunge
method are that it cannot handle downstream disturbances that propagate upstream
and that it does not accurately predict the discharge hydrograph at a downstream
boundary when there are large variations in the kinematic wave speed such as
those which result from the inundation of large flood plains.
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PROBLEMS

9.1.1 Derive the nonconservation form of the momentum equation (9.2. IZ?) for a unit
width of flow in a channel from the conservation form (9.2.1a).

9.1.2 (a) Describe the advantages and disadvantages of lumped system (hydrologic)
routing vs. distributed system (hydraulic) routing.



(b) What are the limitations of the kinematic wave approximation?
(c) In what type of situation would the kinematic wave model be justified as

compared to the dynamic wave model?
(d) Describe the difference between a linear and a nonlinear kinematic wave

model.
9.1.3 Determine the momentum coefficient /3, defined by Eq. (9.1.28), for the stream-

flow data given in Prob. 6.3.1.
9.1.4 Determine the momentum coefficient /3 defined by Eq. (9.1.28), for the streamflow

data given in Prob. 6.3.5.
9.3.1 Calculate the water velocity V, the kinematic wave celerity Ck, the dynamic wave

celerity Q , and the velocities of propagation of dynamic waves V ± Cj for the
channel described in Example 9.3.1 in the text and flow rates of 10, 50, 100, 500,
1000, 5000, and 10,000 cfs. Plot the results to show the variation of the velocities
and celerities as a function of the flow rate.

9.4.1 Compare the analytical and numerical methods for solving the kinematic wave
equations and indicate where each may be applicable.

9.4.2 Prove that the kinematic wave celerity is Ck = 5V73, where V is the average
velocity, when Manning's equation is used to describe the flow resistance in a
wide, rectangular channel.

9.4.3 Prove that the travel time T of a kinematic wave in a wide rectangular channel of
width B, length L, slope S0, and Manning roughness n carrying a flow of Q is
given approximately by

/ \3/5

5^1.495f / *

If B = 200 ft, L = 265 mi, S0 = 0.00035, n = 0.045, and Q = 2000 cfs, calculate
the travel time in days.

9.4.4 You are in charge of releasing water from a reservoir into a river with channel
properties given in the previous problem. There are four downstream water users
whose daily withdrawals during a one-week period are forecast as shown below.
Calculate the amount of water you would release from the reservoir on the first
day of this period to supply these users and to have a surplus of 200 cfs flowing
past the last user. Assume the release was constant at 2500 cfs for the previous
week, the withdrawls were constant during that week at the values shown for day
1 in the table, and that there is no lateral inflow.

User Distance w A i . j i J / «x
Withdrawal on day (cfs)

downstream
(mi) 1 2 3 4 5 6 7

1 183 531 531 531 479 407 383 383

2 187 409 395 378 360 341 285 239

3 228 79 79 154 150 157 80 82

4 265 698 698 702 702 672 674 674

Discuss your answer. What assumptions have you made? How might these
assumptions affect the result?



9.4.5 A flood of 100,000 cfs peak discharge has just passed a gaging station on a river.
There is a community adjacent to the river 100 miles downstream, for which a
flood warning must be issued. How long will it be before the flood peak reaches
this community? Assume that the channel is rectangular, with width 500 ft, slope
1 percent, and Manning roughness 0.040.

9.6.1 Develop the finite-difference equations for the linear kinematic wave model for
flood-wave routing in a trapezoidal channel. Assume no lateral inflow.

9.6.2 Develop an algorithm to solve the routing scheme for the kinematic wave model in
a trapezoidal channel. Describe the step-by-step procedure that you would use to
route an inflow hydrograph through a given reach. Divide the reach into n sections,
each of length Ax. Use flowcharts or any other guides that you wish to explain
the algorithm. This procedure would be the first step in developing a computer
program for the routing procedure.

9.6.3 Take the inflow hydrograph given below and use the analytical kinematic wave
solution method to route it through a uniform rectangular concrete channel 300
feet wide and 10,000 feet long with a bed slope of 0.015. Assume Manning's n
= 0.020 and the initial condition is a uniform flow of 500 cfs.

Time (min) 0 20 40 60 80 100 120 140 160
Flow (cfs) 500 1402 9291 11576 10332 5458 2498 825 569

9.6.4 Calculate the solution to Prob. 9.6.3 by the linear numerical kinematic wave
solution method, using Ar = 1 min, and Ax = 2000 ft. Consider only 0 < t < 20
min.

9.6.5 Calculate the complete solution to Prob. 9.6.3 for a time horizon of 160 minutes
by the linear kinematic wave method, using Ar = 1 min and Ax = 2000 ft.

9.6.6 Write a computer program for the linear kinematic wave model developed for a
rectangular channel. The upstream boundary condition is an inflow hydrograph
and the initial condition is uniform flow.

9.6.7 Consider a concrete, rectangular, 100-foot-wide drainage channel that is 8000 feet
long and has a slope of 0.006 ft/ft and a Manning's roughness factor of n = 0.015.
Use the computer program developed in Prob. 9.6.6 for the kinematic wave model
to route through the reach the hypothetical flood described by

G = ft + f(l-cos^)
in which Q is the discharge, Qt, is the base flow, Qp is the peak discharge
(amplitude), and T is the duration of the flood wave. Use the values Qp = 6000
cfs, Qb = 2000 cfs, and T = 120 min. Assume Q = Qb for t > T.

9.6.8 Consider a rectangular channel, 100 feet wide, with bed slope of 0.015 and
Manning's n = 0.035. In a numerical routing scheme, Ax = 5000 ft and Ar = 10
min. Given the following flow rates:

Point ij + 1 i,j i + IJ

Q(cfs) 1040 798 703

determine Ql * J using an implicit finite-difference scheme for a linear kinematic
model. Assume R — y in development of the kinematic wave model.



9.6,9 Solve Prob. 9.6.8 using the nonlinear kinematic wave model with Newton's
method.

9.7.1 Write a computer program for the Muskingum-Cunge model to route flow through
a circular storm sewer pipe. Consider a pipe which is 6 ft in diameter, 1000 ft
long, has Manning's n 0.015 and slope 0.001. Route through this pipe an inflow
hydrograph described by the equation given in problem (9.6.7) with Qb = 20 cfs,
Qp = 60 cfs and T = 20 min. Assume inflow Qb for t > T.

9.7.2 Write a computer program for the Muskingum-Cunge model to route flood waves
through a rectangular channel. Route the hydrograph in Prob. 9.6.3 through the
rectangular channel described in that problem.

9.7.3 Solve Prob. 9.6.7 by the Muskingum-Cunge method.



DYNAMIC
WAVE
ROUTING

The propagation of flow in space and time through a river or a network of
rivers is a complex problem. The desire to build and live along rivers creates
the necessity for accurate calculation of water levels and flow rates and provides
the impetus to develop complex flow routing models, such as dynamic wave
models. Another impetus for developing dynamic wave models is the need for
more accurate hydrologic simulation, in particular, simulation of flow in urban
watersheds and storm drainage systems. The dynamic wave model can also be
used for routing low flows through rivers or irrigation channels to provide better
control of water distribution. The propagation of flow along a river channel or an
urban drainage system is an unsteady nonuniform flow, unsteady because it varies
in time, nonuniform because flow properties such as water surface elevation,
velocity, and discharge are not constant along the channel.

One-dimensional distributed routing methods have been classified in Chap. 9
as kinematic wave routing, diffusion wave routing, and dynamic wave routing.
Kinematic waves govern the flow when the inertial and pressure forces are
not important, that is, when the gravitational force of the flow is balanced by
the frictional resistance force. Chapter 9 demonstrated that the kinematic wave
approximation is useful for applications where the channel slopes are steep and
backwater effects are negligible. When pressure forces become important but
inertial forces remain unimportant, a diffusion wave model is applicable. Both
the kinematic wave model and the diffusion wave model are helpful in describing
downstream wave propagation when the channel slope is greater than about
0.5 ft/mi (0.01 percent) and there are no waves propagating upstream due to
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disturbances such as tides, tributary inflows, or reservoir operations. When both
inertial and pressure forces are important, such as in mild-sloped rivers, and
backwater effects from downstream disturbances are not negligible, then both the
inertial force and pressure force terms in the momentum equation are needed.
Under these circumstances the dynamic wave routing method is required, which
involves numerical solution of the full Saint-Venant equations. Dynamic routing
was first used by Stoker (1953) and by Isaacson, Stoker, and Troesch (1954, 1956)
in their pioneering investigation of flood routing for the Ohio River. This chapter
describes the theoretical development of dynamic wave routing models using
implicit finite-difference approximations to solve the Saint-Venant equations.

10.1 DYNAMIC STAGE-DISCHARGE
RELATIONSHIPS

The momentum equation is written in the conservation form [from (9.1.33)] as

^ + ^ M ) + / | _ 5 o + \ _ 0

dt dx \dx I

Uniform flow occurs when the bed slope S0 is equal to the friction slope Sf and
all other terms are negligible, so that the relationship between discharge, or flow
rate, and stage height, or water surface elevation, is a single-valued function
derived from Manning's equation, as shown by the uniform flow rating curve
in Fig. 10.1.1. When other terms in the momentum equation are not negligible,
the stage-discharge relationship forms a loop as shown by the outer curve in
Fig. 10.1.1, because the depth or stage is not just a function of discharge, but
also a function of a variable energy slope. For a given stage, the discharge is
usually higher on the rising limb of a flood hydrograph than on the recession
limb. As the discharge rises and falls, the rating curve may even exhibit multiple
loops as shown in Fig. 10.1.2 for the Red River (Fread, 1973c). The rating curve
for uniform flow is typical of lumped or hydrologic routing methods in which

FIGURE 10.1.1
Loop rating curves. The uniform
flow rating curve does not reflect
backwater effects, whereas the
looped curve does.Discharge
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FIGURE 10.1.2
Looped stage-discharge relation for the Red River, Alexandria, Louisiana (May 5-June 17,
1964. Source: Fread, 1973c).

S =/(Q), while the loop rating curve is typical of distributed or hydraulic routing
methods.

Flow propagation in natural rivers is complicated by several factors: junc-
tions and tributaries, variations in cross section, variations in resistance as a
function both of flow depth and of location along the river, inundated areas, and
meandering of the river. The interaction between the main channel and the flood
plain or inundated valley is one of the most important factors affecting flood
propagation. During the rising part of a flood wave, water flows into the flood
plain or valley from the main channel, and during the falling flood, water flows
from the inundated valley back into the main channel. The effect of the valley
storage is to decrease the discharge during the falling flood. Also, some losses
occur in the valley due to infiltration and evaporation.

The flood plain has an effect on the wave celerity because the flood wave
progresses more slowly in the inundated valley than in the main channel of a
river. This difference in wave celerities disperses the flood wave and causes flow
from the main channel to the flood plain during the rising flood by creating a
transverse water surface slope away from the channel. During the falling flood,
the transverse slope is inward from the inundated valley into the main channel,
and water then moves from the flood plain back into the main channel [see Fig.
10.1.3(a) and (6)].

Because the longitudinal axes of the main channel and the flood plain valley
are rarely parallel, the situation described above is even more complicated in a

Time (days)

St
ag

e 
h 

(f
t)

St
ag

e (
ft

)



meandering river. For a large flood, the axis of the flow becomes parallel to
the valley axis [Fig. 10.1.3(c) and (d)]. The valley water slope and valley water
velocity (if depths are sufficient) can be greater than in the main channel, which
has a longer flow path than the valley. This situation makes it difficult for flow to
go from the main channel to the flood plain valley during the rising flood and vice
versa during the falling flood. Flood wave propagation is more complex when the
flow is varying rapidly. The description is also more complicated for a branching
river system with tributaries and the possibility of flood peaks from different
tributaries coinciding. Also, with tributaries, the effects on flood propagation of
backwater at the junctions must be considered.

When backwater effects exist, the loop rating curve may consist of a series
of loops, each corresponding to a different feature controlling water level in the
channel (see Fig. 10.1.4). Backwater effects of reservoirs, channel junctions,
narrowing of the natural river channel, and bridges can demonstrate this charac-
teristic.

FIGURE 10.1.3
Aspects of flow in natural rivers.(d) Meandering main channel.

(c) Main channel parallel to valley.

(b) Transverse slope during falling flood.

(a) Transverse slope during rising flood.



10.2 IMPLICIT DYNAMIC WAVE MODEL

Implicit finite-difference methods advance the solution of the Saint-Venant equa-
tion from one time line to the next simultaneously for all points along the time
line. A system of algebraic equations is generated by applying the Saint-Venant
equations simultaneously to all the unknown values on a time line. Implicit meth-
ods were developed because of the limitation on the time-step size required for
numerical stability of explicit methods. For example, an explicit method might
require a time step of one minute for stability, while an implicit method applied
to the same problem could use a time step of one hour or longer.

The implicit finite-difference scheme uses a weighted four-point method
between adjacent time lines at a point M, as shown in Fig. 10.2.1. If a given
variable describing the flow, such as flow rate or water surface level, is denoted by
u, the time derivative of u is approximated by the average of the finite difference
values at distance points / and / + 1. The value at the /th distance point is
(w/+1 - uj)/At, and that at the (i + l)th distance point is (w/+/ - M/'+1)/Af, so
the approximation is

dt 2At }

for the point M located midway between the /th and (i + l)th distance points in
Fig. 10.2.1.

A slightly different approach is adopted to estimate the spatial derivative
duldx and the variable u. For the spatial derivative, the difference terms at they'th
and (j + l)th time lines are calculated: (w/+1 — w/)/Ax, and (w/^1

1 — uj +1)/AJC,

respectively; then a weighting factor 6 is applied to define the spatial derivative
as

— ~ e \ — + (1 - ^ " ^ ~ (10.2.2)
dx Ax Ax

FIGURE 10.1.4
Loop rating curve with significant
backwater effects. Backwater effects are
due to downstream reservoirs, channel
junctions, highway crossings, narrowing of
the river section. These produce a series of
rating curves with each corresponding to a
given backwater level. The backwater
effects cause a variable energy slope that
can be modeled using the full dynamic
wave model.Discharge
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FIGURE 10.2.1
The x-t solution plane. The finite-difference forms of the Saint-Venant equations are solved at a
discrete number of points (values of the independent variables x and t) arranged to form the
rectangular grid shown. Lines parallel to the time axis represent locations along the channel, and
those parallel to the distance axis represent times. (After Fread, 1974a).

and an average value for u is calculated similarly as

W/ + 1 +II /+!1 Uj +Uj+1

s = e-l _ i + L + ( 1 _ fl) ^ (10.2.3)

The value of 6 = ArVAr locates point M vertically in the box in Fig. 10.2.1.
A scheme using 6 = 0.5 is called a box scheme. When 6 — 0, the point M is
located on the y'th time line and the scheme is fully explicit, while a value of
0 = 1 is used in & fully implicit scheme with M lying in the (j + l)th time line.
Implicit schemes are those with 6 in the range 0.5 to 1.0; Fread (1973a, 1974a)
recommends a value of 0.55 to 0.6.

A major difference between the explicit and implicit methods is that implicit
methods are conditionally stable for all time steps, whereas explicit methods are
numerically stable only for time steps less than a critical value determined by
the Courant condition. Fread (1973a, 1974a) has shown that the weighted four-
point scheme is unconditionally linearly stable for any time step if 0.5 < 0 < 1.0.
This scheme has a second-order accuracy when 6 — 0.5 and a first-order accuracy
when 6= 1.0.
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FIGURE 10.2.2
Values of the flow rate at four points in the x-t plane (Example 10.2.1).

Example 10.2.1. The values of flow rate Q at four points in the space-time grid
are as shown in Fig. 10.2.2. Using Af = 1 h, Ax = 1000 ft, and 0 = 0.55, calculate
the values of dQIdt and SQIdx by the four-point implicit method.

Solution. As shown in Fig. 10.2.2, the values of flow rate at the four points are
Qj = 3500 cfs, Qj+1 = 3386 cfs, Qj+1 = 3583 cfs, and Qj+{ =3470 cfs. The
time derivative is calculated using (10.2.1) with u — Q and At = 1 h = 3600 s:

dQ _ g/+1 +QiX-Qi-Qj+1

dt 2At

_ 3583 + 3470 - 3500 - 3386
2 x 3600

= 0.023 cfs/s

The spatial derivative is calculated using (10.2.2):

= -0.113 cfs/ft

10.3 FINITE DIFFERENCE EQUATIONS

The conservation form of the Saint-Venant equations is used because this form
provides the versatility required to simulate a wide range of flows from gradual
long-duration flood waves in rivers to abrupt waves similar to those caused by a
dam failure. The equations are developed from (9.1.6) and (9.1.37) as follows.
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Continuity:

£g+«i±±>_,_0 ( 1 0 . 3 . , ,
ox at

Momentum:

S. + *&?I«1 + Jf + S, + S,) - * , , + ff/B . 0 (103.2)
c# ax y ox J

where

JC = longitudinal distance along the channel or river

t = time

A = cross-sectional area of flow
A0 = cross-sectional area of off-channel dead storage (contributes to continuity,

but not momentum)

q = lateral inflow per unit length along the channel

h = water surface elevation

vx = velocity of lateral flow in the direction of channel flow

S/ = friction slope

Se — eddy loss slope

B = width of the channel at the water surface

Wf = wind shear force

/3 = momentum correction factor

g = acceleration due to gravity.

The weighted four-point finite difference approximations given by
Eqs. (10.2.1) - (10.2.3) are used for dynamic routing with the Saint-Venant
equations. The spatial derivatives dQIdx and dhldx are estimated between adjacent
time lines according to (10.2.2):

dX Ax,- AjC;

dh A/+/"*/"1"1 A/+i -h{
— = e . — + ( l - e ) - ^ — L (10-3-4)

and the time derivatives are estimated using (10.2.1):

djA +A0) _ (A +A0)J
+1 +(A +A0)J^-(A +A0)J-(A +A0)J+1

dt 2 Af7-
(10.3.5)



The nonderivative terms, such as q and A, are estimated between adjacent time
lines using (10.2.3):

1 L (10.3.7)

=oqj + i +{i-mi

A = 6— L ± i- + (1 - S)- —
(10.3.8)

= 6AJ+l +(1-O)Ji
where qt and A1- indicate the lateral flow and cross-sectional area averaged over
the reach Ax1-.

The finite-difference form of the continuity equation is produced by substi-
tuting Eqs. (10.3.3), (10.3.5), and (10.3.7) into (10.3.1):

y v ' (10.3.9)
(A +A0)J

 + 1 +(A +A0)J^-(A +A0)I-(A +A0)J+1 _

2 \tj

Similarly, the finite-difference form of the momentum equation is written as:

Ql + 1 +6/+1I-QZ-Q/+! + J(M2IA)J Fi-(PQ2IA)I + 1

2 ktj AJC,-

_ ; +1/A/+ i1 ~hj + l I- \j + 1 /_ W- + l \ / W- + 1 / W- +1

~{pQ2IA)l+l- (PQ2IA)J -jlhi+l-hj /_w- / -v\
+(1 - 6[ -t, +8A\-^r+ W +K)

= 0 (10.3.10)

The four-point finite-difference form of the continuity equation can be fur-
ther modified by multiplying Eq. (10.3.9) by AJC,- to obtain



0(GZ+
+I1 -Ql + 1- q{+ 1Ax,) + (i - 0KQi+1 - Qi - q{^d

+ f^[(A +A0)I
 + 1 +{A +A0)Z+I1 - (A +Ao){ - (A +A0)I+1] = O

1 (10.3.11)

Similarly, the momentum equation can be modified by multiplying by Ax, to
obtain

J^(Qi+1 +QiU-Qj-Qi+1)

i u+1 /—\j +1 1
-(Pqv\ Ax,- +(WfB]. Ax,-

+(i-°\[fLr [Ti, ^'K--*/ + ( ^ ' +wM

= 0 (10.3.12)

where the average values (marked with ~) over a reach are defined as

ft = ft + f t + 1 (10.3.13)

- = A,- +A,- + 1 (10.3.14)

- = g/ + g , + 1 (1Q 3 1 5 )

a = QL±QL±I (10.3.16)

Also,

^ = ^- (10.3.17)
B,-

for use in Manning's equation. Manning's equation may be solved for 5/ and
written in the form shown below, where the term \Q\Q has magnitude Q2 and sign
positive or negative depending on whether the flow is downstream or upstream,
respectively:



WJ/ - _2-4/3 (10.3.18)
2.208A,- ^

The minor head losses arising from contraction and expansion of the channel
are proportional to the difference between the squares of the downstream and
upstream velocities, with a contraction/expansion loss coefficient Ke:

(S.) _ ̂ JM Ja)1] ( 1 0 . 3 . 1 9 )

V h 2gAxi\\A)i+l \A)ij

The velocity of the wind relative to the water surface, Vn is defined by

(vr) = 9r)-(Vw)iCos<o (10.3.20)

where u> is the angle between the wind and the water directions. The wind shear
factor is then given by

(wf\ = {c4tl% (io-3-2i)
where Cw is a friction drag coefficient [Cw = Cf/2 given in (9.1.18)].

The terms having superscript j in Eqs. (10.3.11) and (10.3.12) are known
either from initial conditions, or from a solution of the Saint-Venant equations
for a previous time line. The terms g, AJC/, /J1-, Ke, Cw, and Vw are known and
must be specified independently of the solution. The unknown terms are Qj + \
Q/+i1, ft/4"1, A/+/ , A/ + 1, A / i 1 , fi/ + 1, and S/+!1. However, all the terms
can be expressed as functions of the unknowns, Qj + \ Qj ̂ 1

1, ft/ + \ and ft/+!1,
so there are actually four unknowns. The unknowns are raised to powers other
than unity, so (10.3.11) and (10.3.12) are nonlinear equations.

The continuity and momentum equations are considered at each of the
TV - 1 rectangular grids shown in Fig. 10.2.1, between the upstream boundary
at / = 1 and the downstream boundary at / = N. This yields 2N — 2 equations.
There are two unknowns at each of the Af grid points (Q and ft), so there are
2N unknowns in all. The two additional equations required to complete the
solution are supplied by the upstream and downstream boundary conditions. The
upstream boundary condition is usually specified as a known inflow hydrograph,
while the downstream boundary condition can be specified as a known stage
hydrograph, a known discharge hydrograph, or a known relationship between
stage and discharge, such as a rating curve.

10.4 FINITE DIFFERENCE SOLUTION

The following discussion for the solution of a system of finite difference equations
follows that of Fread (1976b). The system of nonlinear equations can be expressed



in functional form in terms of the unknowns A and Q at time level j + 1, as
follows:

UB (hi, Qi) = 0 upstream boundary condition

Ci (Ai, Gi, A2, Qi) = 0 continuity for grid 1

Mi (hi, Qi, hi, Qi) = 0 momentum for grid 1

Ct (hi, Qi, hi + i, Qi + i) = 0 continuity for grid / (10.4.1)

M( (hi, Qi, hi + i, Qi + i) = 0 m o m e n t u m for gr id /

Civ-1 ( h N - 1 , Q N - i , A^, Gw) = 0 c o n t i n u i t y for gr id N-I

M^-I ( A i v - i , C A T - I , Ajv, QN) — 0 m o m e n t u m for gr id N-I

DB (hN, QN) — 0 downstream boundary condition

This system of 2N nonlinear equations in 2N unknowns is solved for each
time step by the Newton-Raphson method. The computational procedure for each
time j + 1 starts by assigning trial values to the 27V unknowns at that time. These
trial values of Q and A can be the values known at time j from the initial condition
(if j = 1) or from calculations during the previous time step. Using the trial values
in the system (10.4.1) results in 2N residuals. For the kth iteration these residuals
can be expressed as

UB (h\, Q\) = RUBk residual for upstream boundary

condition

Ci (Ap Q\, h\, Qk
2) = RC\ residual for continuity at grid 1

Mi (Ap Q\, h\, Q\) = RM\ r e s i d u a l for m o m e n t u m at g r id 1

Ci (Af, Q), h\ + p Q\ + ^ = RC) r e s idua l for con t inu i ty at g r id /
( 1 0 . 4 . 2 )

M1-(Af, Q), A f + p G f + 1 ) = RM) r e s idua l for m o m e n t u m at g r id i

CN-I ( A ^ - P G j v - p AJy, GJv) = ^ C ^ _ j r e s idua l for con t inu i ty at gr id N-I

MN-I ( A ^ - P Gjv-i> A^, QN) = RMk
N_x r e s idua l for m o m e n t u m at g r id N-I

DB (hk
N, Qk

N) = RDBk residual for downstream boundary
condition



The solution is approached by finding values of the unknowns Q and h so that
the residuals are forced to zero or very close to zero.

The Newton-Raphson method is an iterative technique for solving a system
of nonlinear algebraic equations. It uses the same idea as was presented in Chap. 5
for the determination of flow depth in Manning's equation, except that here the
solution is for a vector of variables rather than for a single variable. Consider the
system of equations (10.4.2) denoted in vector form as

fix) = 0 (10.4.3)

where x = (Qi,h\, Qi,h2,. . -,QN^N) is the vector of unknown quantities and
for iteration k,xk = (Q\,h\,Qk

2,h\,. . .,Qk
N,hk

N). The nonlinear system can be
linearized to

/(** + l) «/(Jt*) + J(xk)(xk +1 - Jt*) (10.4.4)

where J(xk) is the Jacobian, which is a coefficient matrix made up of the first
partial derivatives of f(x) evaluated at xk. The right-hand side of Eq. (10.4.4)
is the linear vector function of xk. Basically, an iterative procedure is used to
determine xk+l that forces the residual error f(xk+ l) in Eq. (10.4.4) to zero.
This can be accomplished by setting /Qt* + l) = 0 rearranging (10.4.4) to read

7(jt*)(jt* + l - Jt*) = -/(Jt*) (10.4.5)

This system is solved for (xk+ l — xk) = Ax*, and the improved estimate of
the solution, Jt*+ \ is determined knowing Ajt*. The process is repeated until
(xk+ l — Jt*) is smaller than some specified tolerance.

The system of linear equations represented by (10.4.5) involves 7(x*), the
Jacobian of the set of equations (10.4.1) with respect to h and Q, and —/(Jt*),
the vector of the negatives of the residuals in (10.4.2). The resulting system of
equations is

X ^ + H ^ = -RUBk

f > + f^Gi + 1 ^ + MdQ2 = -Rc*
-^dHx + -^dQ1 + -j£dh2 + -^dQ2 = -RM\

-^dH1 + -^dQ1 + -gg^-dht + , + -jQ^dQ, +, = -^C?
(10.4.6)

8Ms ,, . SM: j,^, , SM; „ . dM; ,_ „,- t
-gfidh; + -^dQ1 + -^dh, + ! + -SQ^dQi + i = -RMi



In Fig. 10.4.1 these equations are presented in matrix form for a river divided
into four reaches (five cross sections). The partial derivative terms are described
in detail in App. 10.A.

Gaussian elimination or matrix inversion can be used to solve this set
of equations (Conte, 1965). The Jacobian coefficient matrix is a sparse matrix
with a band width of at most four elements along the main diagonal. Fread
(1971) developed a very efficient solution technique to solve such a system
of equations taking advantage of this banded (quad-diagonal) structure. Solving
(10.4.6) provides values of dht and dQt. The values for the unknowns at the

Upstream
boundary

Downstream
boundary

FIGURE 10.4.1.
System of linear equations for an iteration of the Newton-Raphson method for a river with four
reaches (five cross sections).

Cross section

Reach



Ready to start next time step.

FIGURE 10.4.2
Procedure for solving a system of difference equations at one time step using the Newton-Raphson
method.

Start with values of xk= (Q^, h\, ...,QN, hN)
from initial conditions, previous time step,

or from an extrapolation procedure.

Solve for the partial derivative terms to define
the Jacobian coefficient matrix

using the values for x

Compute the residuals RUB , RC h

RM*, . . . ,RCyt,,R]v4_i, and
RDB* from (10.4.2).

Solve system of equations for
dh\ and dQ, using Gaussian elimination.

Determine values of/7, and Q1 using Eqs. (10.4.7) and
(10.4.8); x =(<2, ,/?i ,...,QN , hN ) .

Convergence:



(k + l)th iteration are then given by

hk+i = hk +dh. (10.4.7)

Qk
t
 + l = Q\ +dQi (10.4.8)

The flow chart in Fig. 10.4.2 outlines the procedure for solving the system
of difference equations for one time step using the Newton-Raphson method.

10.5 DWOPER MODEL

In the early 1970s, the U.S. National Weather Service (NWS) Hydrologic
Research Laboratory began to develop a dynamic wave routing model based upon
the implicit finite-difference solution of the Saint-Venant equations described in
the previous section. This model, known as DWOPER (Dynamic Wave Opera-
tional Model) has been implemented on various rivers with backwater effects and
mild bottom slopes. It has been applied to the Mississippi, Ohio, Columbia, Mis-
souri, Arkansas, Red, Atchafalaya, Cumberland, Tennessee, Willamette, Platte,
Kamar, Verdigris, Ouachita, and Yazoo rivers in the United States (Fread, 1978),
and has also been used in many other countries.

One of the DWOPER applications described by Fread (1978) deals with
the Mississippi-Ohio-Cumberland-Tennessee system, a branching river system
consisting of 393 miles of the Mississippi, Ohio, Cumberland, and Tennessee
rivers as shown in Fig. 10.5.1. Eleven gaging stations located at Fords Ferry,
Golconda, P&ducah, Metropolis, Grand Chain, Cairo, New Madrid, Red Rock,
Grand Tower, Cape Girardeau, and Price Landing were used to evaluate the
simulation by comparing the observed and calculated water levels and flow rates
at those locations. Figure 10.5.2 shows the observed vs. simulated stages at Cape
Girardeau, Missouri, and at Cairo, Illinois, for a flood in 1970.

In applying DWOPER to this system, the main stem river is considered
to be the Ohio-Lower Mississippi segment, with the Cumberland, Tennessee,
and upper Mississippi rivers considered first-order tributaries (Fread, 1973b). The
channel bottom slope is mild, varying from about 0.25 to about 0.50 ft/mi (0.005-
0.01 percent). Each branch of the river system is influenced by backwater from
downstream branches. Total discharge through the system varies from low flows
of approximately 120,000 cfs to flood flows of 1,700,000 cfs. A total of 45 cross
sections located at unequal intervals ranging from 0.5 to 21 miles were used to
describe the system. Three months of simulation time, comparing 20 observed
and computed hydrographs using 24-hour time steps, required 15 seconds of CPU
time on an IBM 360/195 computer.

Another application by Fread (1974b) on the lower Mississippi illustrates
the utility of DWOPER simulating floods resulting from hurricanes. Figure 10.5.3

*A computer program for DWOPER can be obtained from the Hydrologic Research Laboratory,
Office of Hydrology, NOAA, National Weather Service, Silver Spring, Maryland, 20910.



FIGURE 10.5.1
Schematic of the Mississippi-Ohio-Cumberland-Tennessee river system. The numbers shown are
river miles from the mouth. {Source: Fread, 1978. Used with permission.)

shows the stage and discharge hydrographs on the lower Mississippi River at
Carrollton, Louisiana, during hurricane Camille in 1969. The figure shows a
brief period of negative discharge resulting from the hurricane-generated flood
wave forcing water to flow up the Mississippi River.

10.6 FLOOD ROUTING IN MEANDERING RIVERS

The dynamic wave model developed in the previous section can be expanded
to consider flood routing through meandering rivers in wide flood plains (Fig.
10.6.1). The unsteady flow in a river which meanders through a flood plain is
complicated by five effects: (1) differences in hydraulic resistances of the main
river channel and the flood plain; (2) variation in the cross-sectional geometries
of the channel and the plain; (3) short-circuiting effects, in which the flow leaves
the meandering main channel and takes a more direct route on the flood plain; (4)

Gaging station and
computational node
Computational node
Lateral inflow

Metropolis

Grand Chain

Cairo (mile 955.8)

New Madrid

Caruthersville (mile 846.4)

Clark River

Kentucky Dam
(mile 22.4)

Tennessee

Barkley Dam
(mile 30.6)

Cumberland

Tradewater River

(mile 1076.5) Shawneetown

Saline River.
Ford's Ferry

Golconda

Paducah

Upper Mississippi

M
is

si
ss

ip
pi

C
he

st
er

 (
m

il
e 

10
9.

9)

R
ed

 R
oc

k

G
ra

nd
 T

ow
er

B
ig

 M
ud

dy
 R

iv
er

C
ap

e 
G

ir
ar

de
au

Pr
ic

e 
L

an
di

ng

O
hi

o



Time (days)

Observed • • • Simulated

(b) Cairo, Illinois.

FIGURE 10.5.2
Observed vs. simulated stages at Cape Girardeau, Missouri, and at Cairo, Illinois, for 1970 flood.
See Fig. 10.5.1 for location of these stations. Cairo is on the Ohio River and Cape Girardeau on
the Mississippi River. (Source: Fread, 1978. Used with permission.)

portions of flood plain acting as dead storage areas in which the flow velocity is
negligible; and (5) the effect on energy losses of the interaction of flows between
the main channel and the flood plain, depending upon the direction of the lateral
exchange of flow. Because of these differences, the attenuation and travel time
of flow in the channel can differ significantly from that in the flood plain.

Fread (1976a, 1980) developed a model for meandering rivers, distinguish-
ing the left flood plain, the right flood plain, and the channel, denoted by
the subscripts /, r, and c respectively. The continuity and momentum equa-
tions, neglecting wind shear and lateral flow momentum, are expressed as

Time (days)

Observed • • • Simulated

(a) Cape Girardeau, Missouri.
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Time (hrs)

Computed
+ discharge is associated with a velocity directed downstream.
- discharged is associated with a velocity directed upstream.

(b ) Discharge hydrograph.

FIGURE 10.5.3
Stage and discharge hydrographs for the 1969 hurricane Camille at Carrollton on the lower Missis-
sippi River. Carrollton is at mile 102.4 from the mouth of the Mississippi. The root-mean-square
error for the simulation using DWOPER was 0.34 ft. (Fread, 1978. Used with permission.)

djKcQ) , S(K1Q) , d{KrQ) , d(Ac + A1 + Ar + A0) . . . . . .
_l _l _l _ g — (j ( IU.o. l )

dxc dxi dxr dt

and

dQ d(K2
cQ

2IAc) SjK]Q2IA1) S(K2Q2IAr)

dt dxc dxi dxr

(10.6.2)
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FIGURE 10.6.1
Meandering river in a flood plain. Unsteady flow in natural meandering rivers in wide flood plains
is complicated by large differences in resistance and cross-sectional geometries of the river and the
flood plain. As shown, further complications are due to the short circuiting of flow along the more
direct route of the flood plain. As a result, the wave attenuation and travel time differ between the
flood plain and the channel.

The total cross-sectional area of flow is the sum of AC9 Ah An and A0. The
constants Kc, Ki, and Kr divide the total flow Q into channel flow, left flood
plain flow, and right flood plain flow, respectively, and are defined as Kc =
= QJQ, Ki = QiIQ, and Kr = Qr/Q.

The flow is assumed one-dimensional, so the water surface is horizontal
across the three sections and the head loss hf incurred in traveling between two
river cross sections is the same no matter which flow path is adopted. Hence,
hf = S/Ax in each section of the flow (left, channel, and right), and Sf = hj/Ax.
By taking the ratio of the flows computed by Manning's equation in this manner,
hf is canceled out; the ratios of the flows in the left and right overbank areas to
that in the channel are

-Qc-mA-c\X) teJ ( 1 ° - 6 J )

and

Qc nrAc\RcJ \Axr/

The friction slope is also defined for the left flood plain, (5//), right flood plain,
(Sy>), and channel (5/c) using Manning's equation; for example,

Downstream
boundary

Flood plain

Upstream
boundary



H1]K1QlK1Q
Sfl = 2 . 2 1 A ^ (10-6-5)

The weighted four-point implicit scheme can be used to solve this model
for the unknowns h and Q. The dynamic wave model described above by
Eqs. (10.6.1) and (10.6.2) is incorporated into the National Weather Service com-
puter program DAMBRK; DAMBRK is a program for analyzing the floods that
could result from dam breaks.

10.7 DAM-BREAK FLOOD ROUTING

Forecasting downstream flash floods due to dam failures is an application of flood
routing that has received considerable attention. The most widely used dam-breach
model is the National Weather Service DAMBRK* model by Fread (1977, 1980,
1981). This model consists of three functional parts: (1) temporal and geometric
description of the dam breach; (2) computation of the breach outflow hydrograph;
and (3) routing the breach outflow hydrograph downstream.

Breach formation, or the growth of the opening in the dam as it fails, is
shown in Fig. 10.7.1. The shape of a breach (triangular, rectangular, or trape-
zoidal) is specified by the slope z and the terminal width B w of the bottom of the
breach. The DAMBRK model assumes the breach bottom width starts at a point
and enlarges at a linear rate until the terminal width is attained at the end of the
failure time interval T. The breach begins when the reservoir water surface ele-
vation h exceeds a specified value hcr allowing for overtopping failure or piping
failure.

*A computer program for DAMBRK can be obtained from the Hydrologic Research Laboratory,
Office of Hydrology, NOAA, National Weather Service, Silver Spring, Maryland, 20910.

FIGURE 10.7.1
Breach formation. Breach formation in a dam failure is described by the failure time 7, the size,
and the shape. The shape is specified by z, which defines the side slope of the breach. Typically,
0 < z < 2. The bottom width b of the breach is a function of time, with the terminal width being
Bw. A triangular breach has B = O and z > 0. A rectangular breach has Bw > 0 and z = 0. For a
trapezoidal breach, Bw > 0 and z > 0.

Breach



Reservoir outflow consists of both the breach outflow Qb (broad-crested
weir flow) and spillway outflow Qs:

Q = Qt +Qs (10.7.1)

The breach outflow can be computed using a combination of the formulas for a
broad-crested rectangular weir, gradually enlarging as the breach widens, and a
trapezoidal weir for the breach end slopes (Fread, 1980):

Qb = 3ABwtbCvKs
(k~^b)' +2A5zCyKs(h - hb)

2'5 (10.7.2)

where tb is the time after the breach starts forming, Cv is the correction factor for
velocity of approach, Ks is the submergence correction for tail water effects on
weir outflow, and hb is the elevation of the breach bottom. The spillway outflow
can be computed using (Fread, 1980):

Qs = CsLs(h - /I5)15 + ^2gCgAg(h - hg)
0-5 + CdLlh - hd)

0'5 + Qt (10.7.3)

where Cs is the uncontrolled spillway discharge coefficient, Ls is the uncontrolled
spillway length, hs is the uncontrolled spillway crest elevation, Cg is the gated
spillway discharge coefficient, Ag is the area of gate opening, hg is the center-
line elevation of the gated spillway, Cd is the discharge coefficient for flow over
the dam crest, Ld is the length of the crest, hd is the dam crest elevation, and Qt

is a constant outflow or leakage.
The DAMBRK model uses hydrologic storage routing or the dynamic wave

model to compute the reservoir outflow. The reservoir outflow hydrograph is then
routed downstream using the full dynamic wave model described in Sec. 10.3;
alternatively the dynamic wave model described in Sec. 10.6 for flood routing
in meandering rivers with flood plains can be used. The DAMBRK model can
simulate several reservoirs located sequentially along a valley with a combination
of reservoirs breaching. Highway and railroad bridges with embankments can be
treated as internal boundary conditions.

Internal boundary conditions are used to describe the flow at locations along
a waterway where the Saint-Venant equations are not applicable. In other words,
there are locations such as spillways, breaches, waterfalls, bridge openings,
highway embankments, and so on, where the flow is rapidly rather than gradually
varied. Two equations are required to define an internal boundary condition,
because two unknowns (Q and h) are added at the internal boundary. For example,
to model a highway stream crossing (Fig. 10.7.2) with flow through a bridge
opening <2t>r, flow over the embankment Qem, and flow through a breach, Qb,
the two internal boundary conditions are:

G / + 1 =Qbr + Gem + Qb (10.7.4)

and

GZ+
+/ = Ql + l do.7.5)



(c) Finite difference grid.

FIGURE 10.7.2
Internal boundary condition for highway embankments. C refers to the continuity equation and M
to the momentum equation.

The breach flow Qt, is defined by Eq. (10.7.2); Qbr is defined by a rating curve
or by an orifice equation, such as

Qbr = CV^AZ + V(A/ + ' - fc/+V)1/2 (10.7.6)

where C^ is a bridge coefficient; the embankment overflow Qem is defined by a
broad-crested weir formula

Gem = KQmLemCem{hl + l ~ KJ'2 (10.7.7)

where Cem> Lem, and Kem are the discharge coefficient, length of embankment,

Internal boundary
condition equations

(b) Cross section locations.

Internal boundary condition equations

(a) Cross section.

Embankment Bridge Breach



and submergence correction factor, and /zem is the elevation of the top of the
embankment.

Referring to Fig. 10.7.2, the finite-difference grid illustrates that for a given
time line, the continuity and momentum equations are written for each grid where
the Saint-Venant equations apply, and the internal boundary conditions are written
for the grid from / to / + 1, where the highway crossing is located.

Teton Dam Failure

The DAMBRK model has been applied (Fread, 1980) to reconstruct the down-
stream flood wave caused by the 1976 failure of the Teton Dam in Idaho. The
Teton Dam was a 300-foot high earthen dam with a 3000-foot long crest. As a
result of the breach of this dam, 11 people were killed, 25,000 people were made
homeless, and $400 million in damage occurred in the downstream Teton-Snake
River valley. The inundated area in the 60-mile reach downstream of the dam
is shown with 12 cross sections marked in Fig. 10.7.3. The downstream valley
consisted of a narrow canyon approximately 1000 ft wide for the first 5 miles, and
thereafter a wide valley that was inundated to a width of about 9 mi. Manning's n
values ranged from 0.028 to 0.047 as obtained from field estimates. Interpolated
cross sections developed by DAMBRK were used so that cross sections were
spaced 0.5 miles apart near the dam and 1.5 miles apart at the downstream end
of the reach. A total of 77 cross sections were used.

The computed reservoir outflow hydrograph is shown in Fig. 10.7.3 with
a peak value of 1,652,300 cfs. The peak occurred approximately 1.25 hours
after the breach opening formed. It is interesting to note that the peak reservoir
outflow was about 20 times greater than the largest recorded flood at the site. The
computed peak discharges along the downstream valley are shown in Fig. 10.7.4,
which illustrates the rapid attenuation of the peak discharge by storage of water in
the flood plain as the flood wave progressed downstream through the valley. The
computed flood peak travel times are shown in Fig. 10.7.5, and the computed
peak elevations are shown in Fig. 10.7.6. The maximum depth of flooding was
approximately 60 ft at the dam. The 55-hour simulation of the Teton flood used
an initial time step of 0.06 h. Execution time would be less than 10 seconds on
most mainframe computers.

FLDWAV Model

The FLDWAV model* (Fread, 1985) is a synthesis of DWOPER and DAMBRK,
and adds significant modeling capabilities not available in either of the other
models. FLDWAV is a generalized dynamic wave model for one-dimensional

*The computer program FLDWAV can be obtained from the Hydrologic Research Laboratory, Office
of Hydrology, National Weather Service, NOAA, Silver Spring, MD, 20910.



Hour

FIGURE 10.7.3
Flooded area downstream of Teton Dam and computed outflow hydrograph at the dam (Source:
Fread, 1977).

FIGURE 10.7.4
Profile of peak discharge from
Teton Dam failure (Source: Fread, 1977).
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unsteady flows in a single or branched waterway. It is based on an implicit (four-
point, nonlinear) finite-difference solution of the Saint-Venant equations. The
following special features and capacities are included in FLDWAV: variable Af
and Ax computational intervals; irregular cross-sectional geometry; off-channel
storage; roughness coefficients that vary with discharge or water surface elevation,
and with distance along the waterway; capability to generate linearly interpolated

FIGURE 10.7.6
Profile of peak flood elevation from Teton
Dam failure (Source: Fread, 1977).
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FIGURE 10.7.5
Travel time of flood peak from Teton Dam failure
(Source: Fread, 1977).
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cross sections and roughness coefficients between input cross sections; automatic
computation of initial steady flow and water elevations at all cross sections along
the waterway; external boundaries of discharge or water surface elevation time
series (hydrographs), a single-valued or looped depth-discharge relation (tabular
or computed); time-dependent lateral inflows (or outflows); internal boundaries
enable the treatment of time-dependent dam failures, spillway flows, gate con-
trols, or bridge flows, or bridge-embankment overtopping flow; short-circuiting
of flood-plain flow in a valley with a meandering river; levee failure and/or over-
topping; a special computational technique to provide numerical stability when
treating flows that change from supercritical to subcritical, or conversely, with
time and distance along the waterway; and an automatic calibration technique for
determining the variable roughness coefficient by using observed hydrographs
along the waterway.

FLDWAV is coded in FORTRAN IV, and the computer program is of
modular design, with each subroutine requiring less than 64 kilobytes of storage.
The overall program storage requirement is approximately 256 kilobytes. Program
array sizes are variable, with the size of each array set internally via the input
parameters used to describe each particular unsteady flow application. Input data
to the program is free- or fixed-format. Program output consists of tabular and/or
graphical displays, according to the user's choice.

APPENDIX 10.A

The following equations describe the partial derivative terms in the system of
equations (10.4.6) (Fread, 1985). For the continuity equation (C), the terms
dependent on hJ' + l and Q7 + 1 in Eq. (10.3.11) contribute to the derivatives.
For BCISh, the product rule dCldh = SCIdA x dAISh = BdCIdA is used. The
derivatives are:

- ^ - = 9 (10.A.4)

where B0 is the top width of the off-channel dead storage cross-sectional area.
For the momentum equation (M), the terms dependent on hJ'+ l and QJ + l

in Eq. (10.3.12) contribute to the derivatives, which are

SU J(PQ2BV*' - J + . [ , ldS,\'*\ ISS,\>*\



The derivatives of Sf are found by differentiating Eq. (10.3.18), and are

The derivatives of Se, found by differentiating (10.3.19), are

(10.A.9)

(10.A.10)

(10.A.11)

(10.A.12)

(10.A.13)



The partial derivatives for the UB and DB functions are evaluated as follows:

^ T = 0 (10.A.17)

^ - = 1 (10.A.18)

if the upstream boundary condition is a discharge hydrograph.

^T = 1 (10.A.19)
dhN

§T = 0 (10.A.20)

if the downstream boundary condition is a stage hydrograph, but

^T = ° (10.A.21)
dnN

^ T = 1 (10.A.22)

if the downstream boundary condition is a discharge hydrograph, and

£» . -a±^£ (,0.A.23,

^T = l (10.A.24)

where /: is the iteration number, if the downstream boundary condition is a stage-
discharge rating curve.
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PROBLEMS

10.3.1 Determine the time derivative of the discharge for Q\ = 7000 cfs, Qj + l = 7166
cfs, Qi+l = 6772 cfs, and Qj+ / = 6940 cfs. Use a time interval of one hour,
A* - 1000 ft, and 6 = 0.60.

10.3.2 Derive Eqs. (10.3.11) and (10.3.12).
10.3.3 Derive the expressions for partial derivatives of the continuity equation given in

Appendix 10.A [Eqs. (10.A.I)-(IO.A.4)].
10.3.4 Derive the expressions for partial derivatives of the momentum equation given in

Appendix 10.A [Eqs. (10.A.5)-(10.A.8)].
10.4.1 Explain the procedure used to solve the system of equations (10.4.1) using the

Newton-Rhapson method.
10.4.2 Even though the implicit scheme used for the full dynamic wave model is

conditionally stable, explain why the approach is unstable when critical flow
conditions are approached.

10.4.3 Explain why instability problems can occur when modeling a river that has cross
sections with a main channel and a very wide, flat flood plain. Hint: What would
the relationships of elevation vs. hydraulic radius, elevation vs. top width, and
elevation vs. discharge look like?

10.4.4 Under what conditions would the Manning's n vs. discharge relationship cause
instability problems in solving the full dynamic wave model?

10.5.1 The purpose of this problem is to use the U.S. National Weather Service
DWOPER or FLDWAV model. Consider a 9000-foot-long trapezoidal irrigation



channel with cross section as shown in Figure 10.P.1. The upstream inflow
hydrograph is shown in Figure 10.P.2. The channel bottom slope is 0.0005 ft/ft.
The bottom elevation of the channel at the downstream end is 95.5 ft. The channel
has a Manning's roughness factor of n = 0.025. In order to model the channel,
cross sections (stations) are placed at 1000 ft intervals as shown in Figure 10.P.3.
Using a 0.1-h computational time step, simulate the system behavior for the first
five hours. Plot the inflow and outflow hydrographs; plot also the distribution of
flow along the channel at one-hour intervals. Use an initial condition of 200 cfs
along the channel. The downstream boundary condition is the rating curve given
below.

Stage (ft) 98.6 100.2 102.6 104.3 106.2 107.7 109.5

Discharge (cfs) 200 550 1000 1700 2200 2600 3200

10.5.2 This problem is an extension of Prob. 10.5.1 to include a tributary channel, as
shown in Figure 10.P.4. The shape of the tributary is identical to that of the main
stem (Fig. 1 O.P.I). The tributary is 3000 feet long and has a bottom slope of
0.0005 ft/ft and a bottom elevation of 98.0 ft at the confluence. A Manning's n
of 0.025 is assumed. The inflow hydrograph used in Prob. 10.5.1 (Fig. 10.P.2)
is the upstream boundary condition for both channels. To model this system,
a new station is added to the main stem at distance 4950 ft to account for the
tributary channel. The tributary is discretized using six stations, as shown in Fig.
10.P.4. Stations 4 and 5 have no purpose for this problem; Prob. 10.5.4 makes
use of them. Plot the new outflow hydrograph at station 11 and compare it with
the result obtained in Prob. 10.5.1. Plot the distribution of flow rate along the
channel at one-hour time intervals. Use an initial condition of 200 cfs inflow to
each of the two channels and 400 cfs downstream of their junction.

FIGURE 10.P.1
Channel cross section.

FIGURE 10.P.2
Inflow hydrograph.Time (h)

D
is

ch
ar

ge
 (

cf
s)



FIGURE 10.P.4
Two-channel irrigation system.

Main channel
Downstream boundary

Distance (ft)

Upstream
boundary

Station
Tributary channel

Main channel
Upstream boundary

Distance (ft)Station

FIGURE 10.P.3
Main irrigation channel.

10.5.3 Solve Prob. 10.5.2 using the tributary inflow hydrograph shown in Figure 10.P.5.
This problem has been constructed to illustrate the program's capability of han-
dling backwater effects in channel systems.

10.5.4 Solve Prob. 10.5.2 with a flow-regulating structure placed between stations 5
and 6 on the tributary, just upstream of the confluence. The rating table for the
regulating structure is given below.

Stage (ft) 4 6 8 10 13 16 20 25

Discharge (cfs) 100 300 700 1000 1300 1500 1750 2000

Downstream boundary

Upstream boundary

Station Distance (ft)



10.6.1 Derive the finite difference equations for continuity and momentum for flood
routing in a meandering river. Consider the left and right flood plain, the main
channel, and the dead storage in development of these equations.

10.7.1 The purpose of this problem is to illustrate the use of DAMBRK or FLDWAV
to perform reservoir routing using the storage routing procedure and dynamic
routing in the downstream valley. You are to develop the DAMBRK model
input and run it on the computer. The PMF (probable maximum flood) inflow
hydrograph to the reservoir is given in Table 10.P.1. Reservoir characteristics
are presented in Table 10.P.2, including the elevation-storage relationship and
spillway characteristics. Five cross sections labeled B through F in Table 10.P.3
are used to describe the 12.5-mile-long downstream valley. Manning's roughness
factors, as a function of water surface elevation for each cross section, are also
given in Table 10.P.3. The slope of the downstream valley is about 10.15 ft/mi.
The initial water surface elevation in the reservoir is 2323 ft above mean sea level
(MSL). Terminate routing computations after 57 hours of simulation. Use KDMP
= 3 and JNK = 1 for the printing instructions. Use a minimum computational
distance for interpolated cross sections of 0.5 mi for each reach. Let the initial
condition be a flow of 800 cfs.

TABLE 10.P.1
Probable maximum flood for Prob. 10.7.1

Time(h) 0 1 3 5 7 9 11 13

Inflow (cfs) 0.0 12.8 239.2 2000.0 8028.8 20339.5 40906.1 80570.3

Time 15 17 19 21 23 25 27 29

Inflow 156116.8 248330.1 295681.1 279367.0 224737.0 158232.4 107019.0 71600.3

Time 31 33 35 37 39 41 43 45

Inflow 46295.6 29862.1 19363.0 12561.7 8143.1 5275.7 3460.3 2205.5

Time 47 49 51 53 55 57

Inflow 1218.0 495.8 163.4 63.0 15.7 0.

FIGURE 10.P.5
Inflow hydrograph for tributary.Time (h)
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TABLE 10.P.2

Characteristics of reservoir

Elevation-storage relationship

Elevation Storage
(ft-MSL) (acre-feet)
2342 160710
2330 85120
2320 58460
2305 30075
2290 13400
2275 4125
2260 335
2245 0

Reservoir
Top-of-dam elevation (MSL): 2347 ft
Length of reservoir: 5 mi
Elevation (MSL) of bottom of dam: 2245 ft
Normal pool level (MSL): 2323 ft

Spillway
Elevation of uncontrolled spillway crest: 2333 ft
Discharge of coefficient for uncontrolled spillway: 2.5
Length of uncontrolled spillway: 3900 ft

Turbine
Discharge: 800 cfs

TABLE 10.P.3
Cross sections of downstream valley

Cross Channel
section location
number (mi)

A 4.95 Elevation (ft) 2250 2260 2300 2330 2350
Top width (ft) 0 1024 2737 4508 11812

B 5.0 Elevation (ft) 2250 2260 2300 2330 2350
Top width (ft) 0 1024 2737 4508 11812

C 6.97 Elevation (ft) 2230 2240 2250 2270 2300
Top width (ft) 0 473 2539 4311 6654

D 10.61 Elevation (ft) 2190 2200 2210 2240 2270
Top width (ft) 0 1078 2441 3118 3842

E 13.94 Elevation (ft) 2150 2160 2170 2180 2210
Top width (ft) 0 216 1654 2402 4093

F 17.45 Elevation (ft) 2120 2130 2140 2160 2180
Top width (ft) 0 945 1772 3091 3858

G 17.5 Elevation (ft) 2120 2130 2140 2160 2180
Top width (ft) 0 945 1772 3091 3858

H 18.5 Elevation (ft) 2110 2120 2130 2150 2170
Top width (ft) 0 945 1772 3091 3858

Manning's n values 0.030 0.030 0.035 0.035 0.035



10.7.2 Solve Prob. 10.7.1 if the initial elevation of the reservoir is 2290 feet above
mean sea level. By what percentage is the peak downstream flow reduced by the
additional flood storage in the reservoir?

10.7.3 The purpose of this problem is to illustrate the use of DAMBRK or FLDWAV
to perform a dam-break analysis for a nonflood event. The same reservoir and
downstream valley used in Prob. 10.7.1 are used for this application. A nonflood
event is used with an inflow of 800 cfs to the reservoir. The initial water surface
elevation is at the normal pool level (2323 ft). Failure of the dam occurs at
this elevation. The breach is rectangular and the time to maximum breach is 1.25
hours after the beginning of the breach. The breach extends down to the elevation
of the bottom of the dam, 2245 feet above MSL, and is 200 feet wide at its base.
The computation can be terminated after 10 hours of simulation. Plot the outflow
hydrograph from the reservoir.

10.7.4 Solve Prob. 10.7.3 with a time to failure of 2 h and compare the outflow hydro-
graphs for the two failure times.

10.7.5 The purpose of this problem is to illustrate the use of DAMBRK or FLDWAV
to perform a dam break analysis for a probable maximum flood (PMF) event.
The same reservoir and downstream valley used in Prob. 10.7.1 is used for this
application. Use the same breach characteristics as used in Prob. 10.7.3. The
PMF inflow into the reservoir (Prob. 10.7.1, Table 10.P.I) is to be used for this
problem. Assign an elevation of water when breaching starts (HF) of 2341.48
feet above MSL and a time to maximum breach size (TFM) of 1.25 h. Compare
the outflow hydrograph with that obtained in Probs. 10.7.1 and 10.7.3.

10.7.6 This problem illustrates a multiple dam application. Prob. 10.7.5 is extended to
include a second dam whose downstream face is at mile 12.5 downstream of
the first dam. Three additional cross sections (A, G, and H in Table 10.P.3) are
used to define the upstream faces of both dams and the channel downstream of
the second dam. Table 10.P.4 is a summary of the characteristics of the second
dam. The initial water surface elevation for the second reservoir is at 2150 ft.
The breach starts when the water surface elevation reaches the top of the second
dam, 2180 ft above MSL, and extends down to elevation 2120 ft above MSL.
Assign a width of base of breach of 100 ft. Use the same value for the time to
maximum breach size as in the first dam. For the first upstream dam use the same
breach characteristics as used in Problem 10.7.3.

10.7.7 Perform a sensitivity analysis for the parameters describing the breach for the
situation posed in Prob. 10.7.5. Consider different values of the time to maximum
breach size (e.g., 0.5 h, 1.0 h, 1.5 h, 3 h, etc.). Consider different maximum
breach widths (e.g., 50 ft, 100 ft, 300 ft, etc.). Plot the flood elevation profile vs.
distance downstream for each of your simulations. From the envelope of profiles,

TABLE 10.P.4
Characteristics of second dam

Top-of-dam elevation (MSL): 2180 ft
Elevation (MSL) of bottom of dam: 2120 ft
Elevation of uncontrolled spillway crest: 2165 ft
Discharge of coefficient for uncontrolled spillway: 2.5
Discharge coefficient for uncontrolled weir flow: 4830.8
Length of uncontrolled spillway: 2000 ft



determine the breach parameters that result in the maximum flooding downstream
of the dam.

10.7.8 Develop the DAMBRK or FLDWAV model input for the Teton Dam failure. For
the Teton Dam failure the water surface at failure was 5288.5 ft MSL, which
was below the spillway outlet; therefore, the spillway flows do not need to be
modeled. The inflow to the reservoir was considered constant at 13,000 cfs over
the entire time of simulation. The reservoir routing is to be performed using
the hydrologic routing procedure with the reservoir characteristics defined by the
following elevation-storage relationship:

Elevation (ft MSL) 5027 5038.5 5098.5 5228.5 5288.5
Storage (ac-ft) 0 1247.8 25,037.8 137,682.8 230,472.8

A total of 12 cross sections, each with five top widths, are used to model the
downstream geometry (Table 10.P.5). Consider a maxium lateral outflow of
-0.30 cfs/ft to produce the volume losses experienced by the passage of the dam-
break flood wave through the stream reaches between adjacent cross sections
(e.g., reach 1 is between cross sections 1 and 2). The Manning's n values,
the minimum distance between interpolated cross sections, and the contraction-
expansion coefficients for each reach are defined in Table 10.P.6. The following
parameters are required for the input: length of reservoir = 17 mi, initial elevation
of water surface before failure = 5288.5 ft MSL, side slope of breach z = 0,

TABLE 10.P.5
Teton Dam cross section information

Cross section 1 River mile 0 (downstream from dam)
Water surface elevation (ft MSL) 5027 5037 5051 5107 5125
Top width 0 590 820 1130 1200
Top width, off-channel storage 0 0 0 0 0

Cross section 2 River mile 5.0 mi
Water surface elevation (ft MSL) 4965 4980 5015 5020 5030
Top width 0 850 1100 1200 1300
Top width, off-channel storage 0 0 3500 4300 5300

Cross section 3 River mile 8.5 mi
Water surface elevation (ft MSL) 4920 4930 4942 4953 4958
Top width 0 800 4000 11000 15000
Top width, off-channel storage 0 0 0 7000 10000

Cross section 4 River mile 16.0 mi
Water surface elevation (ft MSL) 4817 4827 4845 4847 4852
Top width 0 884 4000 11000 22000
Top width, off-channel storage 0 0 30000 27000 25000

Cross section 5 River mile 22.5 mi
Water surface elevation (ft MSL) 4805 4812 4814 4825 4830
Top width 0 1000 1200 11000 16000
Top width, off-channel storage 0 0 0 6000 8000

Cross section 6 River mile 27.5 mi
Water surface elevation (ft MSL) 4788 4792 4802 4808 4810
Top width 0 286 7000 10000 11000
Top width, off-channel storage 0 0 0 3500 5000



TABLE 10.P.6
Cross sections of downstream valley

Reach 1 2 3 4 5 6 7 8 9 10 11
Manning's n* 0.08 0.05 0.031 0.034 0.038 0.037 0.034 0.034 0.034 0.036 0.036
Minimum Ax (mi) 0.5 0.5 0.5 0.75 1.0 1.0 1.0 1.0 1.0 1.1 1.4
Expansion- 0 -0 .9 0 0 0.1 -0 .5 0 0 0 0 0
contraction
coefficients**

*The same Manning's n is used for all depths (water surface elevations).
**Expansion coefficients have a negative value and contraction coefficients have a positive value.

elevation of bottom of breach = 5027 ft MSL, final bottom width of breach =
150 ft, time to maximum breach = 1.25 h, elevation of water when breached =
5288.5 ft MSL, simulation time = 55 h. Because you are simulating a piping
failure, let the top of the failure be equal to the initial water surface elevation.
The flow for initial conditions can be set at 13,000 cfs. Compare your results
with those in Figs. 10.7.3-10.7.6.

10.7.9 Perform a sensitivity analysis of the various input parameters for the Teton Dam
application (Prob. 10.7.8). For example, vary the final bottom width and side
slope of the breach. Also, vary the maximum time to failure. For each simulation
that you make, plot maximum flood elevation vs. distance downstream on the
same graph and compare with the results in Fig. 10.7.4.

TABLE 10.P.5 (cont.)
Teton Dam cross section information

Cross section 7 River mile 32.5 mi
Water surface elevation (ft MSL) 4762 4774 4777 4780 4785
Top width 0 352 5000 10000 18000
Top width, off-channel storage 0 0 9000 10000 24000

Cross section 8 River mile 37.5 mi
Water surface elevation (ft MSL) 4752 4763 4768 4773 4778
Top width 0 450 3500 6000 9000
Top width, off-channel storage 0 0 4000 8500 12000

Cross section 9 River mile 41.0 mi
Water surface elevation (ft MSL) 4736 4756 4761 4763 4768
Top width 0 540 2000 4000 6000
Top width, off-channel storage 0 0 3700 3700 5500

Cross section 10 River mile 43.0 mi
Water surface elevation (ft MSL) 4729 4737 4749 4757 4759
Top width 0 250 587 1750 2000
Top width, off-channel storage 0 0 0 1500 2000

Cross section 11 River mile 51.5 mi
Water surface elevation (ft MSL) 4654 4659 4668 4678 4683
Top width 0 70 352 400 420
Top width, off-channel storage 0 0 0 0 0

Cross section 12 River mile 59.5 mi
Water surface elevation (ft MSL) 4601 4604 4606 4615 4620
Top width 0 245 450 500 520
Top width, off-channel storage 0 0 0 0 0



HYDROLOGIC
STATISTICS

Hydrologic processes evolve in space and time in a manner that is partly pre-
dictable, or deterministic, and partly random. Such a process is called a stochastic
process. In some cases, the random variability of the process is so large compared
to its deterministic variability that the hydrologist is justified in treating the pro-
cess as purely random. As such, the value of one observation of the process is not
correlated with the values of adjacent observations, and the statistical properties
of all observations are the same.

When there is no correlation between adjacent observations, the output
of a hydrologic system is treated as stochastic, space-independent, and time-
independent in the classification scheme shown in Fig. 1.4.1. This type of treat-
ment is appropriate for observations of extreme hydrologic events, such as floods
or droughts, and for hydrologic data averaged over long time intervals, such as
annual precipitation. This chapter describes hydrologic data from pure random
processes using statistical parameters and functions. Statistical methods are based
on mathematical principles that describe the random variation of a set of observa-
tions of a process, and they focus attention on the observations themselves rather
than on the physical processes which produced them. Statistics is a science of
description, not causality.

11.1 PROBABILISTIC TREATMENT OF
HYDROLOGIC DATA

A random variable X is a variable described by a probability distribution. The
distribution specifies the chance that an observation x of the variable will fall in
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a specified range of X. For example, if X is annual precipitation at a specified
location, then the probability distribution of X specifies the chance that the
observed annual precipitation in a given year will lie in a defined range, such as
less than 30 in, or 30 in-40 in, and so on.

A set of observations x\, X2, . . . , Xn of the random variable is called
a sample. It is assumed that samples are drawn from a hypothetical infinite
population possessing constant statistical properties, while the properties of a
sample may vary from one sample to another. The set of all possible samples
that could be drawn from the population is called the sample space, and an event
is a subset of the sample space (Fig. 11.1.1). For example, the sample space
for annual precipitation is theoretically the range from zero to positive infinity
(though the practical lower and upper limits are closer than this), and an event A
might be the occurrence of annual precipitation less than some amount, such as
30 in.

The probability of an event, P(A), is the chance that it will occur when
an observation of the random variable is made. Probabilities of events can be
estimated. If a sample of n observations has nA values in the range of event A,
then the relative frequency of A is nAln. As the sample size is increased, the
relative frequency becomes a progressively better estimate of the probability of
the event, that is,

P(A) = lim — (11.1.1)
n-*cc n

Such probabilities are called objective or posterior probabilities because they
depend completely on observations of the random variable. People are accustomed
to estimating the chance that a future event will occur based on their judgment
and experience. Such estimates are called subjective ox prior probabilities.

The probabilities of events obey certain principles:

1. Total probability. If the sample space fl is completely divided into m nonover-
lapping areas or events Ax, A2, . . . , Am, then

P(A1) + P(A2) + ... + P(Am) = P(O) = 1 (11.1.2)

2. Complementarity. It follows that if A is the complement of A, that is, A
= O - A, then

P(A) = 1 ~P(A) (11.1.3)

FIGURE 11.1.1
Events A and B are subsets of the sample space 12.

Sample spaced



3. Conditional probability. Suppose there are two events A and B as shown in
Fig. 11.1.1. Event A might be the event that this year's precipitation is less
than 40 in, while B might be the event that next year's precipitation will
be less than 40 in. Their overlap is A D B, the event that A and B both
occur, two successive years with annual precipitation less than 40 in/year.
If P(B I A) is the conditional probability that B will occur given that A has
already occurred, then the joint probability that A and B will both occur,
P(AH B), is the product of P(B\A) and the probability that A will occur, that
is, P(A Pl B) = P(BIA)P(A)9 or

P(A n B)
PV\A) = p(A) (11.1.4)

If the occurrence of B does not depend on the occurrence of A, the events
are said to be independent, and P(B\A) = P(B). For independent events, from
(11.1.4),

P(ADB) = P(A)P(B) (11.1.5)

If, for the example cited earlier, the precipitation events are independent from
year to year, then the probability that precipitation is less than 40 in in two
successive years is simply the square of the probability that annual precipitation
in any one year will be less than 40 in.

The notion of independent events or observations is critical to the correct
statistical interpretation of hydrologic data sequences, because if the data are
independent they can be analyzed without regard to their order of occurrence. If
successive observations are correlated (not independent), the statistical methods
required are more complicated because the joint probability P(A D B) of succes-
sive events is not equal to P(A)P(B).

Example 11.1.1. The values of annual precipitation in College Station, Texas,
from 1911 to 1979 are shown in Table 11.1.1 and plotted as a time series in Fig.
11.1.2(fl). What is the probability that the annual precipitation R in any year will
be less than 35 in? Greater than 45 in? Between 35 and 45 in?

TABLE 11.1.1

Annual Precipitation in College Station, Texas, 1911-1979 (in)

Year 1910 1920 1930 1940 1950 1960 1970
0 48.7 44.8 49.3 31.2 46.0 33.9
1 39.9 44.1 34.0 44.2 27.0 44.3 31.7
2 31.0 42.8 45.6 41.7 37.0 37.8 31.5
3 42.3 48.4 37.3 30.8 46.8 29.6 59.6
4 42.1 34.2 43.7 53.6 26.9 35.1 50.5
5 41.1 32.4 41.8 34.5 25.4 49.7 38.6
6 28.7 46.4 41.1 50.3 23.0 36.6 43.4
7 16.8 38.9 31.2 43.8 56.5 32.5 28.7
8 34.1 37.3 35.2 21.6 43.4 61.7 32.0
9 56.4 50.6 35.1 47.1 41.3 47.4 51.8



Solution. There are n = 79 - 11 + 1 = 69 data. Let A be the event R < 35.0 in, B
the event R > 45.0 in. The numbers of values in Table 11.1.1 falling in these ranges
are nA = 23 and nB = 19, so P(A) « 23/69 = 0.333 and P(B) « 19/69 = 0.275.
From Eq. (11.1.3), the probability that the annual precipitation is between 35 and
45 in can now be calculated

P(35.0 < R < 45.0 in) = 1 - P(R < 35.0) - P(R > 45.0)

= 1 -0 .333-0 .275

= 0.392

Example 11.1.2. Assuming that annual precipitation in College Station is an inde-
pendent process, calculate the probability that there will be two successive years of
precipitation less than 35.0 in. Compare this estimated probability with the relative
frequency of this event in the data set from 1911 to 1979 (Table 11.1.1).

Solution. Let C be the event that R < 35.0 in for two successive years. From
Example 11.1.1, P(R < 35.0 in) = 0.333, and assuming independent annual
precipitation,

P(C) = [P(R < 35.0 in)]2

= (0.333)2

= 0.111

From the data set, there are 9 pairs of successive years of precipitation less than
35.0 in out of 68 possible such pairs, so from a direct count it would be estimated

FIGURE 11.1.2
Annual precipitation in College Station, Texas, 1911-1979. The frequency histogram is formed by
adding up the number of observed precipitation values falling in each interval.

Number of data

(b) Frequency histogram.
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(a) Annual precipitation.
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that P(C) ~ ricln = 9/68 = 0.132, approximately the value found above by assuming
independence.

Probabilities estimated from sample data, as in Examples 11.1.1 and 11.1.2,
are approximate, because they depend on the specific values of the observations in
a sample of limited size. An alternative approach is to fit a probability distribution
function to the data and then to determine the probabilities of events from this
distribution function.

11.2 FREQUENCY AND PROBABILITY FUNCTIONS

If the observations in a sample are identically distributed (each sample value
drawn from the same probability distribution), they can be arranged to form a
frequency histogram. First, the feasible range of the random variable is divided
into discrete intervals, then the number of observations falling into each interval is
counted, and finally the result is plotted as a bar graph, as shown in Fig. 11.1.2(Z?)
for annual precipitation in College Station. The width Ax of the interval used in
setting up the frequency histogram is chosen to be as small as possible while still
having sufficient observations falling into each interval for the histogram to have
a reasonably smooth variation over the range of the data.

If the number of observations W1- in interval /, covering the range
[Xi — Ax, X(]9 is divided by the total number of observations n, the result is called
the relative frequency function fs(x):

Ux1)= ^ (11.2.1)

which, as in Eq. (11.1.1), is an estimate of P(xt — Ax < X < x,), the probability
that the random variable X will lie in the interval [xt — Ax, X1]. The subscript s
indicates that the function is calculated from sample data.

The sum of the values of the relative frequencies up to a given point is the
cumulative frequency function Fs(x):

i

Fs(Xt) = ^UXj) (11.2.2)
7 = 1

This is an estimate of P(X < *,•), the cumulative probability of X1.
The relative frequency and cumulative frequency functions are defined for

a sample; corresponding functions for the population are approached as limits as
n —> o° and Ax —» 0. In the limit, the relative frequency function divided by the
interval length Ax becomes the probability density function f(x):

f (x)
/(jc) = lim J-f+ (11.2.3)

n—»oo IAX

The cumulative frequency function becomes the probability distribution function
F(x),



F(Jc) = Um F5(Jc) (11.2.4)
n-»oo

whose derivative is the probability density function

/(X) = ^ (11.2.5)

For a given value of JC, F(JC) is the cumulative probability P(X < JC), and it can be
expressed as the integral of the probability density function over the range X < JC:

P(X < JC) = F(jc) = f(u)du (11.2.6)
J-OO

where u is a dummy variable of integration.
From the point of view of fitting sample data to a theoretical distribution,

the four functions—relative frequency fs(x) and cumulative frequency F/JC) for
the sample, and probability distribution FQc) and probability density/(JC) for the
population—may be arranged in a cycle as shown in Fig. 11.2.1. Beginning in the
upper left panel, (a), the relative frequency function is computed from the sample
data divided into intervals, and accumulated to form the cumulative frequency
function shown at the lower left, (b). The probability distribution function, at the
lower right, (c), is the theoretical limit of the cumulative frequency function as
the sample size becomes infinitely large and the data interval infinitely small.
The probability density function, at the upper right, (d), is the value of the slope
of the distribution function for a specified value of JC. The cycle may be closed
by computing a theoretical value of the relative frequency function, called the
incremental probability function:

P(Xi) = P(X1 - Ax < X < X1)

Rx) dx

Jx1- A*

rx( rxi-Ax

= f(x)dx- f(x)dx
J —00 J —00

= F(Xi)-F(X1-Ax)
= F(JC /)-F(JC /_1) (11.2.7)

The match between p(xt) and the observed relative frequency function /X*;) for
each JC/ can be used as a measure of the degree of fit of the distribution to the
data.

The relative frequency, cumulative frequency, and probability distribution
functions are all dimensionless functions varying over the range [0,1]. However,
since dF(x) is dimensionless and dx has the dimensions of X, the probability
density function/(JC) = dF(x)/dx has dimensions [X]~l and varies over the range
[0,°°]. The relationship dF(x) = /(JC) dx can be described by saying that/(JC)



FIGURE 11.2.1
Frequency functions from sample data and probability functions from the population.

represents the "density" or "concentration" of probability in the interval [JC, x +
dx].

One of the best-known probability density functions is that forming the
familiar bell-shaped curve for the normal distribution:

f(x) = - ^ r exp - ^ - ^ (H.2.8)

where JUL and a are parameters. This function can be simplified by defining the
standard normal variable z as

(b) Cumulative frequency function (c) Probability distribution function

Sample Population

(d) Probability density function(a) Relative frequency function



z = — - (11.2.9)
(J

The corresponding standard normal distribution has probability density function

f(z) = —!— e~z2/2 -oo < z < (x (11.2.10)
V2^

which depends only on the value of z and is plotted in Fig. 11.2.2. The standard
normal probability distribution function

CZ +

F(Z) = e~u2/2 du (11.2.11)
J-°° V2^

where u is a dummy variable of integration, has no analytical form. Its values are
tabulated in Table 11.2.1, and these values may be approximated by the following
polynomial (Abramowitz and Stegun, 1965):

B = - [ I + 0.196854|z| + 0.115194|z|2 + 0.000344|z|3 + 0.019527|z|4]"4

(11.2.12a)

where \z\ is the absolute value of z and the standard normal distribution has

F(z) =B for z < 0 (11.2.12ft)

= 1 -B for z ^ 0 (11.2.12c)

The error in F(z) as evaluated by this formula is less than 0.00025.

Example 11.2.1. What is the probability that the standard normal random variable
z will be less than -2? Less than 1? What is P( -2 < z < 1)?

FIGURE 11.2.2
The probability density function for the standard normal distribution (/A = 0, er = 1).



TABLE 11.2.1

Cumulative probability of the standard normal distribution

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Source: Grant, E. L., and R. S. Leavenworth, Statistical Quality and Control, Table A, p.643, McGraw-
Hill, New York, 1972. Used with permission.

To employ the table for z < 0, use
F z (z)= 1-F2(IzI)
where F2(IzI) is the tabulated value.



Solution. P(Z < -2) = F(-2) , and from Eq. (11.2.12a) with \z\ = \ ~ 2| = 2,

B =^[1 +0.196854x2 + 0.115194 x (2)2

+ 0.000344 x (2)3 4- 0.019527 x (2)4]"4

= 0.023

From (11.2.12Z?), F(-2) = B = 0.023.
P(Z < 1) = F(I), and from (11.2.12«)

B = i [ i + 0.196854 x 1 + 0.115194 x (I)2

+ 0.000344 x (I)3 + 0.019527 x (I)4]"4

= 0.159

From (11.2.12c), F(I) = 1 - B = 1 - 0.159 = 0.841.
Finally,

P(-2 < Z < I) = F(I) - F(-2)

= 0.841 -0.023

= 0.818.

11.3 STATISTICAL PARAMETERS

The objective of statistics is to extract the essential information from a set of
data, reducing a large set of numbers to a small set of numbers. Statistics are
numbers calculated from a sample which summarize its important characteristics.
Statistical parameters are characteristics of a population, such as /JL and a in Eq.
(11.2.8).

A statistical parameter is the expected value E of some function of a random
variable. A simple parameter is the mean JJL, the expected value of the random
variable itself. For a random variable X, the mean is E(X), calculated as the
product of x and the corresponding probability density/(JC), integrated over the
feasible range of the random variable:

E(X) = in = \ xf(x)dx (11.3.1)
J-OO

E(X) is the first moment about the origin of the random variable, a measure of
the midpoint or "central tendency" of the distribution.

The sample estimate of the mean is the average x of the sample data:

Jc= " X ^ (11.3.2)
n / = i

Table 11.3.1 summarizes formulas for some population parameters and their
sample statistics.



TABLE 11.3.1

Population parameters and sample statistics

Population parameter Sample statistic
1. Midpoint

Arithmetic mean

£ n

Xf(X) dX X = - ^ X 1
c TfX

I = I

Median

x such that F(x) = 0.5 50th-percentile value of data

Geometric mean In \i/n

antilog [£(log x)] f]*;
\i = i I

2. Variability

Variance
n

a2 = E[(x - M)2] s2 = ^ 7 X ^ " ^ 2

i = i

Standard deviation
1 1 / 2

(7={£[(X-M)2]}I/2 5= ^ r X f c - ^ ) 2

I = I

Coefficient of variation

CV=? CV=±
M x

3. Symmetry

Coefficient of skewness
n

n^(Xi-x)3

= E[(x - M)3] c = _i^i
7 O 3 s (n- l)(n - 2)53

The variability of data is measured by the variance a2, which is the second
moment about the mean:

E[(x - IX)2] = a2 = I ( X - ̂ )2Z(X) dx (11.3.3)
J-OO



The sample estimate of the variance is given by

s2 = - ^ r j>>/ ~x)2 (11.3.4)
n i = \

in which the divisor is n — 1 rather than n to ensure that the sample statistic is
unbiased, that is, not having a tendency, on average, to be higher or lower than
the true value. The variance has dimensions [X]2. The standard deviation a is a
measure of variability having the same dimensions as X. The quantity a is the
square root of the variance, and is estimated by s. The significance of the standard
deviation is illustrated in Fig. 11.3.1 (a); the larger the standard deviation, the
larger is the spread of the data. The coefficient of variation CV= <T//JL, estimated
by s /3c, is a dimensionless measure of variability.

The symmetry of a distribution about the mean is measured by the skewness
which is the third moment about the mean:

, 0 0

E[(x - fif] = (X- fiff(x)dx (11.3.5)
J-OO

The skewness is normally made dimensionless by dividing (11.3.5) by a3 to give
the coefficient of skewness y:

y=^E[(x-fi)3] (11.3.6)

A sample estimate for y is given by:

n

Cs = — ^ r r - j (11.3.7)
(n - I ) ( T i - 2)s3

X X

(a) Standard deviation a. (b) Coefficient of skewness Cs-

FIGURE 11.3.1
The effect on the probability density function of changes in the standard deviation and coefficient
of skewness.
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or

n(n - l)(n - 2)s5

As shown in Fig. 11.3.1 (Z?), for positive skewness (7 > 0), the data are
skewed to the right, with only a small number of very large values; for negative
skewness (y < 0), the data are skewed to the left. If the data have a pronounced
skewness, the small number of extreme values exert a significant effect on the
arithmetic mean calculated by Eq. (11.3.2), and alternative measures of central
tendency are appropriate, such as the median or geometric mean as listed in Table
11.3.1.

Example 11.3.1. Calculate the sample mean, sample standard deviation, and sam-
ple coefficient of skewness of the data for annual precipitation in College Station,
Texas, from 1970 to 1979. The data are given in Table 11.1.1.

Solution. The values of annual precipitation from 1970 to 1979 are copied in
column 2 of Table 11.3.2. Using Eq. (11.3.2) the mean is

n

X = - y Xj

_ 401.7
10

= 40.17 in

The squares of the deviations from the mean are shown in column 3 of the table,

TABLE 11.3.2
Calculation of sample statistics for College Station
annual precipitation, 1970-1979 (in) (Example 11.3.1).

Column: 1 2 3 4
Year Precipitation x (x - x)2 (x - x)3

1970 33.9 39.3 -246.5
1971 31.7 71.7 -607.6
1972 31.5 75.2 -651.7
1973 59.6 377.5 7335.3
1974 50.5 106.7 1102.3
1975 38.6 2.5 -3.9
1976 43.4 10.4 33.7
1977 28.7 131.6 -1509.0
1978 32.0 66.7 -545.3
1979 51.8 135.3 1573.0

Total 401.7 1016.9 6480.3



totaling 1016.9 in2. From (11.3.4)
n

*2 = ̂ Tj 5 > ' -*>2

I = I

_ 1016.9

9

= 113.0 in2

The standard deviation is

s = (113.0)1/2

= 10.63 in
The cubes of the deviation from the mean are shown in column 4 of Table 11.3.2,
totaling 6480.3. From (11.3.7)

n

c = —izi
s (n - l)(n - 2)s*

_ 10 x 6480.3

" 9 x 8 x (10.63)3

= 0.749

11.4 FITTING A PROBABILITY
DISTRIBUTION

A probability distribution is a function representing the probability of occurrence
of a random variable. By fitting a distribution to a set of hydrologic data, a great
deal of the probabilistic information in the sample can be compactly summarized
in the function and its associated parameters. Fitting distributions can be accom-
plished by the method of moments or the method of maximum likelihood.

Method of Moments

The method of moments was first developed by Karl Pearson in 1902. He consid-
ered that good estimates of the parameters of a probability distribution are those
for which moments of the probability density function about the origin are equal
to the corresponding moments of the sample data. As shown in Fig. 11.4.1, if
the data values are each assigned a hypothetical "mass" equal to their relative
frequency of occurrence (1/n) and it is imagined that this system of masses is
rotated about the origin x = 0, then the first moment of each observation JC,- about
the origin is the product of its moment arm JC,- and its mass 1/n, and the sum of
these moments over all the data is

n n

> — = - > JC/ = JC

I=I I=I



FIGURE 11.4.1
The method of moments selects values for the parameters of the probability density function so that
its moments are equal to those of the sample data.

the sample mean. This is equivalent to the centroid of a body. The corresponding
centroid of the probability density function is

ix = xf(x)dx (11.4.1)
J-OO

Likewise, the second and third moments of the probability distribution can
be set equal to their sample values to determine the values of parameters of the
probability distribution. Pearson originally considered only moments about the
origin, but later it became customary to use the variance as the second central
moment, o2 = E[(x—JH)2] , and the coefficient of skewness as the standardized third
central moment, y = E[(x - JH)3]/CT3, to determine second and third parameters
of the distribution if required.

Example 11.4.1. The exponential distribution can be used to describe various
kinds of hydrologic data, such as the interarrival times of rainfall events. Its

(b) Sample data.

Moment arm

n

x =ZJ -jfxi (first moment about the origin)
/ = i

"Mass" - i -

N Moment arm

(a) Probability density function.

f(x)dx= "mass"

(first moment about the origin)



probability density function is f(x) = Xe ^ for x > 0. Determine the relationship
between the parameter A and the first moment about the origin, JJL.

Solution. Using Eq. (11.4.1),

P = E(X)= Xf(X)ClX
J - O O

r
xXe'^dx

Jo
which may be integrated by parts to yield

1
M = A

In this case A = V/JL, and the sample estimate for A is Vx.
As a matter of interest, it can be seen that the exponential probability density

function/(x) = Xe " ^ and the impulse response function for a linear reservoir (see
Ex. 7.2.1) u(l) = (l/k)e~l/k are identical if x = I and A = Vk. In this sense,
the exponential distribution can be thought of as describing the probability of the
"holding time" of water in a linear reservoir.

Method of Maximum Likelihood

The method of maximum likelihood was developed by R. A. Fisher (1922). He
reasoned that the best value of a parameter of a probability distribution should be
that value which maximizes the likelihood or joint probability of occurrence of the
observed sample. Suppose that the sample space is divided into intervals of length
dx and that a sample of independent and identically distributed observations Jt1,
JC2, . . . , xn is taken. The value of the probability density for X = Jt1- is/(jt/),
and the probability that the random variable will occur in the interval including
Xi is f(xt) dx. Since the observations are independent, their joint probability of
occurrence is given from Eq. (11.1.5) as the product f(x\) dxf(xi) dx . . . f(xn) dx
= [U I=If(Xi)] dxn, and since the interval size dx is fixed, maximizing the joint
probability of the observed sample is equivalent to maximizing the likelihood
function

n

L = YIf(Xi) (11.4.2)
i = i

Because many probability density functions are exponential, it is sometimes more
convenient to work with the log-likelihood function

n
s:—^

InL = 2 . ln W*)] (11.4.3)
! = 1



Example 11.4.2. The following data are the observed times between rainfall events
at a given location. Assuming that the interarrival time of rainfall events follows an
exponential distribution, determine the parameter A for this process by the method
of maximum likelihood. The times between rainfalls (days) are: 2.40, 4.25, 0.77,
13.32, 3.55, and 1.37.

Solution. For a given value xt, the exponential probability density is

/(JC1-) = Xe-*

so, from Eq. (11.4.3), the log-likelihood function is

n

In L = ^ In \f(Xi)]
I = I

n

= ] T In (A*-**)
i = \

n

= ^T(InA-A*,)
/ = 1

n

= n InA - A yj x(

i = i

The maximum value of In L occurs when d{\n L)IdX = 0; that is, when

<?Qn L) n v n

i = i

so
n

i i v

i = 1

A =

X

This is the same sample estimator for A as was produced by the method of moments.
In this case, x = (2.40 + 4.25 + 0.77 + 13.22 + 3.55 + 1.37)/6 = 25.56/6 =
4.28 days, so A = 1/4.28 = 0.234 day"1. Note that <?2(ln L)IdX2 = -nX2, which
is negative as required for a maximum.

The value of the log-likelihood function can be calculated for any value of
A. For example, for A = 0.234 day"1, the value of the log-likelihood function is

n

I n L = n I n A - A ̂  xt

i = l

= 6 In (0.234) - 0.234 x 25.56

= -14.70



FIGURE 11.4.2
The log-likelihood function for an exponential distribution (Example 11.4.2).

Figure 11.4.2 shows the variation of the log-likelihood function with A, with the
maximum value at A = 0.234 day"1 as was determined analytically.

The method of maximum likelihood is the most theoretically correct method
of fitting probability distributions to data in the sense that it produces the most
efficient parameter estimates—those which estimate the population parameters
with the least average error. But, for some probability distributions, there is no
analytical solution for all the parameters in terms of sample statistics, and the
log-likelihood function must then be numerically maximized, which may be quite
difficult. In general, the method of moments is easier to apply than the method
of maximum likelihood and is more suitable for practical hydrologic analysis.

Testing the Goodness of Fit

The goodness of fit of a probability distribution can be tested by comparing
the theoretical and sample values of the relative frequency or the cumulative
frequency function. In the case of the relative frequency function, the x2 test

is used. The sample value of the relative frequency of interval / is, from Eq.
(11.2.1), fs(xi) = rii/n; the theoretical value from (11.2.7) is p(xt) = F(xt) -
F(Xi-\). The x2 test statistic xl is given by

i = 1 P\xi)

where m is the number of intervals. It may be noted that nfs{xt) = nh the
observed number of occurrences in interval /, and np(xt) is the corresponding
expected number of occurrences in interval /; so the calculation of Eq. (11.4.4)
is a matter of squaring the difference between the observed and expected numbers

X (days l)

Maximum
likelihood
estimate
of X

L
og

—
lik

el
ih

oo
d



of occurrences, dividing by the expected number of occurrences in the interval,
and summing the result over all intervals.

To describe the x2 test, the x2 probability distribution must be defined. A
X1 distribution with v degrees of freedom is the distribution for the sum of squares
of v independent standard normal random variables z,; this sum is the random
variable

V

Xi = ^z2 (11.4.5)
/ = i

The x1 distribution function is tabulated in many statistics texts (e.g., Haan,
1977). In the x2 test, v = m — p — 1, where m is the number of intervals as before,
and p is the number of parameters used in fitting the proposed distribution. A
confidence level is chosen for the test; it is often expressed as 1 — a, where
a is termed the significance level. A typical value for the confidence level is
95 percent. The null hypothesis for the test is that the proposed probability
distribution fits the data adequately. This hypothesis is rejected (i.e., the fit is
deemed inadequate) if the value of ^ in (11.4.4) is larger than a limiting value,
xl \-a> determined from the x2 distribution with v degrees of freedom as the
value having cumulative probability I — a.

Example 11.4.3. Using the method of moments, fit the normal distribution to the
annual precipitation at College Station, Texas, from 1911 to 1979 (Table 11.1.1).
Plot the relative frequency and incremental probability functions, and the cumulative
frequency and cumulative probability functions. Use the x2 test to determine whether
the normal distribution adequately fits the data.

Solution, The range for precipitation R is divided into ten intervals. The first interval
is R < 20 in, the last is R > 60 in, and the intermediate intervals each cover a
range of 5 in. By scanning Table 11.1.1 the frequency histogram is compiled, as
shown in column 2 of Table 11.4.1. The relative frequency function fs(Xi) (column
3) is calculated by Eq. (11.2.1) with n = 69. For example, for i = 4 (30-35 in),
rii = 14, and

/,(*) —

_ ] 4

~69

= 0.203

The cumulative frequency function (column 4) is found by summing up the relative
frequencies as in Eq. (11.2.2). For / = 4

4

F1(M)= ^ fsOCj)

y = i

= F5(X3) +/,(*t)

= 0.130 + 0.203



TABLE 11.4.1
Fitting a normal distribution to annual precipitation at College
Station, Texas, 1911-1979 (Example 11.4.3).

C o l u m n : 1 2 3 4 5 6 7 8

I n t e r v a l R a n g e
i (in) /I1 fs(x0 Fs(x0 z, F(x0 p(x0 \2c

1 < 20 1 0.014 0.014 -2.157 0.015 0.015 0.004
2 20-25 2 0.029 0.043 -1.611 0.053 0.038 0.147
3 25-30 6 0.087 0.130 -1.065 0.144 0.090 0.008
4 30-35 14 0.203 0.333 -0.520 0.301 0.158 0.891
5 35-40 11 0.159 0.493 0.026 0.510 0.209 0.805
6 40-45 16 0.232 0.725 0.571 0.716 0.206 0.222
7 45-50 10 0.145 0.870 1.117 0.868 0.151 0.019
8 50-55 5 0.072 0.942 1.662 0.952 0.084 0.114
9 55-60 3 0.043 0.986 2.208 0.986 0.034 0.163

10 >60 1 0.014 1.000 2.753 1.000 0.014 0.004

Total 69 1.000 1.000 2.377

Mean 39.77
Standard deviation 9.17

= 0.333

It may be noted that this is P(X < 35.0 in) as used in Example 11.1.1.
To fit the normal distribution function, the sample statistics Jc = 39.77 in and

s = 9.17 in are calculated for the data from 1911 to 1979 in the manner shown in
Example 11.3.1, and used as estimates for fx and a. The standard normal variate
z corresponding to the upper limit of each of the data intervals is calculated by
(11.2.9) and shown in column 5 of the table. For example, for i = 4,

(J

_ 35.0 - 39.77

9.17

= -0.520
The corresponding value of the cumulative normal probability function is given by
(11.2.12) or Table 11.2.1 as 0.301, as listed in column 6 of Table 11.4.1. The
incremental probability function is computed by (11.2.7). For / = 4,

p(x4) = P(30 < X < 35 in)

= F(35)-F(30)

= 0.301-0.144

= 0.158

and similarly computed values for the other intervals are shown in column 7.
The relative frequency functions/X*/) and p(xt) from Table 11.4.1 are plotted

in Fig. 11.4.3(tf), and the cumulative frequency and probability distribution func-
tions F5(Xi) and F(x) in Fig. 11.4.3(Z?). From the similarity of the two functions



Annual precipitation (in)

• Sample, F5(JC1-) —Fitted, F(Jt1-)

(b) Cumulative frequency function.

FIGURE 11.4.3
Frequency functions for a normal distribution fitted to annual precipitation in College Station, Texas
(Example 11.4.3).

shown in each plot, it is apparent that the normal distribution fits these annual
precipitation data very well.

To check the goodness of fit, the x2 test statistic is calculated by (11.4.4).
For / = 4,

n\fs(x4) - p(x4)]
2 _ 69 x(0.20290 - 0.15777)2

p(x4) ~ 0.15777
= 0.891

as shown in column 8 of Table 11.4.1. The total of the values in column 8 is xl=

2.311. The value of x\ \-a for a cumulative probability of 1 — a = 0.95 and degrees of

Normal distribution
withal = 39.77,O= 9.17

(a) Relative frequency function.
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freedom v = m— p— 1 = 10 — 2—1 = 7 is ^7 0 95 = 14.1 (Abramowitz and Stegun,
1965). Since this value is greater than ^ , the null hypothesis (the distribution
fits the data) cannot be rejected at the 95 percent confidence level; the fit of the
normal distribution to the College Station annual precipitation data is accepted. If
the distribution had fitted poorly, the values of fs(xi) and p(x{) would have been
quite different from one another, resulting in a value of x2

c larger than 14.1, in
which case the null hypothesis would have been rejected.

11.5 PROBABILITY DISTRIBUTIONS FOR
HYDROLOGIC VARIABLES

In Sec. 11.4, the normal distribution was used to describe annual precipitation at
College Station, Texas. Although this distribution fits this set of data particularly
well, observations of other hydrologic variables follow different distributions. In
this section, a selection of probability distributions commonly used for hydrologic
variables is presented, and examples of the types of variables to which these
distributions have been applied are given. Table 11.5.1 summarizes, for each
distribution, the probability density function and the range of the variable, and
gives equations for estimating the distribution's parameters from sample moments.

Normal Distribution

The normal distribution arises from the central limit theorem, which states that if
a sequence of random variables X; are independently and identically distributed
with mean \x and variance o2, then the distribution of the sum of n such random
variables, F = S " = 1 X / , tends towards the normal distribution with mean nfi and
variance no2 as n becomes large. The important point is that this is true no matter
what the probability distribution function of X is. So, for example, the probability
distribution of the sample mean x = 1/nS n

i = x JC,- can be approximated as normal
with mean JJL and variance (IZn)2Ha2 = O2In no matter what the distribution of x
is. Hydrologic variables, such as annual precipitation, calculated as the sum of
the effects of many independent events tend to follow the normal distribution. The
main limitations of the normal distribution for describing hydrologic variables are
that it varies over a continuous range [—°°, °°], while most hydrologic variables
are nonnegative, and that it is symmetric about the mean, while hydrologic data
tend to be skewed.

Lognormal Distribution

If the random variable Y = log X is normally distributed, then X is said to be
lognormally distributed. Chow (1954) reasoned that this distribution is applicable
to hydrologic variables formed as the products of other variables since if X =
X1X2X3 . . . Xn, then Y =log X = S n

i = x log X1- = 2 " = 1 Yh which tends to
the normal distribution for large n provided that the X1- are independent and
identically distributed. The lognormal distribution has been found to describe
the distribution of hydraulic conductivity in a porous medium (Freeze, 1975),



TABLE 11.5.1
Probability distributions for fitting hydrologic data

Equations for parameters
in terms of the sample
moments

fl = X, (J = Sx

fJLy = y, (Jy = Sy

X

B-* - ]

P sl CV*

Range

— oo < JC < oo

x>0

J C > 0

Probability density function

f(x) = exp

/W = exp

where y = log x

fix) = Xe'""

/w= r(/3)
where T = gamma function

Distribution

Normal

Lognormal

Exponential

Gamma



TABLE 11.5.1 (cont.)
Probability distributions for fitting hydrologic data

Equations for parameters
in terms of the sample
moments

(assuming Cs(y) is positive)

OL —

u=x- 0.5772a

Range

x > e

log x > e

— oo < JC < oo

Probability density function

f{X) = T(P)

where y = log X

/(x) = exp exp

Distribution

Pearson Type III
(three parameter
gamma)

Log Pearson
Type III

Extreme Value
Type I



the distribution of raindrop sizes in a storm, and other hydrologic variables. The
lognormal distribution has the advantages over the normal distribution that it is
bounded (X > 0) and that the log transformation tends to reduce the positive
skewness commonly found in hydrologic data, because taking logarithms reduces
large numbers proportionately more than it does small numbers. Some limitations
of the lognormal distribution are that it has only two parameters and that it requires
the logarithms of the data to be symmetric about their mean.

Exponential Distribution

Some sequences of hydrologic events, such as the occurrence of precipitation,
may be considered Poisson processes, in which events occur instantaneously and
independently on a time horizon, or along a line. The time between such events,
or inter arrival time, is described by the exponential distribution whose parameter
A is the mean rate of occurrence of the events. The exponential distribution is
used to describe the interarrival times of random shocks to hydrologic systems,
such as slugs of polluted runoff entering streams as rainfall washes the pollutants
off the land surface. The advantage of the exponential distribution is that it is
easy to estimate A from observed data and the exponential distribution lends itself
well to theoretical studies, such as a probability model for the linear reservoir
(A = l/k, where k is the storage constant in the linear reservoir). Its disadvantage
is that it requires the occurrence of each event to be completely independent of
its neighbors, which may not be a valid assumption for the process under study —
for example, the arrival of a front may generate many showers of rain—and
this has led investigators to study various forms of compound Poisson processes,
in which A is considered a random variable instead of a constant (Kavvas and
Delleur, 1981; Waymire and Gupta, 1981).

Gamma Distribution

The time taken for a number /3 of events to occur in a Poisson process is described
by the gamma distribution, which is the distribution of a sum of /3 independent and
identical exponentially distributed random variables. The gamma distribution has
a smoothly varying form like the typical probability density function illustrated
in Fig. 11.2.1 and is useful for describing skewed hydrologic variables without
the need for log transformation. It has been applied to describe the distribution of
depth of precipitation in storms, for example. The gamma distribution involves the
gamma function T(f3), which is given by T(j8) = (j3 - 1 ) ! = (j3 -1)(j3 - 2). . . 3 • 2 • 1
for positive integer /3, and in general by

r(j8) = u^~le~udu (11.5.1)
Jo

(Abramowitz and Stegun, 1965). The two-parameter gamma distribution (param-
eters /3 and A) has a lower bound at zero, which is a disadvantage for application
to hydrologic variables that have a lower bound larger than zero.



Pearson Type III Distribution

The Pearson Type III distribution, also called the three-parameter gamma distri-
bution, introduces a third parameter, the lower bound e, so that by the method
of moments, three sample moments (the mean, the standard deviation, and the
coefficient of skewness) can be transformed into the three parameters A, /3, and
e of the probability distribution. This is a very flexible distribution, assuming a
number of different shapes as A, /3, and e vary (Bobee and Robitaille, 1977).

The Pearson system of distributions includes seven types; they are all
solutions for f(x) in an equation of the form

dlf(x)] = /CyX* - d)
dx C0 + C1X + C2X

2 l j

where d is the mode of the distribution (the value of x for which/(x) is a maximum)
and Co, Ci, and C2 are coefficients to be determined. When C2 = 0, the solution
of (11.5.2) is a Pearson Type III distribution, having a probability density function
of the form shown in Table 11.5.1. For Ci = C2 = 0, a normal distribution
is the solution of (11.5.2). Thus, the normal distribution is a special case of
the Pearson Type III distribution, describing a nonskewed variable. The Pearson
Type III distribution was first applied in hydrology by Foster (1924) to describe
the probability distribution of annual maximum flood peaks. When the data are
very positively skewed, a log transformation is used to reduce the skewness.

Log-Pearson Type III Distribution

If log X follows a Pearson Type III distribution, then X is said to follow a
log-Pearson Type III distribution. This distribution is the standard distribution
for frequency analysis of annual maximum floods in the United States (Benson,
1968), and its use is described in detail in Chap. 12. As a special case, when log
X is symmetric about its mean, the log-Pearson Type III distribution reduces to
the lognormal distribution.

The location of the bound e in the log-Pearson Type III distribution depends
on the skewness of the data. If the data are positively skewed, then log X > e and

TABLE 11.5.2
Shape and mode location of the log-Pearson Type III distribution
as a function of its parameters

Shape parameter P \ < -In 10 -In 10 < k< 0 X > 0

0 < /3 < 1 No mode Minimum mode No mode
J-shaped U-shaped Reverse J-shaped

/3 > 1 Unimodal No mode Unimodal
Reverse J-shaped

Source: Bobee, 1975.



€ is a lower bound, while if the data are negatively skewed, log X < e and e is an
upper bound. The log transformation reduces the skewness of the transformed data
and may produce transformed data which are negatively skewed from original data
which are positively skewed. In that case, the application of the log-Pearson Type
III distribution would impose an artificial upper bound on the data. Depending
on the values of the parameters, the log-Pearson Type III distribution can assume
many different shapes, as shown in Table 11.5.2 (Bobee, 1975).

As described previously, the log-Pearson Type III distribution was devel-
oped as a method of fitting a curve to data. Its use is justified by the fact that it
has been found to yield good results in many applications, particularly for flood
peak data. The fit of the distribution to data can be checked using the \2 test> o r

by using probability plotting as described in Chap. 12.

Extreme Value Distribution

Extreme values are selected maximum or minimum values of sets of data. For
example, the annual maximum discharge at a given location is the largest recorded
discharge value during a year, and the annual maximum discharge values for each
year of historical record make up a set of extreme values that can be analyzed
statistically. Distributions of the extreme values selected from sets of samples
of any probability distribution have been shown by Fisher and Tippett (1928) to
converge to one of three forms of extreme value distributions, called Types I,
II, and III, respectively, when the number of selected extreme values is large.
The properties of the three limiting forms were further developed by Gumbel
(1941) for the Extreme Value Type I (EVI) distribution, Frechet (1927) for the
Extreme Value Type II (EVII), and Weibull (1939) for the Extreme Value Type
III (EVIII).

The three limiting forms were shown by Jenkinson (1955) to be special cases
of a single distribution called the General Extreme Value (GEV) distribution. The
probability distribution function for the GEV is

[ / x — u\\ik\
-\l-k J (11.5.3)

where k, u, and a are parameters to be determined.
The three limiting cases are (1) for k = 0, the Extreme Value Type I

distribution, for which the probability density function is given in Table 11.5.1,
(2) for k < 0, the Extreme Value Type II distribution, for which (11.5.3) applies
for (u + alk) ^ x < oo, and (3) for k > 0, the Extreme Value Type III
distribution, for which (11.5.3) applies for —oo < JC < (u + alk). In all three
cases, a is assumed to be positive.

For the EVI distribution x is unbounded (Table 11.5.1), while for EVII, x
is bounded from below (by u + alk), and for the EVIII distribution, x is similarly
bounded from above. The EVI and EVII distributions are also known as the
Gumbel and Frechet distributions, respectively. If a variable x is described by
the EVIII distribution, then — x is said to have a Weibull distribution.



REFERENCES

Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York,
p. 932, 1965.

Benson, M. A., Uniform flood-frequency estimating methods for federal agencies, Water Resour.
Res., vol. 4, no. 5, pp. 891-908, 1968.

Bobee, B., The log-Pearson Type III distribution and its application in hydrology, Water Resour.
Res., vol. 11, no. 5, pp. 681-689, 1975.

Bobee, B. B., and R. Robitaille, The use of the Pearson Type 3 and log Pearson Type 3 distributions
revisited, Water Resour. Res., vol. 13, no. 2, pp. 427^43, 1977.

Chow, V. T., The log-probability law and its engineering applications, Proc. Am. Soc. Civ. Eng.,
vol. 80, pp. 1-25, 1954.

Fisher, R. A., On the mathematical foundations of theoretical statistics, Trans. R. Soc. London A,
vol. 222, pp. 309-368, 1922.

Fisher, R. A., and L. H. C. Tippett, Limiting forms of the frequency distribution of the largest or
smallest member of a sample, Proc. Cambridge Phil. Soc, vol. 24, part II, pp. 180-191,
1928.

Foster, H. A., Theoretical frequency curves and their application to engineering problems, Trans.
Am. Soc. Civ. Eng., vol. 87, pp. 142-173, 1924.

Frechet, M., Sur Ia loi de probabilite de l'ecart maximum ("On the probability law of maximum
values"), Annales de Ia societe Polonaise de Mathematique, vol. 6, pp. 93-116, Krakow,
Poland, 1927.

Freeze, R. A., A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform
homogenous media, Water Resour. Res., vol. 11, no. 5, pp. 725-741, 1975.

Gumbel, E. J., The return period of flood flows, The Annals of Mathematical Statistics, vol. 12,
no. 2, pp. 163-190, June 1941.

Haan, C. T., Statistical Methods in Hydrology, Iowa State Univ. Press, Ames, Iowa, 1977.
Jenkinson, A. F., The frequency distribution of the annual maximum (or minimum) values of

meteorological elements, Quart. Jour. Roy. Met. Soc, vol. 81, pp. 158-171, 1955.
Kavvas M. L., and J. W. Delleur, A stochastic cluster model of daily rainfall sequences, Water

Resour. Res., vol. 17, no. 4, pp. 1151-1160, 1981.
Ftearson, K., On the systematic fitting of curves to observations and measurements, Biometrika, vol.

1, no. 3, pp. 265-303, 1902.
Way mire, E., and V. K. Gupta, The mathematical structure of rainfall representations I. A review

of the stochastic rainfall models; Water Resour. Res., vol. 17, no. 5, pp. 1261-1294, 1981.
Weibull, W., A statistical theory of the strength of materials, Ingeniors Vetenskaps Akademien (The

Royal Swedish Institute for Engineering Research), proceedings no. 51, pp. 5^45, 1939.

PROBLEMS

11.1.1 The annual precipitation data for College Station, Texas, from 1911 to 1979 are
given in Table 11.1.1. Estimate from the data the probability that the annual
precipitation will be greater than 50 in in any year. Calculate the probability that
annual precipitation will be greater than 50 in in two successive years (a) by
assuming annual precipitation is an independent process; (b) directly from the
data. Do the data suggest there is any tendency for years of precipitation > 50
in to follow one another in College Station?

11.1.2 Solve Prob. 11.1.1 for precipitation less than 30 in. Is t̂here a tendency for years
of precipitation less than 30 in to follow each other more than independence of
events from year to year would suggest?

11.3.1 Calculate the mean, standard deviation, and coefficient of skewness for College
Station annual precipitation from 1960 to 1969. The data are given in Table
11.1.1.



11.3.2 Calculate the mean, standard deviation, and coefficient of skewness for College
Station annual precipitation for the six 10-year periods beginning in 1920, 1930,
1940, 1950, 1960, 1970 (e.g., 1920-1929). Compare the values of these statistics
for the six samples. Calculate the mean and standard deviation of the six sample
means and their coefficient of variation. Repeat this exercise for the six sample
standard deviations and the six coefficients of skewness. As measured by the
coefficient of variation of each sample statistic, which of these three sample
statistics (mean, standard deviation, or coefficient of skewness) varies most from
sample to sample?

11.4.1 Prove that the mean /JL of the exponential distribution f(x) = Xe'^ is given by
fJL = 1 / A .

11.4.2 Show that the maximum likelihood estimates of the parameters of the normal
distribution are given by

n n

^ = - Y x - and o2 = ~y\ fa - x)2

i = i i = i

11.4.3 Calculate the value of the maximum likelihood estimates of the parameters of
the normal distribution fitted to College Station annual precipitation from 1970 to
1979. Use the formulas given in Prob. 11.4.2 above and the data given in Table
11.1.1. Compare the result with the moment estimates given in Example 11.3.1.

11.4.4 Calculate the value of the log-likelihood function of College Station annual
precipitation from 1970 to 1979 with JJL = 40.17 in and a = 10.63 in. Holding /JL
constant, recompute and plot the value of the log-likelihood function by varying
a in increments of 0.1 from 9.5 to 11.5. Determine the value of a that maximizes
the log-likelihood function.

11.4.5 Solve Example 11.1.1 in the text using the probabilities for events A and B
calculated from a normal distribution with /x = 39.77 in and a = 9.17 in (as
fitted to the College Station precipitation data in Example 11.4.3). Compare the
results you obtain with those in Example 11.1.1. Which method do you think is
more reliable?

11.4.6 A reservoir system near College Station, Texas, is experiencing a drought and it
is determined that if next year's annual precipitation in the reservoir watershed
is less than 35 in, a reduction in the reservoir water supplied for irrigation will
be required during the following year. If the annual precipitation is less than 35
in for each of the next two years, a reduction in municipal water supply will
also be required. Using the normal distribution fitted to the precipitation data
in Example 11.4.3, calculate the probability that these supply reductions will be
necessary. Do you think these probabilities are sufficiently high to justify warning
the irrigation and municipal water users of possible supply reductions?

11.5.1 The Pearson system of distributions obeys the equation d\f(x)]/dx =
\f(x)(x - (I)]I(CQ + CIJC + C2X

2) where d is the mode of the distribution [the
value of x where/(JC) is maximized] and Co, Ci, and C2 are coefficients. By
setting C2 = 0, show that the Pearson Type III distribution is obtained.

11.5.2 In Prob. 11.5.1, set Ci = C2 = 0 and show that the normal distribution is obtained.
11.5.3 The demand on a city's water treatment and distribution system is rising to near

system capacity because of a long period of hot, dry weather. Rainfall will avert
a situation where demand exceeds system capacity. If the average time between
rainfalls in this city at this time of year is 5 days, calculate the chance that



there will be no rain (a) for the next 5 days, (b) 10 days, (c) 15 days. Use the
exponential distribution.

11.5.4 Data for the annual maximum discharge of the Guadalupe River at Victoria,
Texas, are presented in Table 12.1.1. The statistics for the logarithms to base
10 of these data are y = 4.2743 and sy = 0.3981. Fit the lognormal distribution
to these data. Plot the relative frequency and incremental probability functions,
and the cumulative frequency and probability distribution functions of the data
as shown in Fig. 11.4.3 (use a log scale for the Guadalupe River discharges).

11.5.5 Data for inflow to the site of the proposed Justiceburg reservoir are given in Table
15.P.5. Calculate the mean, standard deviation, and coefficient of skewness of
the annual total inflows and fit a probability distribution to the data.



FREQUENCY
ANALYSIS

Hydrologic systems are sometimes impacted by extreme events, such as severe
storms, floods, and droughts. The magnitude of an extreme event is inversely
related to its frequency of occurrence, very severe events occurring less frequently
than more moderate events. The objective of frequency analysis of hydrologic
data is to relate the magnitude of extreme events to their frequency of occurrence
through the use of probability distributions. The hydrologic data analyzed are
assumed to be independent and identically distributed, and the hydrologic system
producing them (e.g., a storm rainfall system) is considered to be stochastic,
space-independent, and time-independent in the classification scheme shown in
Fig. 1.4.1. The hydrologic data employed should be carefully selected so that
the assumptions of independence and identical distribution are satisfied. In prac-
tice, this is often achieved by selecting the annual maximum of the variable being
analyzed (e.g., the annual maximum discharge, which is the largest instantaneous
peak flow occurring at any time during the year) with the expectation that suc-
cessive observations of this variable from year to year will be independent.

The results of flood flow frequency analysis can be used for many engi-
neering purposes: for the design of dams, bridges, culverts, and flood control
structures; to determine the economic value of flood control projects; and to
delineate flood plains and determine the effect of encroachments on the flood
plain.

12.1 RETURN PERIOD

Suppose that an extreme event is defined to have occurred if a random variable
X is greater than or equal to some level xT. The recurrence interval r is the time
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FIGURE 12.1.1
Annual maximum discharge of the Guadalupe River near Victoria, Texas.

between occurrences of X > xT. For example, Fig. 12.1.1 shows the record of
annual maximum discharges of the Guadalupe River near Victoria, Texas, from
1935 to 1978, plotted from the data given in Table 12.1.1. If xT = 50,000 cfs,
it can be seen that the maximum discharge exceeded this level nine times during
the period of record, with recurrence intervals ranging from 1 year to 16 years,
as shown in Table 12.1.2.

The return period T of the event X > xT is the expected value of T, E(T),
its average value measured over a very large number of occurrences. For the
Guadalupe River data, there are 8 recurrence intervals covering a total period
of 41 years between the first and last exceedences of 50,000 cfs, so the return
period of a 50,000 cfs annual maximum discharge on the Guadalupe River is

TABLE 12.1.1
Annual maximum discharges of the Guadalupe
River near Victoria, Texas, 1935-1978, in cfs

Year 1930 1940 1950 1960 1970

0 55,900 13,300 23,700 9,190
1 58,000 12,300 55,800 9,740
2 56,000 28,400 10,800 58,500
3 7,710 11,600 4,100 33,100
4 12,300 8,560 5,720 25,200
5 38,500 22,000 4,950 15,000 30,200
6 179,000 17,900 1,730 9,790 14,100
7 17,200 46,000 25,300 70,000 54,500
8 25,400 6,970 58,300 44,300 12,700
9 4,940 20,600 10,100 15,200

Relative frequency
(b) Relative frequency function

Year

(a) Time series of annual maximum discharges

D
is

ch
ar

g
e 

(c
fs

 x
lO

3
)

D
is

ch
ar

ge
 (

cf
s 

X
lO

3
)



TABLE 12.1.2
Years with annual maximum discharge equaling or exceeding 50,000 cfs on
the Guadalupe River near Victoria, Texas, and corresponding recurrence
intervals

Exceedence
year 1936 1940 1941 1942 1958 1961 1967 1972 1977 Average

Recurrence
interval 4 1 1 16 3 6 5 5 5.1
(years)

approximately T = 4 1 / 8 = 5 .1 years. Thus the return period of an event of a given
magnitude may be defined as the average recurrence interval between events
equalling or exceeding a specified magnitude.

The probability p = P(X > xj) of occurrence of the event X > Xj in
any observation may be related to the return period in the following way. For
each observation, there are two possible outcomes: either "success" X > xT

(probability p) or "failure" X < xT (probability 1 — p). Since the observations are
independent, the probability of a recurrence interval of duration r is the product
of the probabilities QLT— 1 failures followed by one success, that is, (1 — p)r~lp,
and the expected value of r is given by

OO

E(T)=J^TiI-Py-1P
T=1 (12.1.1a)

=p + 2 ( 1 -p)p + 3 ( 1 -p)2p + 4 ( 1 -p)3p + . . .

= p [ l + 2 ( 1 -p) + 3 ( 1 - p ) 2 + 4 ( 1 -pf + ...]

The expression within the brackets has the form of the power series expansion
(l+x)n=l+nx+[n(n-l)/2]x2 + [n(n-l)(n-2)/6]x3+ . . . , with*=-(I-p)
and n = —2, so (12.1.1a) may be rewritten

EW-[i-a-,ff
= j . (12.1.1ft)

P
Hence E(r) = T = \lp\ that is, the probability of occurrence of an event in any
observation is the inverse of its return period:

P(X >xT)= J1 (12.1.2)

For example, the probability that the maximum discharge in the Guadalupe River
will equal or exceed 50,000 cfs in any year is approximately p = XIr = 1/5.1 =
0.195.



What is the probability that a 7-year return period event will occur at least
once in TV years? To calculate this, first consider the situation where no 7-year
event occurs in N years. This would require a sequence of TV successive "failures,"
so that

P(X < Xj each year for Af years) = (1 — p)N

The complement of this situation is the case required, so by (11.1.3)

P(X > xT at least once in N years) = 1 - (1 - p)N (12.1.3)

Since p = VT,

P(X > xT at least once in N years) = 1 - 1 (12.1.4)

Example 12.1.1. Estimate the probability that the annual maximum discharge Q
on the Guadalupe River will exceed 50,000 cfs at least once during the next three
years.

Solution. From the discussion above, P(Q > 50,000 cfs in any year) «» 0.195, so
from Eq. (12.1.3)

P(Q > 50,000 cfs at least once during the next 3 years) = 1 - (1 - 0.195)3

= 0.48

The problem in Example 12.1.1 could have been phrased, "What is the
probability that the discharge on the Guadalupe River will exceed 50,000 cfs
at least once during the next three years?" The calculation given used only the
annual maximum data, but, alternatively, all exceedences of 50,000 cfs contained
in the Guadalupe River record could have been considered. This set of data is
called the partial duration series. It will contain more than the nine exceedences
shown in Table 12.1.2 if there were two or more exceedences of 50,000 cfs
within some single year of record.

Hydrologic Data Series

A complete duration series consists of all the data available as shown in Fig.
12.1.2(a). A partial duration series is a series of data which are selected so
that their magnitude is greater than a predefined base value. If the base value is
selected so that the number of values in the series is equal to the number of years
of the record, the series is called an annual exceedence series; an example is
shown in Fig. 12.1.2(b). An extreme value series includes the largest or smallest
values occurring in each of the equally-long time intervals of the record. The
time interval length is usually taken as one year, and a series so selected is called
an annual series. Using largest annual values, it is an annual maximum series
as shown in Fig. 12.1.2(c). Selecting the smallest annual values produces an
annual minimum series.



The annual maximum values and the annual exceedence values of the
hypothetical data in Fig. 12.1.30) are arranged graphically in Fig. 12.1.3(7?) in
order of magnitude. In this particular example, only 16 of the 20 annual maxima
appear in the annual exceedence series; the second largest value in several years
outranks some annual maxima in magnitude. However, in the annual maximum
series, these second largest values are excluded, resulting in the neglect of their
effect in the analysis.

The return period TE of event magnitudes developed from an annual excee-
dence series is related to the corresponding return period T for magnitudes derived
from an annual maximum series by (Chow, 1964)

n ' KrTi)] ' (1215)

Although the annual exceedence series is useful for some purposes, it is
limited by the fact that it may be difficult to verify that all the observations are

FIGURE 12.1.2
Hydrologic data arranged by time of
occurrence. (Source: Chow, 1964.
Used with permission.)(c) Annual maxima. Time

(b) Annual exceedences. Time

(a) Original data; N= 20 years. Time

M
ag

ni
tu

de
 

M
ag

ni
tu

de
 

M
ag

ni
tu

de



Rank of values

(b) Annual exceedence and maximum values.

FIGURE 12.1.3
Hydrologic data arranged in the order of magnitude. (Source: Chow, 1964. Used with permission.)

independent—the occurrence of a large flood could well be related to saturated
soil conditions produced during another large flood occurring a short time earlier.
As a result, it is usually better to use the annual maximum series for analysis.
In any case, as the return period of the event being considered becomes large,
the results from the two approaches become very similar because the chance that
two such events will occur within any year is very small.

12.2 EXTREME VALUE DISTRIBUTIONS

The study of extreme hydrologic events involves the selection of a sequence of
the largest or smallest observations from sets of data. For example, the study
of peak flows uses just the largest flow recorded each year at a gaging station
out of the many thousands of values recorded. In fact, water level is usually
recorded every 15 minutes, so there are 4 x 24 = 96 values recorded each day,

Annual exceedence
Annual maximum

Rank of values

(a) Original data.

Base for annual exceedence values
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and 365 x 96 = 35,040 values recorded each year; so the annual maximum flow
event used for flood flow frequency analysis is the largest of more than 35,000
observations during that year. And this exercise is carried out for each year of
historical data.

Since these observations are located in the extreme tail of the probability
distribution of all observations from which they are drawn (the parent population),
it is not surprising that their probability distribution is different from that of the
parent population. As described in Sec. 11.5, there are three asymptotic forms
of the distributions of extreme values, named Type I, Type II, and Type III,
respectively.

The Extreme Value Type I (EVI) probability distribution function is

FQc) = exp - e x p ( - - — - J - oo < x < °° (12.2.1)

The parameters are estimated, as given in Table 11.5.1, by

a= ^ (12.2.2)
77

u = x -0.5772a (12.2.3)

The parameter u is the mode of the distribution (point of maximum probability
density). A reduced variate y can be defined as

y = ^ - ^ (12.2.4)
a

Substituting the reduced variate into (12.2.1) yields

F(*) = exp[-exp(- )0] (12.2.5)

Solving for y:

y=Ain(M a2-2-6)
Let (12.2.6) be used to define y for the Type II and Type III distributions.

The values of x and y can be plotted as shown in Fig. 12.2.1. For the EVI
distribution the plot is a straight line while, for large values of v, the corresponding
curve for the EVII distribution slopes more steeply than for EVI, and the curve
for the EVIII distribution slopes less steeply, being bounded from above. Figure
12.2.1 also shows values of the return period T as an alternate axis to y. As
shown by Eq. (12.1.2),

-=P(x>xT)

= l-P(x< X7)

= 1 " F(xT)



so

T- 1
F{XT) = —

and, substituting into (12.2.6),

yT= - ln [ lnL^)J (12.2.7)

For the EVI distribution, xT is related to yT by Eq. (12.2.4), or

xT = u + ayT (12.2.8)

Extreme value distributions have been widely used in hydrology. They
form the basis for the standardized method of flood frequency analysis in Great
Britain (Natural Environment Research Council, 1975). Storm rainfalls are most
commonly modeled by the Extreme Value Type I distribution (Chow, 1953;
Tomlinson, 1980), and drought flows by the Weibull distribution, that is, the
EVIII distribution applied to -x (Gumbel, 1954, 1963).

Example 12.2.1. Annual maximum values of 10-minute-duration rainfall at
Chicago, Illinois, from 1913 to 1947 are presented in Table 12.2.1. Develop a
model for storm rainfall frequency analysis using the Extreme Value Type I distri-
bution and calculate the 5-, 10-, and 50-year return period maximum values of 10-
minute rainfall at Chicago.

Solution. The sample moments calculated from the data in Table 12.2.1 are x =
0.649 in and s = 0.177 in. Substituting into Eqs. (12.2.2) and (12.2.3) yields

V6s
( X =

FIGURE 12.2.1
For each of the three types
of extreme value distributions
the variate x is plotted against
a reduced variate y calculated
for the Extreme Value Type I
distribution. The Type I
distribution is unbounded in x,
while the Type II distribution
has a lower bound and the
Type III distribution has an
upper bound. {Source: Natural
Environment Research Council,
1975, Fig. 1.10, p. 41. Used
with permission.)Reduced variate, y
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V6 x 0.177
77

= 0.138

u = x -0.5772a

= 0.649-0.5772x0.138

= 0.569

The probability model is

\ { x -0-569(1

To determine the values of x r for various values of return period T, it is convenient
to use the reduced variate yT. For 7 = 5 years, Eq. (12.2.7) gives

«-—'"["(r^-r)]
-MM
= 1.500

and Eq. (12.2.8) yields

xT = u H- ay r

= 0.569 + 0.138 x 1.500

= 0.78 in

So the 10-minute, 5 year storm rainfall magnitude at Chicago is 0.78 in. By the
same method, the 10- and 50-year values can be shown to be 0.88 in and 1.11 in,

TABLE 12.2.1
Annual maximum 10-minute rainfall
in inches at Chicago, Illinois, 1913-
1947

Year 1910 1920 1930 1940

0 0.53 0.33 0.34
1 0.76 0.96 0.70
2 0.57 0.94 0.57
3 0.49 0.80 0.80 0.92
4 0.66 0.66 0.62 0.66
5 0.36 0.68 0.71 0.65
6 0.58 0.68 1.11 0.63
7 0.41 0.61 0.64 0.60
8 0.47 0.88 0.52
9 0.74 0.49 0.64

Mean = 0.649 in
Standard deviation = 0.177 in



respectively. It may be noted from the data in Table 12.2.1 that the 50-year return
period rainfall was equaled once in the 35 years of data (in 1936), and that the 10-
year return period rainfall was equaled or exceeded four times during this period,
so the frequency of occurrence of observed extreme rainfalls is approximately as
predicted by the model.

12.3 FREQUENCY ANALYSIS USING FREQUENCY
FACTORS

Calculating the magnitudes of extreme events by the method outlined in Example
12.2.1 requires that the probability distribution function be invertible, that is,
given a value for T or [F(xT) = TI(T — I)], the corresponding value of x7 can
be determined. Some probability distribution functions are not readily invertible,
including the Normal and Pearson Type III distributions, and an alternative
method of calculating the magnitudes of extreme events is required for these
distributions.

The magnitude X7 of a hydrologic event may be represented as the mean \x
plus the departure Ax7 of the variate from the mean (see Fig. 12.3.1):

xT = fi + AxT (12.3.1)

The departure may be taken as equal to the product of the standard deviation a and
a frequency factor Kf, that is, Ax7 = K7(J. The departure Ajc^and the frequency
factor K7 are functions of the return period and the type of probability distribution
to be used in the analysis. Equation (12.3.1) may therefore be expressed as

xT = \x + K7(T (12.3.2)

which may be approximated by

X7 = x + K7s (12.3.3)

In the event that the variable analyzed is y = log Jt, then the same method is
applied to the statistics for the logarithms of the data, using

y7 = y + KTsy (12.3.4)

and the required value of X7 is found by taking the antilog of y7.
The frequency factor equation (12.3.2) was proposed by Chow (1951), and

it is applicable to many probability distributions used in hydrologic frequency
analysis. For a given distribution, a K-T relationship can be determined between
the frequency factor and the corresponding return period. This relationship can
be expressed in mathematical terms or by a table.

Frequency analysis begins with the calculation of the statistical parameters
required for a proposed probability distribution by the method of moments from
the given data. For a given return period, the frequency factor can be determined
from the K-T relationship for the proposed distribution, and the magnitude x7

computed by Eq. (12.3.3), or (12.3.4).
The theoretical K-T relationships for several probability distributions com-

monly used in hydrologic frequency analysis are now described.



NORMAL DISTRIBUTION. The frequency factor can be expressed from Eq.
(12.3.2) as

KT = XT~ M (12.3.5)
a

This is the same as the standard normal variable z defined in Eq. (11.2.9).
The value of z corresponding to an exceedence probability of pip = UT)

can be calculated by finding the value of an intermediate variable w:

w= lnf-U (0<p<0.5) (12.3.6)

then calculating z using the approximation

_ 2.515517 + 0.802853w + 0.010328>v2

Z ~W 1 + 1.432788w + 0.189269w2 + 0.001308w3 ( • • )

When p-> 0.5,1 — p is substituted for p in (12.3.6) and the value of z computed
by (12.3.7) is given a negative sign. The error in this formula is less than 0.00045
in z (Abramowitz and Stegun, 1965). The frequency factor Kj for the normal
distribution is equal to z, as mentioned above.

For the lognormal distribution, the same procedure applies except that it is
applied to the logarithms of the variables, and their mean and standard deviation
are used in Eq. (12.3.4).

Example 12.3.1. Calculate the frequency factor for the normal distribution for an
event with a return period of 50 years.

Solution. For T = 50 years, p = 1/50 = 0.02. From Eq. (12.3.6)

= 2.7971

FIGURE 12.3.1
The magnitude of an extreme
event xT expressed as a deviation
Kjd from the mean /JL, where K7

is the frequency factor.



Then, substituting w into (12.3.7)

KT = z

2.51557 + 0.80285 x 2.7971 + 0.01033 x (2.7971)2

1 + 1.43279 x 2.7971 + 0.18927 x (2.7971)2 + 0.00131 x (2.7971)3

= 2.054

EXTREME VALUE DISTRIBUTIONS. For the Extreme Value Type I distribu-
tion, Chow (1953) derived the expression

XT = - v{°-5 7 7 2 + l n K ^ r ) ] } (12'3-8)
To express T in terms of KT, the above equation can be written as

T= l— — (12.3.9)

l-exp|-eXp[-(r+^)j}

where y = 0.5772. When xT = /x,, Eq. (12.3.5) gives KT = 0 and Eq. (12.3.8)
gives T= 2.33 years. This is the return period of the mean of the Extreme Value
Type I distribution. For the Extreme Value Type II distribution, the logarithm of
the variate follows the EVI distribution. For this case, (12.3.4) is used to calculate
yT, using the value of KT from (12.3.8).

Example 12.3.2. Determine the 5-year return period rainfall for Chicago using
the frequency factor method and the annual maximum rainfall data given in Table
12.2.1.

Solution. The mean and standard deviation of annual maximum rainfalls at Chicago
are 3c = 0.649 in and s = 0.177 in, respectively. For T = 5, Eq. (12.3.8) gives

= 0.719

By (12.3.3),

XT = X + KTs

= 0.649 + 0.719x0.177

= 0.78 in

as determined in Example 12.2.1.

LOG-PEARSON TYPE III DISTRIBUTION. For this distribution, the first step
is to take the logarithms of the hydrologic data, y = log x. Usually logarithms to



base 10 are used. The mean y, standard deviation sy, and coefficient of skewness
C5 are calculated for the logarithms of the data. The frequency factor depends
on the return period T and the coefficient of skewness C5. When C5 = 0, the
frequency factor is equal to the standard normal variable z. When C5 ^ 0,KT is
approximated by Kite (1977) as

KT = z + (z2- \)k + ^ U 3 - 6z)k2 - (z2 - l)k3 + zk4 + |ifc5 (12.3.10)

where k = C5/6.

TABLE 12.3.1

KT values for Pearson Type III distribution (positive skew)

Return period in years

2 5 10 25 50 100 200
Skew Exceedence probability
coefficient
C, or Cw 0.50 0.20 0.10 0.04 0.02 0.01 0.005

3.0 -0.396 0.420 1.180 2.278 3.152 4.051 4.970
2.9 -0.390 0.440 1.195 2.277 3.134 4.013 4.909
2.8 -0.384 0.460 1.210 2.275 3.114 3.973 4.847
2.7 -0.376 0.479 1.224 2.272 3.093 3.932 4.783
2.6 -0.368 0.499 1.238 2.267 3.071 3.889 4.718
2.5 -0.360 0.518 1.250 2.262 3.048 3.845 4.652
2.4 -0.351 0.537 1.262 2.256 3.023 3.800 4.584
2.3 -0.341 0.555 1.274 2.248 2.997 3.753 4.515
2.2 -0.330 0.574 1.284 2.240 2.970 3.705 4.444
2.1 -0.319 0.592 1.294 2.230 2.942 3.656 4.372
2.0 -0.307 0.609 1.302 2.219 2.912 3.605 4.298
1.9 -0.294 0.627 1.310 2.207 2.881 3.553 4.223
1.8 -0.282 0.643 1.318 2.193 2.848 3.499 4.147
1.7 -0.268 0.660 1.324 2.179 2.815 3.444 4.069
1.6 -0.254 0.675 1.329 2.163 2.780 3.388 3.990
1.5 -0.240 0.690 1.333 2.146 2.743 3.330 3.910
1.4 -0.225 0.705 1.337 2.128 2.706 3.271 3.828
1.3 -0.2k10 0.719 1.339 2.108 2.666 3.211 3.745
1.2 -0.195 0.732 1.340 2.087 2.626 3.149 3.661
1.1 -O.180 0.745 1.341 2.066 2.585 3.087 3.575
1.0 -0.164 0.758 1.340 2.043 2.542 3.022 3.489
0.9 -0.148 0.769 1.339 2.018 2.498 2.957 3.401
0.8 -0.132 0.780 1.336 1.993 2.453 2.891 3.312
0.7 -0.116 0.790 1.333 1.967 2.407 2.824 3.223
0.6 -0.099 0.800 1.328 1.939 2.359 2.755 3.132
0.5 -0.083 0.808 1.323 1.910 2.311 2.686 3.041
0.4 -0.066 0.816 1.317 1.880 2.261 2.615 2.949
0.3 -0.050 0.824 1.309 1.849 2.211 2.544 2.856
0.2 -0.033 0.830 1.301 1.818 2.159 2.472 2.763
0.1 -0.017 0.836 1.292 1.785 2.107 2.400 2.670
0.0 0 0.842 1.282 1.751 2.054 2.326 2.576



The value of z for a given return period can be calculated by the procedure
used in Example 12.3.1. Table 12.3.1 gives values of the frequency factor for
the Pearson Type III (and log-Pearson Type III) distribution for various values
of the return period and coefficient of skewness.

Example 12.3.3. Calculate the 5- and 50-year return period annual maximum
discharges of the Guadalupe River near Victoria, Texas, using the lognormal and
log-Pearson Type III distributions. The data from 1935 to 1978 are given in Table
12.1.1.

TABLE 12.3.1 (cont.)
KT values for Pearson Type III distribution (negative skew)

Return period in years

2 5 10 25 50 100 200
Skew Exceedence probability
coefficient
CsorCw 0.50 0.20 0.10 0.04 0.02 0.01 0.005

-0.1 0.017 0.846 1.270 1.716 2.000 2.252 2.482
-0.2 0.033 0.850 1.258 1.680 1.945 2.178 2.388
-0.3 0.050 0.853 1.245 1.643 1.890 2.104 2.294
-0.4 0.066 0.855 1.231 1.606 1.834 2.029 2.201
-0.5 0.083 0.856 1.216 1.567 1.777 1.955 2.108
-0.6 0.099 0.857 1.200 1.528 1.720 1.880 2.016
-0.7 0.116 0.857 1.183 1.488 1.663 1.806 1.926
-0.8 0.132 0.856 1.166 1.448 1.606 1.733 1.837
-0.9 0.148 0.854 1.147 1.407 1.549 1.660 1.749
-1.0 0.164 0.852 1.128 1.366 1.492 1.588 1.664
-1.1 0.180 0.848 1.107 1.324 1.435 1.518 1.581
-1.2 0.195 0.844 1.086 1.282 1.379 1.449 1.501
-1.3 0.210 0.838 1.064 1.240 1.324 1.383 1.424
-1.4 0.225 0.832 1.041 1.198 1.270 1.318 1.351
-1.5 0.240 0.825 1.018 1.157 1.217 1.256 1.282
-1.6 0.254 0.817 0.994 1.116 1.166 1.197 1.216
-1.7 0.268 0.808 0.970 1.075 1.116 1.140 1.155
-1.8 0.282 0.799 0.945 1.035 1.069 1.087 1.097
-1.9 0.294 0.788 0.920 0.996 1.023 1.037 1.044
-2.0 0.307 0.777 0.895 0.959 0.980 0.990 0.995
-2.1 0.319 0.765 0.869 0.923 0.939 0.946 0.949
-2.2 0.330 0.752 0.844 0.888 0.900 0.905 0.907
-2.3 0.341 0.739 0.819 0.855 0.864 0.867 0.869
-2.4 0.351 0.725 0.795 0.823 0.830 0.832 0.833
-2.5 0.360 0.711 0.771 0.793 0.798 0.799 0.800
-2.6 0.368 0.696 0.747 0.764 0.768 0.769 0.769
-2.7 0.376 0.681 0.724 0.738 0.740 0.740 0.741
-2.8 0.384 0.666 0.702 0.712 0.714 0.714 0.714
-2.9 0.390 0.651 0.681 0.683 0.689 0.690 0.690
-3.0 0.396 0.636 0.666 0.666 0.666 0.667 0.667

Source: U. S. Water Resources Council (1981).



Solution. The logarithms of the discharge values are taken and their statistics
calculated: y = 4.2743,sy = 0.4027,C5 = -0.0696.

Lognormal distribution. The frequency factor can be obtained from Eq.
(12.3.7), or from Table 12.3.1 for coefficient of skewness 0. For T = 50 years, K7

was computed in Example 12.3.1 as K50 = 2.054; the same value can be obtained
from Table 12.3.1. By (12.3.4)

yT = y + KTSy

j 5 0 = 4.2743 + 2.054 x 0.4027

= 5.101

Then

*50 = (10)5-101

= 126,300 cfs

Similarly, K5 = 0.842 from Table 12.3.1, y5 = 4.2743 + 0.842 x 0.4027 = 4.6134,
and Jc5 = (1O)4-6134 = 41,060 cfs.

Log-Pearson Type III distribution. For C5= —0.0696, the value of £50 is
obtained by interpolation from Table 12.3.1 or by Eq. (12.3.10). By interpolation
with T = 50 yrs:

K50 = 2.054 + ( 2 ^ Q
Q ~ 2 ^ 0 Y ) ( - 0 . 0 6 9 6 - 0) = 2.016

S 0 y50 = y + K50Sy = 4.2743 + 2.016 x 0.4027 = 5.0863 and X50 = (10)50863 =
121,990 cfs. By a similar calculation, K5 = 0.845, ̂ 5 = 4.6146, and x5 = 41,170 cfs.

The results for estimated annual maximum discharges are:

Return Period

5 years 50 years

Lognormal 41,060 126,300
(C5 = 0)

Log-Pearson Type III 41,170 121,990
(C, = -0.07)

It can be seen that the effect of including the small negative coefficient of skewness
in the calculations is to alter slightly the estimated flow with that effect being more
pronounced at T = 50 years than at T = 5 years. Another feature of the results
is that the 50-year return period estimates are about three times as large as the 5-
year return period estimates; for this example, the increase in the estimated flood
discharges is less than proportional to the increase in return period.

12.4 PROBABILITY PLOTTING

As a check that a probability distribution fits a set of hydrologic data, the data
may be plotted on specially designed probability paper, or using a plotting scale



that linearizes the distribution function. The plotted data are then fitted with a
straight line for interpolation and extrapolation purposes.

Probability Paper

The cumulative probability of a theoretical distribution may be represented graph-
ically on probability paper designed for the distribution. On such paper the ordi-
nate usually represents the value of x in a certain scale and the abscissa represents
the probability P(X > x) or P(X < JC), the return period T, or the reduced variate
yx- The ordinate and abscissa scales are so designed that the data to be fitted are
expected to appear close to a straight line. The purpose of using the probability
paper is to linearize the probability relationship so that the plotted data can be
easily used for interpolation, extrapolation, or comparison purposes. In the case
of extrapolation, however, the effect of various errors is often magnified; there-
fore, hydrologists should be warned against such practice if no consideration is
given to this effect.

Plotting Positions

Plotting position refers to the probability value assigned to each piece of data to be
plotted. Numerous methods have been proposed for the determination of plotting
positions, most of which are empirical. If n is the total number of values to be
plotted and m is the rank of a value in a list ordered by descending magnitude,
the exceedence probability of the mth largest value, xm, is, for large n,

P(X >xm) = - (12.4.1)
n

However, this simple formula (known as California's formula) produces a prob-
ability of 100 percent for m = n, which may not be easily plotted on a probability
scale. As an adjustment, the above formula may be modified to

P(X >xm) = — - (12.4.2)
n

While this formula does not produce a probability of 100 percent, it yields a zero
probability (for m — 1), which may not be easily plotted on probability paper
either.

The above two formulas represent the limits within which suitable plotting
positions should lie. One compromise of the two formulas is

P(X >xm)= m ~n°'5 (12.4.3)

which was first proposed by Hazen (1930). Another compromising formula
(known as Chegodayev's) widely used in the U.S.S.R. and Eastern European
countries is

*****> = ISrIr! (12A4)



The Weibull formula is a compromise with more statistical justification. If
the n values are distributed uniformly between 0 and 100 percent probability,
then there must be n + 1 intervals, n — 1 between the data points and 2 at the
ends. This simple plotting system is expressed by the Weibull formula:

P(X > xm) = - ^ - (12.4.5)
n + 1

indicating a return period one year longer than the period of record for the largest
value.

In practice, for a complete duration series (employing all the data, not just
selected extreme values), Eq. (12.4.1) is used, with n referring to the number of
items in the data rather than to the number of years. For annual maximum series,
Eq. (12.4.5), which is equivalent to the following formula for return period, was
adopted as the standard plotting position method by the U. S. Water Resources
Council (1981):

T=n-^- (12.4.6)
m

where n refers to the number of years in the record.
Most plotting position formulas are represented by the following form:

p(X"̂ ) = ̂ f f ^ (12A7)

where b is a parameter. For example, b = 0.5 for Hazen's formula, b = 0.3 for
Chegodayev's, and b = 0 for Weibull's. Also, for some other examples b^= 3/8 -
for Blom's formula, 1/3 for Tukey's, and 0.44 for Gringorten's (see Chow, 1964).

Cunnane (1978) studied the various available plotting position methods
using criteria of unbiasedness and minimum variance. An unbiased plotting
method is one that, if used for plotting a large number of equally sized samples,
will result in the average of the plotted points for each value of m falling on
the theoretical distribution line. A minimum variance plotting method is one that
minimizes the variance of the plotted points about the theoretical line. Cunnane
concluded that the Weibull plotting formula is biased and plots the largest values
of a sample at too small a return period. For normally distributed data, he found
that the Blom (1958) plotting position (b = 3/8) is closest to being unbiased,
while for data distributed according to the Extreme Value Type I distribution, the
Gringorten (1963) formula (b = 0.44) is the best. For the log-Pearson Type III
distribution, the optimal value of b depends on the value of the coefficient of
skewness, being larger than 3/8 when the data are positively skewed and smaller
than 3/8 when the data are negatively skewed. The same plotting positions can
be applied to the logarithms of the data, when using the lognormal distribution,
for example.

Once the data series is identified and ranked, and the plotting positions
calculated, a graph of magnitude (x) vs. probability [(P(X > x),P(X < x), or T)]
can be plotted to graphically fit a distribution. Alternatively, an analytical fit can



be made using the method of moments, and the resulting fitted line compared
with the sample data.

Example 12.4.1. Perform a probability plotting analysis of the annual maximum
discharges of the Guadalupe River near Victoria, Texas, given in Table 12.1.1.
Compare the plotted data with the lognormal distribution fitted to them in Example
12.3.3.

Solution. First the data are ranked from largest (m = 1), to smallest (m = n = 44), as
shown in columns 1 and 2 of Table 12.4.1. Blom's plotting formula is used, since
the logarithms of the data are being fitted to a normal distribution. Blom's formula
uses b = 3/8 in Eq. (12.4.7). For example, for m = 1, the exceedence probability
P(Q > 179,000 cfs) « (m - 3/8)/(/i + 1 - 6/8) = (1 - 3/8)/(44 + 1/4) = 0.014, as
shown in column 3 of Table 12.4.1. The corresponding value of the standard normal
variable z is determined using/? = 0.014 in Eqs. (12.3.6) and (12.3.7) in the manner
shown in Example 12.3.1; the result, z = 2.194, is listed in column 4 of the table.
The event magnitude with the same exceedence probability in the fitted lognormal
distribution is found using the frequency factor method with y = 4.2743, sy = 0.4027,
and KT = z = 2.194; the result is log Q = 4.2743 + 2.194 x 0.4027 = 5.158
(column 5). This value is compared with log Q from the observed data, that is log
(179,000) = 5.253, as shown in column 6. The observed data are plotted against
the fitted curve in Fig. 12.4.1, in which the value of the standard normal variable
is used as the horizontal axis to linearize the plot; this is equivalent to using normal
probability plotting paper. The plot shows that the fitted line is consistent with the
observed data, even including the largest value of 179,000 cfs, which looks quite
different from the rest of the data in Fig. 12.1.1.

TABLE 12.4.1
Probability plotting using the normal distribution and Blom's formula for
the annual maximum discharges of the Guadalupe River near Victoria,
Texas (Example 12.4.1)

Column: 1 2 3 4 5 6
Discharge Rank Exceedence Standard Log Q Log Q

probability normal from from data
m — 3/8 variable lognormal

Q (cfs) m n +1/4 z distribution

179,000 1 0.014 2.194 5.158 5.253
70,000 2 0.037 1.790 4.995 4.845
58,500 3 0.059 1.561 4.903 4.767
58,300 4 0.082 1.393 4.835 4.766
58,000 5 0.105 1.256 4.780 4.763

5,720 40 0.895 -1.256 3.768 3.757
4,950 41 0.918 -1.393 3.714 3.695
4,940 42 0.941 -1.561 3.646 3.694
4,100 43 0.963 -1.790 3.553 3.613
1,730 44 0.986 -2.194 3.391 3.238



Cumulative probability

FIGURE 12.4.1
Annual maximum discharge for the Guadalupe River near Victoria, Texas, plotted using Blom's
formula on a probability scale for the lognormal distribution.

12.5 WATER RESOURCES COUNCIL METHOD

The U. S. Water Resources Council* recommended that the log-Pearson Type
III distribution be used as a base distribution for flood flow frequency studies
(U. S. Water Resources Council, 1967, 1976, 1977, and 1981; Benson, 1968).
Their decision was an attempt to promote a consistent, uniform approach to flood
flow frequency determination for use in all federal planning involving water and
related land resources. The choice of the log-Pearson Type III distribution is,
however, subjective to some extent, in that there are several criteria that may be
employed to select the best distribution, and no single probability distribution is
the best under all criteria.

Determination of the Coefficient of Skewness

The coefficient of skewness used in fitting the log-Pearson Type III distribution
is very sensitive to the size of the sample and, in particular, is difficult to estimate

*The U.S. Water Resources Council was abolished in 1981. The Council's work on guidelines for
determining flood flow frequency was taken over by the Interagency Advisory Committee on Water
Data, U.S. Geological Survey, Reston, Virginia.
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accurately from small samples. Because of this, the Water Resources Council
recommended using a generalized estimate of the coefficient of skewness, Cw,
based upon the equation

Cw = WC8 + (1 - W)Cm (12.5.1)

where W is a weighting factor, C5 is the coefficient of skewness computed using
the sample data, and Cm is a map skewness, which is read from a map such as
Fig. 12.5.1. The weighting factor W is calculated so as to minimize the variance
of Cw, as explained next.

The estimates of the sample skew coefficient and the map skew coefficient
in Eq. (12.5.1) are assumed to be independent with the same mean and different
variances, V(C5) and V(Cm). The variance of the weighted skew, V(Cw), can be
expressed as

V(CW) = W2V(C5) + (1 - W)2V(C1n) (12.5.2)

The value of W that minimizes the variance Cw can be determined by differenti-
ating (12.5.2) with respect to W and solving d[V(Cw)]/dW = 0 for W to obtain

W= V ( C m ) (12 5 3)
V(C8) + V(C1n)

 {U'*'3)

The second derivative

-^f1 = 2[V(C8) + V(Cm)] (12.5.4)

is greater than zero, confirming that the weight given by (12.5.3) minimizes the
variance of the skew, V(Cw).

Determination of W using Eq. (12.5.3) requires knowledge of V(C1n) and
V(C8). V(Cjn) is estimated from the map of skew coefficients for the United States
as 0.3025. Alternatively, V(Cm) can be derived from a regression study relating
the skew to physiographical and meteorological characteristics of the basins (Tung
and Mays, 1981).

By substituting Eq. (12.5.3) into Eq. (12.5.1), the weighted skew Cw can
be written

V(Cm)C8 + V(C8)Cm
C" = v(Cm) + V(C5)

 ( 1 2 ' 5 - 5 )

The variance of the station skew C5 for log-Pearson Type III random
variables can be obtained from the results of Monte Carlo experiments by Wallis,
Matalas, and Slack (1974). They showed that V(C5) of the logarithmic station
skew is a function of record length and population skew. For use in calculating
Cw, this function can be approximated with sufficient accuracy as

V(C5) = io^fosioWio) (12.5.6)



FIGURE 12.5.1
Generalized skew coefficients of annual maximum streamflow. (Source: Guidelines for determining flood flow frequency, Bulletin 17B, Hydrology
Subcommittee, Interagency Advisory Committee on Water Data, U. S. Geological Survey, Reston, Va. Revised with corrections March 1982.)



where

A= - 0.33 + 0.08|C5| if \CS\ < 0.90 (12.5.7a)

or A=- 0.52 + 0.30|C5| if \CS\ > 0.90 (12.5.76)

B = 0.94 - 0.26|C,| if \CS\ < 1.50 (12.5.7c)

or B = 0.55 if \CS\ > 1.50 (12.5.7J)

in which \CS\ is the absolute value of the station skew (used as an estimate of
population skew) and n is the record length in years.

Example 12.5.1. Determine the frequency curve comprising the estimated flood
magnitudes for return periods of 2, 5, 10, 25, 50, and 100 years using the Water
Resources Council method for data from Walnut Creek at Martin Luther King Blvd.
in Austin, Texas, as listed in Table 12.5.1.

Solution, The sample data shown in columns 1 and 2 of Table 12.5.1 cover n = 16
years, from 1967 to 1982.

Step 1. Transform the sample data, JC,-, to their logarithmic values, yt\ that is,
let V1- = log JC,- for / = 1, . . . , n, as shown in column 3 of the table.

TABLE 12.5.1
Calculation of statistics for logarithms of annual
maximum discharges for Walnut Creek (Example
12.5.1)

Column: 1 2 3 4 5
Flow x

Year (cfs) y = log JC (y - y)2 (y - y)3

1967 303 2.4814 1.3395 -1.5502
1968 5,640 3.7513 0.0127 0.0014
1969 1,050 3.0212 0.3814 -0.2356
1970 6,020 3.7796 0.0198 0.0028
1971 3,740 3.5729 0.0043 -0.0003
1972 4,580 3.6609 0.0005 0.0000
1973 5,140 3.7110 0.0052 0.0004
1974 10,560 4.0237 0.1481 0.0570
1975 12,840 4.1086 0.2207 0.1037
1976 5,140 3.7110 0.0052 0.0004
1977 2,520 3.4014 0.0564 -0.0134
1978 1,730 3.2380 0.1606 -0.0644
1979 12,400 4.0934 0.2067 0.0940
1980 3,400 3.5315 0.0115 -0.0012
1981 14,300 4.1553 0.2668 0.1378
1982 9,540 3.9795 0.1161 0.0396

Total 58.2206 2.9555 -1.4280
n = 16 y = 3.6388



Step 2. Compute the sample statistics. The mean of log-transformed values

i = l

Using column 4 of the table, the standard deviation is

I 1 \1/2

= (-2.9555)

= 0.4439

Using column 5 of the table, the skew coefficient is
n

C = -J^l = 16 x (-1.4280) = _
5 (n - l)(/i - 2)^ 15 x 14 x (0.4439)3

Step 3. Compute the weighted skew. The map skew is —0.3 from Fig. 12.5.1
at Austin, Texas. The variance of the station skew can be computed by Eq. (12.5.6)
as follows. From (12.5.Ib) with \CS\ > 0.90

A = -0.52 + 0.30| - 1.244| = -0.147

From (12.5.7c) with \CS\ < 1.50

B = 0.94 - 0.26| - 1.244| = 0.617

Then using (12.5.6)

V(CS) = (ioyOA4i-o.6ii log(wio) = 0 > 5 3 3

The variance of the generalized skew is V(Cm) = 0.303. The weight to be applied
to C, is W = V(Cm)/[V(Cm) + V(C5)] = 0.303/(0.303 + 0.533) = 0.362, and the
complementary weight to be applied to Cm is 1 - W = 1 - 0.362 = 0.638. Then,
from (12.5.1)

Cw = WCs + (l-W)Cm

= 0.362 x (-1.244) + 0.638 x (-0.3)

= -0.64

Step 4. Compute the frequency curve coordinates. The log-Pearson Type
III frequency factors KT for skew coefficient values of —0.6 and —0.7 are found
in Table 12.3.1. The values for Cw = -0.64 are found by linear interpolation
as in Example 12.3.3, with results presented in column 2 of Table 12.5.2. The
corresponding value of yT is found from Eq. (12.3.4), and its antilogarithm is
taken to determine the estimated flood magnitude. For example, for T = 100 years,
KT= 1.850 and



TABLE 12.5.2
Results of frequency analysis using the Water Resources
Council method (Examples 12.5.1 and 12.5.2)

Column: 1 2 3 4 5
Return Frequency Flood
period factor Estimates
T KT log QT Q7 QT
(years) (cfs) (cfs)

2 0.106 3.686 4,900 5,500
5 0.857 4.019 10,500 10,000
10 1.193 4.169 14,700 13,200
25 1.512 4.310 20,400 17,600
50 1.697 4.392 24,700 20,900
100 1.850 4.460 28,900 24,200

The values in column 4 are those computed without adjustment for outliers and those
in column 5 after outlier adjustment.

yT = y + KTsy

= 3.639 + 1.850x0.4439

= 4.460

and QT=(IO)4460 = 28,900 cfs, as shown in columns 3 and 4 of the table. Similarly
computed flood estimates for the other required return periods are also shown.

As was shown in Example (12.3.3), the increase in flood magnitude is less
than directly proportional to the increase in return period. For example, increasing
the return period from 10 years to 100 years approximately doubles the estimated
flood magnitude in the table. As stated previously, flood magnitudes estimated using
the log-Pearson Type III distribution are very sensitive to the value of the skew
coefficient. The flood magnitudes for the longer return periods (50 and 100 years)
are difficult to estimate reliably from only 16 years of data.

Testing for Outliers

The Water Resources Council method recommends that adjustments be made for
outliers. Outliers are data points that depart significantly from the trend of the
remaining data. The retention or deletion of these outliers can significantly affect
the magnitude of statistical parameters computed from the data, especially for
small samples. Procedures for treating outliers require judgment involving both
mathematical and hydrologic considerations. According to the Water Resources
Council (1981), if the station skew is greater than +0.4, tests for high outliers
are considered first; if the station skew is less than —0.4, tests for low outliers
are considered first. Where the station skew is between ±0.4, tests for both
high and low outliers should be applied before eliminating any outliers from the
data set.



The following frequency equation can be used to detect high outliers:

yH = y + Knsy (12.5.8)

where yH is the high outlier threshold in log units and Kn is as given in Table
12.5.3 for sample size n. The Kn values in Table 12.5.3 are used in one-sided tests
that detect outliers at the 10-percent level of significance in normally distributed
data. If the logarithms of the values in a sample are greater than j / / in the
above equation, then they are considered high outliers. Flood peaks considered
high outliers should be compared with historic flood data and flood information
at nearby sites. Historic flood data comprise information on unusually extreme
events outside of the systematic record. According to the Water Resources Council
(1981), if information is available that indicates a high outlier is the maximum
over an extended period of time, the outlier is treated as historic flood data and
excluded from analysis. If useful historic information is not available to compare
to high outliers, then the outliers should be retained as part of the systematic
record.

A similar equation can be used to detect low outliers:

yL = y-Knsy (12.5.9)

where yL is the low outlier threshold in log units. Flood peaks considered low
outliers are deleted from the record and a conditional probability adjustment
described by the Water Resources Council (1981) can be applied.

Example 12.5.2. Using the data for the Walnut Creek example (Table 12.5.1),
determine if there are any high or low outliers for the sample. If so, omit them
from the data set and recalculate the flood frequency curve.

TABLE 12.5.3
Outlier test Kn values

Sample Sample Sample Sample
size n Kn size n Kn size n Kn size n Kn

10 2.036 24 2.467 38 2.661 60 2.837
11 2.088 25 2.486 39 2.671 65 2.866
12 2.134 26 2.502 40 2.682 70 2.893
13 2.175 27 2.519 41 2.692 75 2.917
14 2.213 28 2.534 42 2.700 80 2.940
15 2.247 29 2.549 43 2.710 85 2.961
16 2.279 30 2.563 44 2.719 90 2.981
17 2.309 31 2.577 45 2.727 95 3.000
18 2.335 32 2.591 46 2.736 100 3.017
19 2.361 33 2.604 47 2.744 110 3.049
20 2.385 34 2.616 48 2.753 120 3.078
21 2.408 35 2.628 49 2.760 130 3.104
22 2.429 36 2.639 50 2.768 140 3.129
23 2.448 37 2.650 55 2.804

Source: U.S. Water Resources Council, 1981. This table contains one-sided 10-percent significance
level Kn values for the normal distribution.



Solution.

Step 1. Determine the threshold value for high outliers. From Table 12.5.3,
Kn = 2.279 for n = 16 data. From Eq. (12.5.8) using y and sy from Example 12.5.1

yH = y + Knsy = 3.639 + 2.279(0.4439) = 4.651

Then

QN = (IO)4-651 = 44,735 cfs

The largest recorded value (14,300 cfs in Table 12.5.1) does not exceed the thresh-
old value, so there are no high outliers in this sample.

Step 2. Determine the threshold value for low outliers. The same Kn value is
used:

yL = y- KnSy = 3.639 - 2.279(0.4439) = 2.627

QL = (1O)2-627 = 424 cfs

The 1967 peak flow of 303 cfs is less than QL and so is considered a low outlier.
Step 3. The low outlier is deleted from the sample and the frequency analysis

is repeated using the same procedure as in Example 12.5.1. The statistics for the
logarithms of the new data set, now reduced to 15 values, are y = 3.716, sy =
0.3302, and Cs = -0 .545 . It can be seen that the omission of the 303 cfs value
has significantly altered the calculated skewness value (from the —1.24 found in
Example 12.5.1). The map skewness remains at —0.3 for Austin, Texas, and the
revised weighted skewness is Cw = —0.41. Values of KTare interpolated from Table
12.3.1 at the required return periods, and the corresponding flood flow estimates
computed as Q'T, listed in column 5 of Table 12.5.2. By comparing these values
with those given in column 4 for the full data set, it can be seen that the effect of
removing the low outlier in this example is to decrease the flood estimates for the
longer return periods.

Computer Program HECWRC

The computer program HECWRC (U. S. Army Corps of Engineers, 1982) per-
forms flood flow frequency analysis of annual maximum flood series according to
the U. S. Water Resources Council Bulletin 17B (1981). This program is avail-
able from the U. S. Army Corps of Engineers Hydrologic Engineering Center in
Davis, California, in both a mainframe computer version and a microcomputer
version.

12.6 RELIABILITY OF ANALYSIS

The reliability of the results of frequency analysis depends on how well the
assumed probabilistic model applies to a given set of hydrologic data.

Confidence Limits

Statistical estimates are often presented with a range, or confidence interval,
within which the true value can reasonably be expected to lie. The size of the



confidence interval depends on the confidence level /3. The upper and lower
boundary values of the confidence interval are called confidence limits (Fig.
12.6.1).

Corresponding to the confidence level /3 is a significance level a, given by

For example, if /3 = 90 percent, then a = (1 — 0.9)/2 = 0.05, or 5 percent.
For estimating the event magnitude for return period T, the upper limit Uj,a

and lower limit LT,a may be specified by adjustment of the frequency factor
equation:

UT,a =y + syK
v
Ta (12.6.2)

and

LT,a =y + syK
L

Ta (12.6.3)

where K^ a and K^ a are the upper and lower confidence limit factors, which can
be determined for normally distributed data using the noncentral t distribution
(Kendall and Stuart, 1967). The same factors are used to construct approximate
confidence limits for the Fbarson Type III distribution. Approximate values for
these factors are given by the following formulas (Natrella, 1963; U. S. Water
Resources Council, 1981):

K7 + JK2
T - ab

Kr,a = " (12.6.4)

K7- JK2
T - ab

4,a = (12.6.5)

FIGURE 12.6.1
Definition of confidence limits.Return period T

Control curves

Frequency curve

Probability (3 = 1 - 2 a
Lower limit

Upper limit

Variate
x



in which

and

ft = *£ (12.6.7)
n

The quantity za is the standard normal variable with exceedence probability a.

Example 12.6.1. Determine the 90-percent confidence limits for the 100-year dis-
charge for Walnut Creek, using the data presented in Example 12.5.1. The log-
arithmic mean, standard deviation, and skew coefficient are 3.639, 0.4439, and
—0.64, respectively, for 16 years of data.

Solution, For /3 = 0.9, a = 0.05 and the required standard normal variable z a has
exceedence probability 0.05, or cumulative probability 0.95. From Table 11.2.1,
the required value is za = 1.645. The frequency factor A^ for T = 100 years was
calculated in Example 12.5.1 as ^100 = 1.850. Hence, by Eqs. (12.6.4) to (12.6.7)

• - 5 ^ 1 5 — $£%-•»»
^- !L(U 5 0 ) ' -<LgSi_ 3.253

n 16

_ KT + y/KT ~ ab _ 1.850 + [(1.85O)2 - 0.9098 x 3.253]m

100'005~ a " 0.9098

= 2.781

L
 KT ~ V Kj ~ ab _ 1.850 - [(1.85O)2 - 0.9098 x 3.253]m

100 '005" a ~ 0.9098

= 1.286

The confidence limits are computed using Eqs. (12.6.2) and (12.6.3):

£A()0,0.05 = y + 5y^l00,0.05

= 3.639 4- 0.4439 x 2.781

= 4.874

^100,0.05 = y + 5^100,0.05

= 3.639 + 0.4439 x 1.286

= 4.210

The corresponding discharges for the upper and lower limits are (10)4 874 = 74, 820
cfs, and (1O)4210 = 16,200 cfs, respectively, as compared to an estimated event
magnitude of 28,900 cfs from Table 12.5.2. The confidence interval is quite wide



in this case because the sample size is small. As the sample size increases, the width
of the confidence interval around the estimated flood magnitude will diminish.

Standard Error

The standard error of estimate se is a measure of the standard deviation of event
magnitudes computed from samples about the true event magnitude. Formulas
for the standard error of estimate for the normal and Extreme Value Type I
distributions are (Kite, 1977):
Normal

se = F - ^ M s (12.6.8)

Extreme Value Type I

fi 11/2
se = -(I + IA396KT + l.lOOO/^) s (12.6.9)

where s is the standard deviation of the original sample of size n. Standard errors
may be used to construct confidence limits in a similar manner to that illustrated
in Example 12.6A, except that in this case the confidence limits for significance
level a are defined as Xj ± sez a-

Example 12.6.2. Determine the standard error of estimate and the 90 percent con-
fidence limits of the 5-year-return-period, 10-minute-duration rainfall at Chicago,
Illinois. From Example 12.3.2, the estimated 5-year depth is xT = 0.78 in; also,
s = 0.177 in, KT = 0.719, and n = 35.

Solution. The standard error is computed for the Extreme Value Type I distribution
using Eq. (12.6.9)

Ti T 2

Se = -(i + i A396KT + 1.1000A*) s

r i i 1/2

= —[l + 1.1396 x 0.719 + 1.1000 x (0.719)2] x 0.177
[35 J

= 0.046 in

The 90 percent confidence limits, with za
 = 1.645 for a = 0.05, are xT± seza —

0.78 ± 0.046 x 1.645 = 0.70 and 0.86 in. Thus the 5 year, 10-minute rainfall
estimate in Chicago is 0.78 in with 90 percent confidence limits [0.70, 0.86] in.

Expected Probability

Expected probability is defined as the average of the true exceedence probabilities
of all magnitude estimates that might be made from successive samples of a
specified size for a specified flood frequency (Beard, 1960; U. S. Water Resources



Council, 1981). The flood magnitude estimate computed for a given sample is
approximately the median of all possible estimates; that is, there is an approxi-
mately equal chance that the true magnitude will be either above or below the
estimated magnitude. But the probability distribution of the estimate is positively
skewed, so the average of the magnitudes computed from many samples is larger
than the median. The skewness arises because flood magnitude has a lower bound
at zero but no upper bound.

The consequence of the discrepancy between the median and the mean flood
estimate is that, if a very large number of estimates of flood magnitude are made
over a region, on average more 100-year floods will occur than expected (Beard,
1978). The expected probability of occurence of flood events in any year can be
estimated for events of nominal return period T by the following formulas, which
are derived for the normal distribution, and apply approximately to the Pearson
Type III distribution (Beard, 1960; Hardison and Jennings, 1972).

The expected probability for the normal distribution is expressed for a
sample size of n as

[ / n \1/21
E(Pn) = P\tn-l>z[—^) J (12.6.10)

where z is the standard normal variable for the desired probability of exceedence
and tn-\ is the student's f-statistic with n — 1 degrees of freedom. Calculation
can be performed using the appropriate tables for tn-\ and z. These computations
can also be carried out using the following equations (U. S. Water Resources
Council, 1981; U. S. Army Corps of Engineers, 1972).

T (years) Exceedence probability Expected probability E(Pn)

1000 0.001 O.OOlfl.0+—) (12.6.11a)
\ n1-55)

I 26 \
100 0.01 0.01 1.0+-J-H (12.6.116)

20 0.05 0.05(1.0 + — (12.6.11c)

10 0.10 0 .10(1.0+—) (12.6.1IcO

3.33 0.30 0.30|l.0 + —^-1 (12.6.1Ie)
I n0-925!



Example 12.6.3. Determine the expected probability for the 100-year discharge for
the Walnut Creek data given in Example 12.5.1 (n = 16).

Solution. For T = 100 years, use Eq. (12.6.lib) to obtain

£(p.)=o.oi(i + j y

-H*+(iiy
= 0.020

The 100-year discharge according to the above adjustment has an expected
probability of 0.02 (not 0.01) or a return period of 1/0.02 = 50 years.
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PROBLEMS
12.1.1 Estimate the return period of an annual maximum discharge of 40,000 cfs from

the data given in Table 12.1.1.
12.1.2 Estimate the return period of annual maximum discharges of 10,000, 20,000,

30,000, 40,000 and 50,000 cfs for the Guadalupe River at Victoria, Texas, from
the data given in Table 12.1.1. Plot a graph of flood discharge vs. return period
from the results.

12.1.3 Calculate the probability that a 100-year flood will occur at a given site at least
once during the next 5, 10, 50, and 100 years. What is the chance that a 100-
year flood will not occur at this site during the next 100 years?

12.1 A What is the probability that a five-year flood will occur (a) in the next year, (b)
at least once during the next five years, and (c) at least once during the next 50
years?

12.2.1 Calculate the 20-year and 100-year return period rainfall of 10 minutes duration
at Chicago using the data given in Table 12.2.1. Use the Extreme Value Type I
distribution.

12.3.1 (a) For the annual maximum series given below, determine the 25-, 50-, and
100-year peak discharges using the Extreme Value Type I distribution.

Year 1 2 3 4 5 6 7

Peak discharge (cfs) 4,780 1,520 9,260 17,600 4,300 21,200 12,000

Year 8 9 10 11 12 13 14

Peak discharge 2,840 2,120 3,170 3,490 3,920 3,310 13,200

Year 15 16 17 18 19 20 21

Peak discharge 9,700 3,380 9,540 12,200 20,400 7,960 15,000

Year 22 23 24 25 26 27

Peak discharge 3,930 3,840 4,470 16,000 6,540 4,130



(b) Determine the risk that a flow equaling or exceeding 25,000 cfs will occur
at this site during the next 15 years.

(c) Determine the return period for a flow rate of 15,000 cfs.
12.3.2 The maximum discharges as recorded at a river gaging station are as follows:

Date of Occurrence Discharge Date of Occurrence Discharge
(cfs) (cfs)

1940 June 23 908 1944 Feb. 26 1610
1941 Feb. 13 1930 1944 March 13 4160
1941 March 20 3010 1945 May 14 770
1941 May 31 2670 1946 Jan. 5 5980
1941 June 3 2720 1946 Jan. 9 2410
1941 June 28 2570 1946 March 5 1650
1941 Sept. 8 1930 1947 March 13 1260
1941 Oct. 23 2270 1948 Feb. 28 4630
1942 June 3 1770 1948 March 15 2690
1942 June 10 1770 1948 March 19 4160
1942 June 11 1970 1949 Jan. 4 1680
1942 Sept. 3 1570 1949 Jan. 15 1640
1942 Dec. 27 3850 1949 Feb. 13 2310
1943 Feb. 20 2650 1949 Feb. 18 3300
1943 March 15 2450 1949 Feb. 24 3460
1943 June 2 1290 1950 Jan. 25 3050
1943 June 20 1200 1950 March 5 2880
1943 Aug. 2 1200 1950 June 2 1450
1944 Feb. 23 1490

Select the annual maximum series from this data set. By fitting the annual
maximum data to an Extreme Value Type I distribution, determine the flood
flow for 10-, 50-, and 100-year return periods.

12.3.3 Select the annual exceedence series from the data set given in Prob. 12.3.2 and
calculate the 10-, 50-, and 100-year discharge values from these data using the
Extreme Value Type I distribution. Compare the computed values with those
obtained in Prob. 12.3.2.

12.3.4 Solve Prob. 12.3.2 using the lognormal distribution.
12.3.5 Solve Prob. 12.3.2 using the log-Pearson Type III distribution.
12.3.6 The record of annual peak discharges at a stream gaging station is as follows:

Year 1961 1962 1963 1964 1965 1966 1967 1968 1969

Discharge (nvVs) 45.3 27.5 16.9 41.1 31.2 19.9 22.7 59.0 35.4

Determine using the lognormal distribution
(a) The probability that an annual flood peak of 42.5 m3/s will not be exceeded.
(b) The return period of a discharge of 42.5 m3/s.
(c) The magnitude of a 20-year flood.

12.3.7 Show that the frequency factor for the Extreme Value Type I distribution is
given by



* - ~ H + 4 ^ T ) ]
12.4.1 Plot the annual maximum discharge data from Walnut Creek given in Table

12.5.1 on a lognormal probability scale using Blom's plotting formula.
12.4.2 Solve Prob. 12.4.1 using the Weibull plotting formula and compare the results

of the two plotting formulas.
12.4.3 Plot the data given in Prob. 12.3.1 on an Extreme Value Type I probability scale

using the reduced variate y as the horizontal axis and discharge as the vertical
axis. Use the Gringorten plotting formula.

12.4.4 Solve Prob. 12.4.3 using the Weibull plotting formula and compare the results
of the two plotting formulas.

12.5.1 Perform a frequency analysis for the annual maximum discharge of Walnut
Creek using the data given in Table 12.5.1, employing the log-Pearson Type III
distribution without the U. S. Water Resources Council corrections for skewness
and outliers. Compare your results with those given in Table 12.5.2 for the 2-,
5-, 10-, 25-, 50-, and 100-year events.

12.5.2 Using the log-Pearson Type III distribution and the hydrologic data in the fol-
lowing table, compute the 2-, 5-, 10-, 25-, 50-, and 100-year annual maximum
floods at Leaf River, Illinois. Use the U. S. Water Resources Council method
for skewness and check for outliers. The map skew for Leaf River is —0.4.

Annual maximum discharges for Leaf River, Illinois

Year 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

Discharge (cfs) 2160 3210 3070 4000 3830 978 6090 1150 6510 3070 3360

12.5.3 Using the annual maximum flows given below for Mills Creek near Los Molinos,
California, determine the 2-, 10-, 25-, 50-, and 100-year flood peaks using
the log-Pearson Type III distribution with the U. S. Water Resources Council
skewness adjustment. The map skewness at Los Molinas is Cm = 0.

Year 1929 1930 1931 1932 1933 1934 1935 1936

Discharge (cfs) 1,520 6,000 1,500 5,440 1,080 2,630 4,010 4,380

Year 1937 1938 1939 1940 1941 1942 1943 1944

Discharge 3,310 23,000 1,260 11,400 12,200 11,000 6,970 3,220

Year 1945 1946 1947 1948 1949 1950 1951 1952

Discharge 3,230 6,180 4,070 7,320 3,870 4,430 3,870 5,280

Year 1953 1954 1955 1956 1957 1958

Discharge 7,710 4,910 2,480 9,180 6,150 6,880

The statistics of the logarithms to base 10 of these data are: mean 3.6656, standard
deviation 0.3031, coefficient of skewness —0.165.



12.5.4 The station record for Fishkill Creek at Beacon, New York, has a mean of the
tranformed flows (log Q) of 3.3684, a standard deviation of transformed flows
of 0.2456, and a skew coefficient of the tranformed flows of 0.7300. The station
record is in cfs and is based upon 24 values.
(a) Determine the flood discharge for 2-, 20-, and 100-year return periods using

the lognormal distribution.
(b) Determine the flood discharges for the same return periods using the sample

skew for the log-Pearson III distribution.
(c) Determine the flood discharges using the procedure as recommended by the

U. S. Water Resources Council. The map skew is 0.6. Compare the results
obtained in parts (a), (b), and (c).

12.5.5 Use the U. S. Water Resources Council method to determine the 2-, 10-, 25-,
50-, and 100-year peak discharges for the station record of the San Gabriel River
at Georgetown, Texas. The map skew is —0.3.

Year 1935 1936 1937 1938 1939 1940 1941 1942

Discharge (cfs) 25,100 32,400 16,300 24,800 903 34,500 30,000 18,600

Year 1943 1944 1945 1946 1947 1948 1949 1950

Discharge 7,800 37,500 10,300 8,000 21,000 14,000 6,600 5,080

Year 1951 1952 1953 1954 1955 1956 1957 1958

Discharge 5,350 11,000 14,300 24,200 12,400 5,660 155,000 21,800

Year 1959 1960 1961 1962 1963 1964 1965 1966

Discharge 3,080 71,500 22,800 4,040 858 13,800 26,700 5,480

Year 1967 1968 1969 1970 1971 1972 1973

Discharge 1,900 21,800 20,700 11,200 9,640 4,790 18,100

12.5.6 Solve Prob. 12.5.5 using the U. S. Army Corps of Engineers computer program
HECWRC for flood flow frequency analysis with the log-Pearson III distribution.

12.5.7 Use the U. S. Water Resources Council method to determine the 2-, 10-, 25-,
50-, and 100-year peak discharges for the station record (Table 12.1.1) for the
Guadalupe River at Victoria, Texas. The map coefficient of skewness is - 0 . 3 .

12.5.8 Solve Prob. 12.5.7 using the U. S. Army Corps of Engineers computer program
HECWRC for flood flow frequency analysis with the log-Pearson III distribution.

12.6.1 Plot the 90-percent confidence limits of the flood flow frequency curve for the
Walnut Creek data given in Table 12.5.1. Consider the 2-, 10-, 25-, 50-, and
100-year return periods.

12.6.2 Plot the 90-percent confidence limits of the flood flow frequency curve for the
Los Molinos, California station record (Prob. 12.5.3). Consider the 2-, 10-, 25-,
50-, and 100-year return periods.

12.6.3 Plot the 90-percent confidence limits of the flood flow frequency curve for the
San Gabriel River at Georgetown, Texas (Prob. 12.5.5). Consider the 2-, 10-,
25-, 50-, and 100-year return periods.



12.6.4 Plot the 90-percent confidence limits of the flood flow frequency curve for the
Guadalupe River at Victoria, Texas (Prob. 12.5.7).

12.6.5 Determine the expected probability of a 10-year event for the Walnut Creek data
(Table 12.5.1).

12.6.6 Determine the expected probability of a 10-year and a 100-year flood on the
Guadalupe River at Victoria, Texas (data given in Table 12.1.1).

12.6.7 Determine the expected probability of a 10-year and a 100-year flood discharge
estimated for the San Gabriel River at Georgetown, Texas (Prob. 12.5.5).



HYDROLOGIC
DESIGN

Hydrologic design is the process of assessing the impact of hydrologic events on a
water resource system and choosing values for the key variables of the system so
that it will perform adequately. Hydrologic design may be used to develop plans
for a new structure, such as a flood control levee, or to develop management
programs for better control of an existing system, for example, by producing
a flood plain map for limiting construction near a river. There are many factors
besides hydrology that bear on the design of water resource systems; these include
public welfare and safety, economics, aesthetics, legal issues, and engineering
factors such as geotechnical and structural design. While the central concern of
the hydrologist is on the flow of water through a system, he or she must also be
aware of these other factors and of how the hydrologic operation of the system
might affect them. In this sense hydrologic design is a much broader subject than
hydrologic analysis as covered in previous chapters.

13.1 HYDROLOGIC DESIGN SCALE

The purposes of water resources planning and management may be grouped
roughly into two categories. One is water control, such as drainage, flood con-
trol, pollution abatement, insect control, sediment control, and salinity control.
The other is water use and management, such as domestic and industrial water
supply, irrigation, hydropower generation, recreation, fish and wildlife improve-
ment, low-flow augmentation for water quality management, and watershed
management. In either case, the task of the hydrologist is the same, namely,
to determine a design inflow, to route the flow through the system, and to check
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whether the output values are satisfactory. The difference between the two cases
is that design for water control is usually concerned with extreme events of short
duration, such as the instantaneous peak discharge during a flood, or the minimum
flow over a period of a few days during a dry period, while design for water use
is concerned with the complete flow hydrograph over a period of years.

The hydrologic design scale is the range in magnitude of the design variable
(such as the design discharge) within which a value must be selected to determine
the inflow to the system (see Fig. 13.1.1). The most important factors in selecting
the design value are cost and safety. It is too costly to design small structures
such as culverts for very large peak discharges; however, if a major hydraulic
structure, such as the spillway on a large dam, is designed for too small a flood,
the result might be a catastrophe, such as a dam's failure. The optimal magnitude
for design is one that balances the conflicting considerations of cost and safety.

Estimated Limiting Value

The practical upper limit of the hydrologic design scale is not infinite, since the
global hydrologic cycle is a closed system; that is, the total quantity of water
on earth is essentially constant. Some hydrologists recognize no upper limit, but
such a view is physically unrealistic. The lower limit of the design scale is zero in
most cases, since the value of the design variable cannot be negative. Although
the true upper limit is usually unknown, for practical purposes an estimated upper
limit may be determined. This estimated limiting value (ELV) is defined as the
largest magnitude possible for a hydrologic event at a given location, based on
the best available hydrologic information. The range of uncertainty for the ELV

FIGURE 13.1.1
Hydrologic design scale. Approximate
ranges of the design level for different types
of structures are shown. Design may be
based on a percentage of the ELV or on
a design return period. The values for the
two scales shown in the diagram are illus-
trative only and do not correspond directly
with one another.
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depends on the reliability of information, technical knowledge, and accuracy of
analysis. As information, knowledge, and analysis improve, the estimate better
approximates the true upper limit, and its range of uncertainty decreases. There
have been cases in which observed hydrologic events exceeded their previously
estimated limiting values.

The concept of an estimated limiting value is implicit in the commonly
used probable maximum precipitation (PMP) and the corresponding probable
maximum flood (PMF). The probable maximum precipitation is defined by the
World Meteorological Organization (1983) as a "quantity of precipitation that is
close to the physical upper limit for a given duration over a particular basin."
Based on worldwide records, the PMP can have a return period of as long as
500,000,000 years, corresponding approximately to a frequency factor of 15.
However, the return period varies geographically. Some would arbitrarily assign
a return period, say 10,000 years, to the PMP or PMF, but this suggestion has
no physical basis.

Probability-Based Limits

Because of its unknown probability, the estimated limiting value is used
deterministically. Lower down on the design scale, a probability- or frequency-
based approach is commonly adopted. The magnitudes of hydrologic events at
this level are smaller, usually within or near the range of frequent observations.
As a result, their probabilities of occurrence can be estimated adequately when
hydrologic records of sufficient length are available for frequency analysis. The
probabilistic approach is less subjective and more theoretically manageable than
the deterministic approach. Probabilistic methods also lead to logical ways of
determining optimum design levels, such as by hydroeconomic and risk analyses,
which will be discussed in Sec. 13.2.

For a densely populated area, where the failure of water-control works
would result in loss of life and extensive property damage, a design using the
ELV might be justified. In a less populous area where failure would result only
in minor damage, a design for a much smaller degree of protection is reasonable.
Between these extremes on the hydrologic design scale, varying conditions exist
and varying design values are required. When the probabilistic behavior of a
hydrologic event can be determined, it is usually best to use the event magnitude
for a specified return period as a design value.

Based on past experience and judgment, some generalized design criteria
for water-control structures have been developed, as summarized in Table 13.1.1.
According to the potential consequence of failure, structures are classified as
major, intermediate and minor\ the corresponding approximate ranges on the
design scale are shown in Fig. 13.1.1. The criteria for dams in Table 13.1.1
pertain to the design of spillway capacities, and are taken from the National
Academy of Sciences (1983). The Academy defines a small dam as having 50-
1000 acre-ft of storage or being 25-40 ft high, an intermediate dam as having
1000-50,000 acre-ft of storage or being 40-100 ft high, and a large dam as having
more than 50,000 acre-ft of storage or being more than 100 ft high. In general,



TABLE 13.1.1
Generalized design criteria for water-control structures

Type of structure Return period (years) ELV

Highway culverts
Low traffic 5-10 —
Intermediate traffic 10-25 —
High traffic 50-100 -

Highway bridges
Secondary system 10-50 —
Primary system 50-100 —

Farm drainage
Culverts 5-50 -
Ditches 5-50 -

Urban drainage
Storm sewers in small cities 2-25 —
Storm sewers in large cities 25-50 —

Airfields
Low traffic 5-10 -
Intermediate traffic 10-25 —
High traffic 50-100 -

Levees
On farms 2-50 —
Around cities 50-200 —

Dams with no likelihood of
loss of life (low hazard)
Small dams 50-100 -
Intermediate dams 100 + —
Large dams — 50-100%

Dams with probable loss of life
(significant hazard)
Small dams 100+ 50%
Intermediate dams — 50-100%
Large dams — 100%

Dams with high likelihood of considerable
loss of life (high hazard)
Small dams - 50-100%
Intermediate dams — 100%
Large dams — 100%

there would be considerable loss of life and extensive damage if a major structure
failed. In the case of an intermediate structure, a small loss of life would be
possible and the damage would be within the financial capability of the owner.
For minor structures, there generally would be no loss of life, and the damage
would be of the same magnitude as the cost of replacing or repairing the structure.

Design for Water Use

The above discussion applies to the hydrologic design for the control of excessive
waters, such as floods. Design for water use is handled similarly, except that
insufficient rather than excessive water is the concern. Because of the long time



span of droughts, there are fewer of them in historical hydrologic records than
there are extreme floods. It is therefore more difficult to determine drought design
levels through frequency analysis, especially if the design event lasts several
years, as is sometimes the case in water supply design. A common basis for
the design of municipal water supply systems is the critical drought of record,
that is, the worst recorded drought. The design is considered satisfactory if it
will supply water at the required rate throughout an equivalent critical period.
The limitation of the critical-period approach is that the risk level associated
with basing the design on this single historical event is unknown. To overcome
this limitation, methods of synthetic streamflow generation have been developed
using computers and random number generation to prepare synthetic streamflow
records that are statistically equivalent to the historical record. Together with the
historical record, the synthetic records provide a probabilistic basis for design
against drought events (Hirsch, 1979; Salas, et al., 1980).

Hydrologic design for water use is closely regulated by the legal framework
of water rights, especially in arid regions. The law specifies which users will
have their allocations reduced in the event of a shortage. In an effort to protect
the fish and wildlife of a stream, methods have been developed in recent years
to quantify their need for instream flow (Milhous and Grenney, 1980). Unlike
flood control and water supply, for which sufficient hydrologic information is
provided by flow rate and water level, instream flow needs are influenced also
by turbidity, temperature, and other water quality variables in a complex manner
varying from one species to another. Water resources systems are subject to the
demands of competing users, the need to maintain instream flow, and competing
demands related to flood control. Hydrologic design must specify the appropriate
design level for each of these factors.

13.2 SELECTION OF THE DESIGN LEVEL

A hydrologic design level on the design scale is the magnitude of the hydrologic
event to be considered for the design of a structure or project. As it is not always
economical to design structures and projects for the estimated limiting value,
the ELV is often modified for specific design purposes. The final design value
may be further modified according to engineering judgment and the experience
of the designer or planner. Three approaches are commonly used to determine a
hydrologic design value: an empirical approach, risk analysis, and hydroeconomic
analysis.

Empirical Approach

During the early years of hydraulic engineering practice, around the early 1900s,
a spillway designed to pass a flood 50 to 100 percent larger than the largest
recorded in a period of perhaps 25 years was considered adequate. This design
criterion is no more than a rule of thumb involving an arbitrary factor of safety. As
an example of the inadequacies of this criterion, the Republican River in Nebraska
in 1935 experienced a flood over 10 times as large as any that had occurred on



that river during 40 prior years of record. This design practice was found to be
entirely inadequate, and hydrologists and hydraulic engineers searched for better
methods.

As an empirical approach the most extreme event among past observations
is often selected as the design value. The probability that the most extreme event
of the past Af years will be equaled or exceeded once during the next n years can
be estimated as

P(N9n) = —^- (13.2.1)
N + n

Thus, for example, the probability that the largest flood observed in N years will
be equaled or exceeded in N future years is 0.50.

If a drought lasting m years is the critical event of record over an N-year
period, what is the probability P(N, m, n) that a worse drought will occur within
the next n years? The number of sequences of length mm N years of record is
N — m + 1, and in n years of record n — m + 1. Thus the chance that the worst
event over the past and future spans combined will be contained in the n future
years is given approximately by

W W 'H ) = (iV-if.+" l ) T | n - m + 1 )
(13.2.2)

n — m + 1
= N+n-2rn + 2 (" * "*

which reduces to (13.2.1) when m = 1.

Example 13.2.1. If the critical drought of record, as determined from 40 years of
hydrologic data, lasted 5 years, what is the chance that a more severe drought will
occur during the next 20 years?

Solution. Using Eq. (13.2.2),

f ( 4 0 ' 5 ' 2 0 ) = 4 0 +
2 2 0 " - 5 2 + x 5 + 2

= 0.308

Risk Analysis

Water-control design involves consideration of risks. A water-control structure
might fail if the magnitude for the design return period T is exceeded within the
expected life of the structure. This natural, or inherent, hydrologic risk of failure
can be calculated using Eq. (12.1.4):

R = i - [i - P(X > X7)T (13.2.3)

where P(X > xT) = HT, and n is the expected life of the structure; R represents
the probability that an event x > xT will occur at least once in n years. This



Design life n (years)

FIGURE 13.2.1
Risk of at least one exceedence of the design event during the design life.

relationship is plotted in Fig. 13.2A. If, for example, a hydrologist wants to be
approximately 90 percent certain that the design capacity of a culvert will not be
exceeded during the structure's expected life of 10 years, he or she designs for
the 100-year peak discharge of runoff. If a 40-percent risk of failure is acceptable,
the design return period can be reduced to 20 years or the expected life extended
to 50 years.

Example 13.2.2. A culvert has an expected life of 10 years. If the acceptable
risk of at least one event exceeding the culvert capacity during the design life is 10
percent, what design return period should be used? What is the chance that a culvert
designed for an event of this return period will not have its capacity exceeded for
50 years?

Solution, By Eq. (13.2.3)
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If T = 95 years, the risk of failure over n = 50 years is

^ = 1 - ! 1 - 9 5 - )

= 0.41

So the probability that the capacity will not be exceeded during this 50-year period
is 1 - 0.41 = 0.59, or 59 percent.

It can be seen in Fig. 13.2.1 that, for a given risk of failure, the required
design return period T increases linearly with the design life n, as T and n become
large. Under these conditions, what is the risk of failure if the design return period
is equal to the design life, that is, T = nl By expanding Eq. (13.2.3) as a power
series, it can be shown that for large values of n, 1 — (1 — l/T)n ~ 1 — e ~n/T,
so, for T = n, the risk is 1 — e ~l — 0.632. For example, there is approximately
a 63-percent chance that a 100-year event will be exceeded at least once during
the next 100 years.

Although natural hydrologic uncertainty can be accounted for as above,
other kinds of uncertainty are difficult to calculate. These are often treated using
a safety factor•, SF, or a safety margin, SM. Letting the hydrologic design value
be L and the actual capacity adopted for the project be C, the factor of safety is

SF = j (13.2.4)

and the safety margin is

SM = C-L (13.2.5)

The actual capacity is larger than the hydrologic design value because it has
to allow for other kinds of uncertainty: technological (hydraulic, structural,
construction, operation, etc.), socioeconqmic, political, and environmental.

For a specified hydrologic risk R and design life n of a structure,
Eq. (13.2.3) can be used to compute the relevant return period T. The hydro-
logic event magnitude L corresponding to this exceedence probability is found
by a frequency analysis of hydrologic data. The design value C is then given by
L multiplied by an assigned factor of safety, or by L plus an added margin of
safety. For example, it is customary to design levees with a safety margin of one
to three feet, that is, one to three feet of freeboard above the calculated maximum
water surface elevation.

Hydroeconomic Analysis

The optimum design return period can be determined by hydroeconomic analysis
if the probabilistic nature of a hydrologic event and the damage that will result
if it occurs are both known over the feasible range of hydrologic events. As the
design return period increases, the capital cost of a structure increases, but the
expected damages decrease because of the better protection afforded. By summing



the capital cost and the expected damage cost on an annual basis, a design return
period having minimum total cost can be found.

Figure I3.2.2(a) shows the damage that would result if an event, such as
a flood, having the specified return period were to occur. If the design event
magnitude is Xj, the structure will prevent all damages for events with x < Xj
but none for x > Xj, so the expected annual damage cost is found by taking
the product of the probability f(x) dx that an event of magnitude x will occur
in any given year, and the damage D(x) that would result from that event, and

Return period (years)

Annual exceedence probability

{a) Damages for events of various return periods.

Design return period (years)

o Risk cost • Capital cost A Total cost

(b) Hydroeconomic analysis.

FIGURE 13.2.2
Determination of the optimum design return period by hydroeconomic analysis (Example 13.2.3).

Damage risk cost
= shaded area in (a)

Minimum total cost

Optimum design return
period (25 years)

D
am

ag
e 

($
10

00
)

C
os

t 
($

10
00

)



integrating for x > xT (the design level). That is, the expected annual cost DT is

DT= D(x)f{x)dx (13.2.6)
Jx7

which is the shaded area in Fig. 13.2.2(a).
The integral (13.2.6) is evaluated by breaking the range of x > Xj into

intervals and computing the expected annual damage cost for events in each
interval. For x,-i < x < x,-,

f
AD, = D(x)f(x)dx (13.2.7)

JXi-i

which is approximated by

AD,- = f(x)dx
1 2 J J * - (13.2.8)

= D(X1-O + D(Xi)[p{x^Xi)_p{x^ xi_i}]

But P(x < JC1-) - P(x < JC1-1) = [1 - P(x > JC1-)] - [1 - P(x > jc.-i)] =
P(x > JC1--1) - P(x > JC,-), so (13.2.8) can be written

AD,- = D^'-^ + D^\pix > , ._ ,) - P(x > Xi)] (i3.2.9)

and the annual expected damage cost for a structure designed for return period T
is given by

DT = X \D<*~1\+D™\p<x ^ X1-O - P(x ̂  x,)j (13.2.10)

By adding Dj to the annualized capital cost of the structure, the total cost can
be found; the optimum design return period is the one having the minimum total
cost.

Example 13.2.3. For events of various return periods at a given location, the
damage costs and the annualized capital costs of structures designed to control the
events, are shown in columns 4 and 7, respectively, of Table 13.2.1. Determine
the expected annual damages if no structure is provided, and calculate the optimal
design return period.

Solution. For each return period shown in column 2 of Table 13.2.1, the annual
exceedence probability is P(x > xT) = HT. The corresponding damage cost AD is
found using Eq. (13.2.9). For example, for the interval / = 1 between T = 1 year
and T = 2 years,



TABLE 13.2.1
Calculation of the optimum design return period by hydroeconomic
analysis (Example 13.2.3)
C o l u m n : 1 2 3 4 5 6 7 8

lncre- Return Annual Damage Incremental Damage Capital Total
ment period exceedence expected risk cost cost
/ T probability damage cost

(years) ($) ($/year) ($/year) ($/year) ($/year)

1 1.000 0 49,098 0 49,098
1 2 0.500 20,000 5,000 44,098 3,000 47,098
2 5 0.200 60,000 12,000 32,098 14,000 46,098
3 10 0.100 140,000 10,000 22,098 23,000 45,098
4 15 0.067 177,000 5,283 16,815 25,000 41,815
5 20 0.050 213,000 3,250 13,565 27,000 40,565
6 25 0.040 250,000 2,315 11,250 29,000 40,250
7 50 0.020 300,000 5,500 5,750 40,000 45,750
8 100 0.010 400,000 3,500 2,250 60,000 62,250
9 200 0.005 500,000 2,250 0 80,000 80,000

Annual expected damage = $49,098

= (^1.0-0.5)

= $5,000/year

as shown in column 5 of the table. Summing these incremental costs yields an annual
expected damage cost of $49,098/year if no structure is built. This represents the
average annual cost of flood damage over many years, assuming constant economic
conditions. This amount is the damage risk cost corresponding to no structure, and
is shown in the first line of column 6 of the table.

The damage risk costs diminish as the design return period of the control
structure increases. For example, if T = 2 years were selected, the damage risk cost
would be 49,098 -AD 1= 49,098 - 5,000 = $44,098/year. The values of damage
risk cost and capital cost (column 7) are added to form the total cost (column 8);
the three costs are plotted in Fig. 13.2.2(6). It can be seen from the table and the
figure that the optimum design return period, the one having minimal total cost, is
25 years, for which the total cost is $40,250/year. Of this amount, $29,000/year
(72 percent) is capital cost and $ll,250/year (28 percent) is damage risk cost.

Hydroeconomic analysis has been applied to the design of flood control
reservoirs, levees, channels, and highway stream crossings (Corry, Jones, and
Thompson, 1980). For a flood damage study, the duration and extent of flooding
must be determined for events of various return periods and economic surveys
must be taken to quantify damages for each level of flooding. The social costs of
flooding are difficult to quantify. The U.S. Army Corps of Engineers Hydrologic
Engineering Center in Davis, California, has available the following computer
programs for hydroeconomic analysis (U. S. Army Corps of Engineers, 1986):



DAMCAL (Damage Reach Stage-Damage Calculation), EAD (Expected Annual
Flood Damage Computation), SID (Structure Inventory for Damage Analysis),
AGDAM (Agricultural Flood Damage Analysis), and SIPP (Interactive Nonstruc-
tural Analysis Package).

13.3 FIRST ORDER ANALYSIS OF UNCERTAINTY

Many of the uncertainties associated with hydrologic systems are not quantifiable.
For example, the conveyance capacity of a culvert with an unobstructed entrance
can be calculated within a small margin of error, but during a flood, debris
may become lodged around the entrance to the culvert, reducing its conveyance
capacity by an amount that cannot be predetermined. Hydrologic uncertainty may
be broken down into three categories: natural, or inherent, uncertainty, which
arises from the random variability of hydrologic phenomena; model uncertainty,
which results from the approximations made when representing phenomena by
equations; and parameter uncertainty, which stems from the unknown nature
of the coefficients in the equations, such as the bed roughness in Manning's
equation. Inherent uncertainty in the magnitude of the design event is described by
Eq. (13.2.3); in this section, model and parameter uncertainty will be considered.

The first order analysis of uncertainty is a procedure for quantifying the
expected variability of a dependent variable calculated as a function of one or
more independent variables (Ang and Tang, 1975; Kapur and Lamberson, 1977;
Ang and Tang, 1984; Yen, 1986). Suppose w is expressed as a function of JC:

w= f(x) (13.3.1)

There are two sources of error in w: first, the function /, or model, may be
incorrect; second, the measurement of JC may be inaccurate. In the following
analysis it is assumed that there is no model error, or bias. Kapur and Lamberson
(1977) show how to extend the analysis when there is model error. Assuming,
then, that/(-) is a correct model, a nominal value of JC, denoted Jc, is selected as
a design input and the corresponding value of w calculated:

w = f(x) (13.3.2)

If the true value of x differs from x, the effect of this discrepancy on w can be
estimated by expanding f(x) as a Taylor series around x = x:

w=m + £ ( * ~ * ) + h&c>ix~*)2 + ••• (13<3-3)
where the derivatives dfldx, d2f/dx2, . . . , are evaluated at x = x. If second and
higher order terms are neglected, the resulting first order expression for the error
in w is

w-w = ^(jc-jc) (13.3.4)
dx

The variance of this error is s^ = E[(w — w)2] where E is the expectation operator
[see Eq. (11.3.3)]; that is,



or

4 = (f)^ (13-3.5)

where s% is the variance of x.
Equation (13.3.5) gives the variance of a dependent variable w as a function

of the variance of an independent variable x, assuming that the functional rela-
tionship w = f(x) is correct. The value sw is the standard error of estimate of w.

If w is dependent on several mutually independent variables x\, X2, . . . ,
xn, it can be shown by a procedure similar to the above that

* - {£h+№+ + № <i3-3-6)

Kapur and Lamberson (1977) show how to extend (13.3.6) to account for the
effect on s^ of correlation between x\9 X2, . . . , Xn, if any exists.

First-Order Analysis of Manning's Equation: Depth as the
Dependent Variable

Manning's equation is widely applied in hydrology to determine depths of flow
for specified flow rates, or to determine discharges for specified depths of flow,
taking into account the resistance to flow in channels arising from bed roughness.
A common application, such as in channel design or flood plain delineation, is
to calculate the depth of flow y in the channel, given the flow rate Q, roughness
coefficient n, and the shape and slope of the channel as determined by design or by
surveys. Once the depth of flow (or elevation of the water surface) is known, the
values of the design variables are determined, such as the channel wall elevation
or the flood plain extent. The hydrologist faced with this task is conscious of the
uncertainties involved, especially in the selection of the design flow and Manning
roughness. Although it is not so obvious, there is also uncertainty in the value of
the friction slope Sf, depending on how it is calculated, ranging from the simplest
case of uniform flow (S0 = Sf) to more complex cases of steady nonuniform
flow or unsteady nonuniform flow [see Eq. (9.2.1)]. The first-order analysis of
uncertainty can be used to estimate the effect on y of uncertainty in Q, n, and 5/.

Consider, first, the effect on flow depth of variation in the flow rate Q.
Manning's equation is written in English units as

Q = L^.sj'2ARm ( 1 3 3 7 )

where A is the cross-sectional area and R the hydraulic radius, both dependent on
the flow depth y. If variations in y are dependent only on variations in Q, then,



by (13.3.5),

4 - (1)4 C3.3.8)

where dy/dQ is the rate at which the depth changes with changes in Q. Now, in
Chap. 5, it was shown [Eq. (5.6.15)] that the inverse of this derivative, namely
dQ/dy, is given for Manning's equation by

f . Q\±f + Lf] 03.3.9)
dy [3R dy A dy \

Table 5.6.1 gives formulas for the channel shape function (2/3R)(dR/dy) +
(l/A)(dA/dy) for common channel cross sections. Substituting into (13.3.8),

s2
y = ^ (13.3.10)

Q\3Rdy + Ady)

But SQIQ = CWQ, the coefficient of variation of the flow rate (see Table 11.3.1),
so (13.3.10) can be rewritten

s] = a-~—2 (13.3.11)
^dR ]_dA\

[3Rdy + Ady)

which specifies the variance of the flow depth as a function of the coefficient of
variation of the flow rate and the value of the channel shape function. To take
into account also the uncertainty in Manning's roughness n and the friction slope
Sf, it may be similarly shown, using Eq. (13.3.6), that

9 CYl + CV^ + (1/4)CV2
s] = — 2 1 . ^ 2

 Sf (13.3.12)

\3Rdy + Ady)

giving the variance of the flow depth v as a function of the coefficients of variation
of flow rate, Manning's n and friction slope, and the channel shape function.

Example 13.3.1. A 50-foot wide rectangular channel has a bed slope of one
percent. A hydrologist estimates that the design flow rate is 5000 cfs and that the
roughness is n = 0.035. If the coefficients of variation of the flow estimate and the
roughness estimate are 30 percent and 15 percent, respectively, what is the standard
error of estimate of the flow depth yl If houses are built next to this channel with
floor elevation one foot above the water surface elevation calculated for the design
event, estimate the chance that these houses will be flooded during the design event
due to uncertainties involved in calculating the water level. Assume uniform flow.

Solution, For a width of 50 feet, A = 50y and R = 50y(50 + 2y)\ the flow depth
for the base case is calculated from Manning's equation:



Q=L^.Sy2AR2B

which is solved using Newton's iteration technique (see Sec. 5.6) to yield

y = 7.37 ft

The standard error of the estimate is sy, calculated by Eq. (13.3.12) with CV^ =
0.30, CVn = 0.15, and CV5/ = 0. From Table 5.6.1, for a rectangular channel,

1^dR \dA\ 5B + 6y
\3Rdy + Ady) 3y(B + 2y)

5 x 50 + 6 x 7.37

" 3 x 7.37(50 + 2 x 7.37)

= 0.206

2 CW2Q + CV2
n + (IM)CV^

Sy (AdR , LdA]2

\3Rdy + Ady)
(0.30)2 + (0.15)2

(0.206)2

OTSy = 1.63 ft.
If the houses are built with their floors one foot above the calculated water

surface elevation, they will be flooded if the actual depth is greater than 7.37 +
1.00 = 8.37 ft. If the water surface elevation y is normally distributed, then the
probability that they will be flooded is evaluated by converting y to the standard
normal variable z by subtracting the mean value of y (7.37 ft) from both sides of
the inequality and dividing by the standard error (1.63 ft):

= P(z > 0.613)

= 1 - Fz(0.613)

where Fz is the standard normal distribution function. Using Table 11.2.1 or the
method employed in Example 11.2.1, the result is Fz(0.613) = 0.73, so P(y >
8.37) = 1 - 0.73 = 0.27. There is approximately a 27 percent chance that the
houses will be flooded during the design event due to uncertainties in calculating
the water level for that event.

This example has treated only parameter uncertainty in the calculations. The
true probability that the houses will be flooded is greater than that calculated
here, because the critical flood may exceed the design magnitude (due to natural
uncertainty).



It is clear from Example 13.3.1 that reasonable amounts of uncertainty in
the estimation of Q and n can produce significant uncertainty in flow depth. A
15-percent error in estimating n = 0.035 is an error of 0.035 x 0.15 = 0.005.
This would be indicated from a measurement of 0.035 ± 0.005, which is about
as accurate as an experienced hydrologist can get from observation of an existing
channel. A 30-percent error in estimating Q is 5000 x 0.30 = 1500 cfs. An
estimate of Q = 5000 ± 1500 cfs may also reflect the correct order of uncertainty,
especially if the design return period is large (e.g., T = 100 years).

The use of the channel shape function (2/3R)(dR/dy) + (VA)(dA/dy) in
(13.3.12) depends on knowledge of dRldy and dAldy, which may be difficult to
obtain for irregularly shaped channels. Also, the assumption that y depends on
Q alone may not be valid. In such cases, Eq. (13.3.6) can be used to obtain sy,
treating v as a function of Q and n, and a computer program simulating flow in
the channel can be used to estimate the required partial derivatives dyldQ and
dyldn by rerunning the program for various values of Q and n and reading off the
computed values of flow depth or water surface elevation. Figure 13.3.1 shows
the results of such a procedure for the channel and conditions given in Example
13.3.1. The gradients dyldQ and dyldn are approximately linear for this example;
this validates the use of only first-order terms in the analysis of uncertainty (if
the lines were significantly curved, analysis would require keeping the second-
order terms in the Taylor-series expansion).

Example 13.3.2. For the same conditions as in Example 13.3.1 (B = 50 ft, Q =
5000 cfs, S0 = 0.01, n = 0.035), the variation of flow rate with flow depth at the
base case level has been found from Fig. (13.3.1) to be dQIdy = 1028 cfs/ft, and
the variation of n with flow depth, dnldy = 0.0072 ft"1. If CWQ = 0.30 and CV „ =
0.15, calculate the standard error of y.

Solution. From Eq. (13.3.6),

In this case, sQ = 5000 x 0.30 = 1500, Sn = 0.035 x 0.15 = 0.0053; also, dyldQ =
1I102S, dyldn = 1/0.0072. Thus,

^ = ( u k f x (1500)2 + ( ( T o b f x (0-0053)2
or Sy = 1.63 ft as computed in Example 13.3.1.

First-Order Analysis of Manning's Equation: Discharge as
the Dependent Variable

Another application of Manning's equation is the calculation of the discharge or
capacity C of a stream channel or other conveyance structure for a given depth,
roughness coefficient n, bottom slope, and cross-sectional geometry. Manning's
equation (13.3.7) can be expressed using R = AIP as



Depth y (ft)

FIGURE 13.3.1
Variation of the flow depth with flow rate and with Manning's n. Rectangular channel with width
50 ft, bed slope 0.01. Uniform flow assumed. (Example 13.3.2).

C = Q = -Sj12A513P-213 (13.3.13)
n J

in which P is the wetted perimeter. Performing first-order analysis on (13.3.13),
the coefficient of variation of the capacity can be expressed as

C\2
Q = C\2

n + -ACW\ (13.3.14)

assuming CVA « 0 and CVP « 0.
Manning's equation for a channel and flood plain (overbank) can also be

expressed as (Chow, 1959)

Q = 1.49(-AfPc-
2/3 + - A f / V 2 / 3 W 2 (13.3.15)

\nc nb ) J

in which nc and n^ are the roughness coefficients for the channel and the flood-
plain, respectively and Ac, Pc, Af7, and P^ are the cross-sectional areas and
the wetted perimeters of the channel and the overbank flow. Equation (13.3.15)
assumes that the cross-sectional shape of the channel and the flood plain are both
symmetrical about the channel center line. This equation can be used to evaluate
levee capacity (the flow rate the levee can carry without overtopping). The levee
capacity can be considered a random variable related to the independent random
variables nc, n^, and Sf. Applying first-order analysis, the coefficient of variation
of the capacity is (Lee and Mays, 1986)

CW2O = -CY2C + - ^ C V 2 + ( - ^ - ^ I CV2 (13.3.16)
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where CVAc, CV>c, C V ^ , and CY pb have been assumed negligible, and

( \ / A \5/3 / r, \2/3

^N ^ (13.3.17)

In studies of flood data on the Ohio River, Lee and Mays (1986) concluded
that uncertainties in the roughness coefficients and the friction slope account
for 95 percent of the uncertainties in computing the capacity. They presented a
method for determining the uncertainty in the friction slope using the observed
flood hydrograph of the river.

13.4 COMPOSITE RISK ANALYSIS

The previous sections have introduced the concepts of inherent uncertainty due
to the natural variability of hydrologic phenomena, and model and parameter
uncertainty arising from the way the phenomena are analyzed. Composite risk
analysis is a method of accounting for the risks resulting from the various sources
of uncertainty to produce an overall risk assessment for a particular design. The
concepts of loading and capacity are central to this analysis.

The loading, or demand, placed on a system is the measure of the impact of
external events. The demand for water supply is determined by the people who
use the water. The magnitude of a flash flood depends on the characteristics of
the storm producing it and on the condition of the watershed at the time of the
storm. The capacity, or resistance, is the measure of the ability of the system to
withstand the loading or meet the demand.

If loading is denoted by L and capacity by C, then the risk of failure R is
given by the probability that L exceeds C, or

{L I (13.4.1)

= P(C-L<0)

The risk depends upon the probability distributions of L and C. Suppose that the
probability density function of L is f(L). This function could be, for example, an
Extreme Value or log-Pearson Type III probability density function for extreme
values, as described earlier. Given f(L), the chance that the loading will exceed
a fixed and known capacity C* is (see Fig. 13.4.1)

P(L >C*) = f(L)dL (13.4.2)
Jc*

The true capacity is not known exactly, but may be considered to have
probability density function g(C), which could be the normal or lognormal distri-
bution arising from the first-order analysis of uncertainty in the system capacity.
For example, if Manning's equation has been used to determine the capacity of a
hydraulic structure, the uncertainty in C can be evaluated by first-order analysis
as described above. The probability that the capacity lies within a small range



dC around a value C is g(C)dC. Assuming that L and C are independent random

variables, the composite risk is evaluated by calculating the probability that

loading will exceed capacity at each value in the range of feasible capacities,

and integrating to obtain

f(L)dL g{C)dC (13.4.3)
oo JC

The reliability of a system is defined to be the probability that a system will
perform its required function for a specified period of time under stated conditions
(Harr, 1987). Reliability R is the complement of risk, or the probability that the
loading will not exceed the capacity:

R = P(L^C) (13.4.4)

= 1 -R

or

R = J - 0 0[J0 f{L)dL\g{C)dC (13.4.5)

Example 13.4.1. During the coming year, a city's estimated water demand is three
units, with a standard deviation of one unit. Calculate (a) the risk of demand
exceeding supply if the city's water supply system has an estimated capacity of 5
units; (b) the risk of failure if the estimate of the capacity has a standard error of
0.75 units. Assume that loading and capacity are both normally distributed.

Solution, (a) The loading is normally distributed with JJLL = 3 and crL = 1. Its
probability function, from Eq. (11.2.5), is

/(L) = —-—e-(L-^)2/2a2L

FIGURE 13.4.1
Composite risk analysis. Area
shaded is the risk R5 of
the loading exceeding a fixed
capacity of 5 units. The
risk that the loading will
exceed the capacity when the
capacity is random is given by
K = J - J fcf(L)dL] g(C)dC.
The loading and capacity
shown are both normally
distributed (Example
13.4.1).Loading L, and capacity C
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The risk R is evaluated using (13.4.2) with C * = 5:

R= \ c J(QdL

roc

or

r5

R=I-I —e'^-^dL

The integral is evalutated by converting the variable of integration to the standard
normal variable: u — (L — /JLL)/O"L = (L —3)1 \ = L — 3, so dL = du, and L =

5 becomes u = 5 — 3 = 2; L = — & becomes u = -co, and then

* = i - -L-e-fKdu

= 1 - Fz(2)

where /% is the standard normal distribution function. From Table 11.2.1, Fz(2) =
0.977, and

~R=\ - 0 . 9 7 7

= 0.023

The chance that demand will exceed supply for a fixed capacity of 5 is approximately
2 percent.

(b) The capacity now has a normal distribution with fie = 5 and CJC = 0.75.
Hence, its probability density is

g(C) = e-(C-VC)2KoI

\2lT(Tc

= * e-(C-5)2/2x(0.15)2

V2^(0.75)

_ 1 -333 ^ -(C-5)2/l. 125

V2^
and the risk of failure is given by Eq. (13.4.3), with/(L) as before:



The integral is evaluated by computer using numerical integration to yield R = 0.052.
Thus, the chance that the city's water demand will exceed its supply during the
coming year, assuming the capacity to be normally distributed with mean 5 and
standard deviation 0.75 is approximately 5 percent; compare this with the result of
2 percent when the capacity was considered fixed at 5 units.

It is clear from Example 13.4.1 that calculation of the composite risk of
failure can be a complicated exercise requiring the use of a computer to perform
the necessary integration. This is especially true when more realistic distributions
for the loading and capacity are chosen, such as the Extreme Value or log-Pearson
Type III distributions for loading, and the lognormal distribution for capacity. Yen
and co-workers at the University of Illinois (Yen, 1970; Tang and Yen, 1972;
Yen, et al., 1976) and Mays and co-workers at the University of Texas at Austin
(Tung and Mays, 1980; Lee and Mays, 1986) have made detailed risk analysis
studies for various kinds of open-channel and pipe-flow design problems.

The composite risk analysis described here is a static analysis, which means
that it estimates the risk of failure under the single worst case loading on the
system during its design life. A more complex dynamic risk analysis considers
the possibility of a number of extreme loadings during the design life, any one
of which could cause a failure; the total risk of failure includes the chance of
multiple failures during the design life (Tung and Mays, 1980; Lee and Mays
1983).

13.5 RISK ANALYSIS OF SAFETY MARGINS AND
SAFETY FACTORS

Safety Margin

The safety margin was defined in Eq. (13.2.5) as the difference between the
project capacity and the value calculated for the design loading SM = C — L.
From (13.4.1), the risk of failure R is

* = ™-L<0) (13.5.1)
= P (SM<0)

If C and L are independent random variables, then the mean value of SM is given
by

MSM = Mc ~ ML (13.5.2)

and its variance by

° S M = <r2c + <rl (13.5.3)

so the standard deviation, or standard error of estimate, of the safety margin is

OSM = [(T2C + crlf2 (13.5.4)

If the safety margin is normally distributed, then (SM-/xSM)/crSM is a standard



normal variate z. By subtracting ^ISM from both sides of the inequality in (13.5.1)
and dividing both sides by CTSM> it c a n be seen that

n=r(SM~ ^SM < ~^SM\
\ ^7SM ^7SM /

= ptz<-*™\ (13.5.5)

\ ^SM /

where F2 is the standard normal distribution function.

Example 13.5.1. Calculate the risk of failure of the water supply system in Example
13.4.1, assuming that the safety margin is normally distributed, and that fic = 5
units, (TC = 0.75 units, /x^ = 3 units, and crL = 1 unit.

Solution, From Eq. (13.5.2), M§M = Mc ~ ML = 5 — 3 = 2. From (13.5.4), o-SM =
(O2C + oi)1 / 2 = (I2 + 0.752)1/2 = 1.250. Using (13.5.5),

R = Fzl-«™\
\ ^SM/

= Fz{-l.€O)

which is evaluated using Table 11.2.1 to yield R = 0.055, which is very close
to the value obtained in Example 13.4.1 by numerical integration (an inherently
approximate procedure). The risk of failure under the stated conditions is R = 0.055,
or 5.5%.

Note that this method of analysis assumes that the safety margin is normally
distributed but does not specify what the distributions of loading and capacity must
be. Ang (1973) indicates that, provided R > 0.001, R is not greatly influenced by
the choice of distributions for L and C, and the assumption of a normal distribution
for SM is satisfactory. For lower risk than this (e.g., R = 0.00001), the shapes
of the tails of the distributions for L and C become critical, and in this case, the
full composite risk analysis described in Sec. 13.4 should be used to evaluate the
risk of failure.

Safety Factor

The safety factor SF is given by the ratio CIL and the risk of failure can be
expressed as P(SF < 1). By taking logarithms of both sides of this inequality



R = P(SF < 1)

= P(ln(SF)<0) ( 1 3 5 6 )

=p(mf<o)
If the capacity and loading are independent and lognormally distributed, then the
risk can be expressed (Huang, 1986)

ln[vL\i + cv2
c) J

R = Fz TE (13.5.7)
{ In [(I + CV2

C)(1 + CV£)]}

\ /

Example 13.5.2. Solve Example 13.5.1 assuming capacity and loading are both
lognormally distributed.

Solution. From Example 13.5.1, /JLC = 5 and crc — 0.75, and hence CV c — 0 • 75/5 =
0.15. Likewise, /JLL = 3 and aL = 1, so CVL = 1/3 = 0.333. Hence, by Eq. (13.5.7),
the risk is

/ , f 5 [ l + (0.333)2T/2] \

~ l n [ 3 | _ I +(0.I5)2J J
{In [(I + (0.15)2)(l + (0.333)2)]]1/2

\ I
= FZ{-1.5463) = 0.061

The risk of failure under the above assumptions, then, is 6.1 percent. For the same
problem (Example 13.5.1) assuming that the safety margin was normally distributed,
the risk was found to be 5.5 percent; the risk level has not changed greatly with
use of the lognormal instead of the normal distribution.

Risk-Safety Factor-Return Period Relationship

A common design practice is to choose a return period and determine the corre-
sponding loading L as the design capacity of a hydraulic structure. The safety
factor is inherently built into the choice of the return period. Alternatively, the
loading value can be multiplied by a safety factor SF; then the structure is designed
for capacity C = SF x L. As discussed in this chapter, there are various kinds
of uncertainty associated both with L and with the capacity C of the structure as
designed. By composite risk analysis, a risk of failure can be calculated for the
selected return period and safety factor. The result of such a calculation is shown



Risk of failure (year ! )

FIGURE 13.5.1
The risk-safety factor-return period relationship for culvert design on the Glade River near Reston,
Virginia. The probability distribution for loading used to develop this figure was the Extreme Value
Type I distribution of annual maximum floods. A lognormal distribution for the culvert capacity was
developed using first-order analysis of uncertainty. The risk level for given return period and safety
factor was determined using composite risk analysis. (Source: Tung and Mays, 1980.)

in Fig. 13.5.1, which shows a risk chart applying to culvert design on the Glade
River near Reston, Virginia. The risk values in the chart represent annual prob-
abilities of failure. For example, if the return period is 100 years and the safety
factor 1.0, the risk of failure is 0.015 or 1.5 percent in any given year, while if
the safety factor is increased to 2, the risk of failure is reduced to R = 0.006, or
0.6 percent in any given year.

Current hydrologic design practice copes with the inherent uncertainty of
hydrologic phenomena by the selection of the design return period, and with
model and parameter uncertainty by the assignment of arbitrary safety factors or
safety margins. The risks and uncertainties can be evaluated more systematically
using the procedures provided by first-order analysis of uncertainty and composite
risk analysis as presented here. However, it must be borne in mind that just as
any function of random variables is itself a random variable, the estimates of risk
and reliability provided by these methods also have uncertainty associated with
them, and their true values can never be determined exactly.
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PROBLEMS

13.2.1 The critical drought of record as determined from 30 years of hydrologic data is
considered to have lasted for 3 years. If a water supply design is based on this
drought and the design life is 50 years, what is the chance that a worse drought
will occur during the design life?

13.2.2 In Prob. 13.2.1, what is the chance that a worse drought will occur during the
first 10 years of the design life? The first 20 years?

13.2.3 What is the chance that the largest flood observed in 50 years of record will be
exceeded during the next 10 years? The next 20 years?

13.2.4 If a structure has a design life of 15 years, calculate the required design return
period if the acceptable risk of failure is 20 percent (a) in any year, (b) over the
design life.



13.2.5 A flood plain regulation prevents construction within the 25-year flood plain.
What is the risk that a structure built just on the edge of this flood plain will be
flooded during the next 10 years? By how much would this risk be reduced if
construction were limited to the edge of the 100-year flood plain?

13.2.6 A house has a 30-year design life. What is the chance it will be flooded during
its design life if it is located on the edge of the 25-year flood plain? The 100-
year flood plain?

13.2.7 Determine the optimum scale of development (return period) for the flood-control
measure considered in Example 13.2.3 if the annual capital costs given in Table
13.2.1 are doubled. Use the same damage costs as in Table 13.2.1.

13.2.8 Determine the optimum scale of development (return period) for the flood-control
measure considered in Example 13.2.3, if the damage costs are doubled. Annual
capital costs remain the same as in Table 13.2.1.

13.2.9 Determine the optimum scale of development (return period) for the flood control
measure considered in Example 13.2.3, if the damage costs and the annual capital
costs are both doubled.

13.3.1 A rectangular channel is 200 feet wide, has bed slope 0.5 percent, an estimated
Manning's n of 0.040, and a design discharge of 10,000 cfs. Calculate the design
flow depth. If the coefficient of variation of the design discharge is 0.20 and of
Manning's n is 0.15, calculate the standard error of estimate of the flow depth.
What is the probability that the actual water level will be more than 1 foot deeper
than the expected value? Within what range can the water level for the design
event be expected in 70 percent of events?

13.3.2 In Prob. 13.3.1, calculate dyldQ and dyldn for the conditions given (Q = 10,000
cfs and n = 0.040) and solve the problem using these derivatives.

13.3.3 Solve Prob. 13.3.1 if the channel is trapezoidal with bottom width 150 ft and
side slopes 1 vert. = 3 hor.

13.3.4 Flow in a natural stream channel has been modeled by a computer program and
found to have a depth of 15 ft for a flow rate of 8000 cfs and Manning's n value
of 0.045. Rerunning the program shows that changing the design discharge by
1000 cfs changes the water surface elevation by 0.8 ft, and changing Manning's
n by 0.005 changes the water surface elevation by 0.6 ft. If the design discharge
is assumed to be accurate to ± 30 percent and Manning's n to ± 10 percent,
calculate the corresponding error in the flow depth (or water surface elevation).

13.3.5 Suppose for the conditions given in Example 13.3.1, solved in the text, that the
channel wall height adopted is 8.4 ft, that is, the calculated depth of 7.4 ft plus
a 1.0 ft freeboard, or safety margin. What safety factor SF is implied by this
choice? What would the safety factor be if the true Manning's roughness were
0.045 instead of the 0.035 assumed? Is this a safe design?

13.3.6 Using the first-order analysis of uncertainty for Manning's equation, show that the
coefficient of variation of the discharge Q is given by CVQ = CV J; + (1/4)CV^.
What assumptions about the variables in Manning's equation are implied by this
equation for CVQ?

13.3.7 In some instances, flood plain studies are made using channel cross sections
determined from topographic maps instead of ground surveys. Extend the first-
order analysis of uncertainty for water level in Sec. 13.3 to include uncertainty
in the cross-sectional area A and wetted perimeter P. If these variables can be



determined with coefficients of variation of 20 percent from topographic maps,
calculate the additional risk that the houses in Example 13.3.1 will flood during
the design event, resulting from the use of channel cross sections from topographic
maps, instead of ground surveys, to delineate the flood plain.

13.4.1 A hydrologic design has a loading with mean value 10 units and standard deviation
2 units. Calculate the risk of failure if the capacity is 12 units. Assume normal
distribution for the loading.

13.4.2 Solve Prob. 13.4.1 if the loading is lognormally distributed.
13.4.3 In Prob. 13.4.1, assume that the capacity is normally distributed with mean 12

units and standard deviation 1 unit. Recompute the risk of failure, assuming that
the loading is also normally distributed.

13.4.4 About half the total water supply for southern California is provided by long-
distance water transfers from northern California and from the Colorado River.
The annual demand for these transfers was estimated to be 1.48 MAF (million
acre-feet) in 1980, and is projected to rise linearly to 1.77 MAF in 1990. Study
of observed annual demands from 1980 to 1985 indicates that the coefficient of
variation of observed annual demands around those expected is approximately 0.1
(this variability is due to year-to-year variations in weather and other factors).
Estimate the annual demand level that has a 70 percent chance of being equaled
or exceeded in 1986 and in 1990. Calculate the chance that observed demands
will exceed 2.0 MAF/year in 1986, and in 1990. Assume that the annual demands
are normally distributed.

13.4.5 In Prob. 13.4.4, calculate the chance that a limit of 2.0 MAF in water transfers
will be exceeded at least once from 1986 to 1990. Assume annual demands are
independent from one year to the next.

13.5.1 If capacity and loading are both lognormally distributed, show that risk can be
calculated by Eq. (13.5.7):

{ ln[(l + CV^)(I + CV£)]} "2

\ I
where Fz denotes the standard normal distribution function.

13.5.2 If capacity and loading are both lognormally distributed, show that risk can be
approximated by

- In (fiL/>c)

" J(CVj+ CV2/2_

where Fz denotes the standard normal distribution function.
13.5.3 Calculate the risk of failure of an open channel, assuming that the safety margin is

normally distributed: Manning's equation is used to compute the capacity, and a
first-order analysis is used to determine the coefficient of variation of the capacity
C. The mean loading is 5000 cfs and the coefficient of variation of loading is



0.2. The slope of the channel is 0.01 with a coefficient of variation CVsf = 0.10.
The Manning's roughness factor is 0.035 and has a coefficient of variation of
CVn = 0.15. The channel cross-section is rectangular with width 50 ft and wall
height 9 ft. Failure is assumed to occur if the walls are overtopped.

13.5.4 Rework Prob. 13.5.3 to compute the risk of failure, assuming the capacity and
loading to be lognormally distributed.

13.5.5 Use the risk analysis of safety margins method to determine the probability that
the houses will be flooded in Example 13.3.1 in the text.



DESIGN
STORMS

A design storm is a precipitation pattern defined for use in the design of a hydro-
logic system. Usually the design storm serves as the system input, and the result-
ing rates of flow through the system are calculated using rainfall-runoff and flow
routing procedures. A design storm can be defined by a value for precipitation
depth at a point, by a design hyetograph specifying the time distribution of pre-
cipitation during a storm, or by an isohyetal map specifying the spatial pattern of
the precipitation.

Design storms can be based upon historical precipitation data at a site or can
be constructed using the general characteristics of precipitation in the surrounding
region. Their application ranges from the use of point precipitation values in the
rational method for determining peak flow rates in storm sewers and highway
culverts, to the use of storm hyetographs as inputs for rainfall-runoff analysis
of urban detention basins or for spillway design in large reservoir projects. This
chapter covers the development of point precipitation data, intensity-duration-
frequency relationships, design hyetographs, and estimated limiting storms based
on probable maximum precipitation.

14.1 DESIGN PRECIPITATION DEPTH

Point Precipitation

Point precipitation is precipitation occurring at a single point in space as opposed
to areal precipitation which is precipitation over a region. For point precipitation
frequency analysis, the annual maximum precipitation for a given duration is
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selected by applying the method outlined in Sec. 3.4. to all storms in a year,
for each year of historical record. This process is repeated for each of a series
of durations. For each duration, frequency analysis is performed on the data,
as described in Sec. 12.2, to derive the design precipitation depths for various
return periods; then the design depths are converted to intensities by dividing by
the precipitation duration.

By analyzing data in this way, Hershfield (1961) developed isohyetal maps
of design rainfall depth for the entire United States; these were published in
U. S. Weather Bureau technical paper no. 40, commonly called TP 40. The maps
presented in TP 40 are for durations from 30 minutes to 24 hours and return
periods from 1 to 100 years. Hershfield also furnished interpolation diagrams for
making precipitation estimates for durations and return periods not shown on the
maps. Fig. 14.1.1 shows the TP 40 map for 100-year 24-hour rainfall. The U. S.
Weather Bureau (1964) later published maps for durations of 2 to 10 days.

In many design situations, such as storm sewer design, durations of 30
minutes or less must be considered. In a publication commonly known as HYDRO
35 (Frederick, Meyers, and Auciello, 1977), the U. S. National Weather Service
presented isohyetal maps for events having durations from 5 to 60 minutes,
partially superseding TP 40. The maps of precipitation depths for 5-, 15-, and
60-minute durations and return periods of 2 and 100 years for the 37 eastern states

FIGURE 14.1.1
The 100-year 24-hour rainfall (in) in the United States as presented in U. S. Weather Bureau technical
paper 40. {Source: Hershfield, 1961.)

1OO-YEAR 24-HOUR RAINFALL (INCHES)



FIGURE 14.1.2(a)
2-year 5-minute precipitation (inches). (Source: Frederick, Meyers, and Auciello, 1977.)



FIGURE 14.1.2 (b)
100-year 5-minute precipitation (inches). (Source: Frederick, Meyers, and Auciello, 1977.)



FIGURE 14.1.2(c)
2-year 15-minute precipitation (inches). (Source: Frederick, Meyers, and Auciello, 1977.)



FIGURE 14.1.2(4)
100-year 15-minute precipitation (inches). (Source: Frederick, Meyers, and Auciello, 1977.)



FIGURE 14.1.2(e)
2-year 60-minute precipitation (inches). {Source: Frederick, Meyers, and Auciello, 1977.)



FIGURE 14.1.2(/)
100-year 60-minute precipitation (inches). (Source: Frederick, Meyers, and Auciello, 1977.)



are shown in Fig. 14.1.2. Depths for 10- and 30-minute durations for a given
return period are obtained by interpolation from the 5-, 15-, and 60-minute data
for the same return period:

Pio min = 0.41P5 min + 0.59P15 min (14.1.1a)

^30 m in=0.51P1 5 min + 0.49P60 min (14.1.1b)

For return periods other than 2 or 100 years, the following interpolation equation
is used, with the appropriate coefficients a and b from Table 14.1.1.

PT yr = aP2yT + W>100 yr (14.1.2)

Miller, Frederick, and Tracey (1973) present isohyetal maps for 6- and 24-
hour durations for the 11 mountainous states in the western United States; these
supersede the corresponding maps in TP 40.

Example 14.1.1. Determine the design rainfall depth for a 25-year 30-minute storm
in Oklahoma City.

Solution. Oklahoma City is located near the center of the state of Oklahoma and
the values of 15- and 60-minute precipitation for 2- and 100-year return periods
are read from Fig. 14.1.2 as P2,i5 = 1.02 in, P 100,15 = 1.86 in, P2,6o = 1-85 in,
and Pioo,6o = 3.80 in, respectively. Using (14.1. Ib), the values for 30-minute
precipitation depth are calculated

P3O min = 0.51P15 min + 0.49P60 min

For T = 2 years, P2,30 = 0.51 x 1.02 + 0.49 x 1.85 = 1.43 in.

For T = 100 years, PKXUO = 0.51 x 1.86 + 0.49 x 3.80 = 2.81 in.

Then (14.1.2) is used with coefficients a = 0.293 and b = 0.669 from Table 14.1.1
to give the 25-year 30-minute precipitation depth:

P25.30 = ̂ 2 ,30 + £Pl00,30

= 0.293 x 1.43 + 0.669 x 2.81

= 2.30 in

TABLE 14.1.1
Coefficients for interpolating
design precipitation depths using
Eq. (14.1.2)
Return period T a b
years

5 0.674 0.278
10 0.496 0.449
25 0.293 0.669
50 0.146 0.835

Source: Frederick, Myers, and Auciello, 1977.



Areal Precipitation Depth

Frequency analysis of precipitation over an area has not been as well developed
as has analysis of point precipitation. In the absence of information on the true
probability distribution of areal precipitation, point precipitation estimates are
usually extended to develop an average precipitation depth over an area. The areal
estimate may be either storm-centered or location-fixed. For the location-fixed
case, one accounts for the fact that precipitation stations are sometimes near the
storm center, sometimes on the outer edges, and sometimes in between the two.
An averaging process results in location-fixed depth-area curves relating areal
precipitation to point measurements. Fig. 14.1.3 provides curves for calculating
areal depths as a percentage of point precipitation values (World Meteorological
Organization, 1983).

Depth-area relationships for various durations, such as those shown in
Fig. 14.1.3, are derived by a depth-area-duration analysis, in which isohyetal
maps are prepared for each duration from the tabulation of maximum n-houv
rainfalls recorded in a densely gaged area. The area contained within each isohyet
on these maps is determined and a graph of average precipitation depth vs. area
is plotted for each duration.

Area (mi2)

30-minutes

1 -hour

3-hour

6-hour

24-hour

Area (km 2)

FIGURE 14.1.3
Depth-area curves for reducing point rainfall to obtain areal average values. (Source: World Meteo-
rological Organization, 1983; originally published in Technical Paper 29, U. S. Weather Bureau,
1958.)
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14.2 INTENSITY-DURATION-FREQUENCY RELATIONSHIPS

One of the first steps in many hydrologic design projects, such as in urban
drainage design, is the determination of the rainfall event or events to be used.
The most common approach is to use a design storm or event that involves a
relationship between rainfall intensity (or depth), duration, and the frequency or
return period appropriate for the facility and site location. In many cases, the
hydrologist has standard intensity-duration-frequency (IDF) curves available for
the site and does not have to perform this analysis. However, it is worthwhile to
understand the procedure used to develop the relationships. Usually, the informa-
tion is presented as a graph, with duration plotted on the horizontal axis, intensity
on the vertical axis, and a series of curves, one for each design return period, as
illustrated for Chicago in Fig. 14.2.1.

The intensity is the time rate of precipitation, that is, depth per unit time
(mm/h or in/h). It can be either the instantaneous intensity or the average intensity
over the duration of the rainfall. The average intensity is commonly used and can
be expressed as

i = £ (14.2.1)

Duration (min)

FIGURE 14.2.1
Intensity-duration-frequency curves of maximum rainfall in Chicago, U. S. A.
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where P is the rainfall depth (mm or in) and Tj is the duration, usually in hours.
The frequency is usually expressed in terms of return period, T, which is the
average length of time between precipitation events that equal or exceed the
design magnitude.

Example 14.2.1. Determine the design precipitation intensity and depth for a 20-
minute duration storm with a 5-year return period in Chicago.

Solution. From the IDF curves for Chicago (Fig. 14.2.1), the design intensity for
a 5-year, 20-minute storm is i = 3.50 in/h. The corresponding precipitation depth
is given by Eq. (14.2.1) with Td = 20 min = 0.333 h.

P=iTd

= 3.50X0.333

= 1.17 in

Example 14.2.2. Use the U. S. National Weather Service maps (Fig. 14.1.2) and
Eqs. (14.1.1) and (14.1.2) to plot IDF curves for Oklahoma City, Oklahoma, for
return periods of 2, 5, 10, 25, 50, and 100 years. Consider rainfall durations ranging
from 5 minutes to 1 hour.

Solution. The six maps presented in Fig. 14.1.2 show precipitation for 5-, 15-,
and 60-minute durations and 2- and 100-year return periods. The six values for
Oklahoma City from these maps are: P2,5 = 0.48 in, Pioo,5 = 0.87 in, P2,i5 = 1.02
in, Pioo,i5 = 1-86 in, P2,6o = 1-85 in, Pioo,6o = 3.80 in. For T = 2 and 100 yr,
the precipitation for 10- and 30-minute durations is obtained by interpolation from
the 5-, 15-, and 60-minute values using (14.1.1) as illustrated in Example 14.1.1.
For each duration, the values for return period T = 5, 10, 25, and 50 yr are
obtained using the values at T = 2 and 100 yr by interpolation using (14.1.2)
and Table 14.1.1, as also illustrated in Example 14.1.1. The results are shown in
Table 14.2.1 in terms of precipitation depth, and they are converted to intensity by
dividing by duration. For example, P25,30 = 2.30 in, so the corresponding intensity
is / = PITd = 2.30 in/0.50 h = 4.60 in/h. The resulting precipitation intensities for
each duration and return period are plotted in Fig. 14.2.2.

TABLE 14.2.1
Design precipitation depths (in) at Oklahoma City for
various durations and return periods (Example 14.2.1)

Duration T^ (min)
Return period T
(yr) 5 10 15 30 60

2 0.48 0.80 1.02 1.43 1.85
5 0.57 0.94 1.20 1.74 2.30

10 0.63 1.05 1.34 1.97 2.62
25 0.72 1.21 1.54 2.30 3.08
50 0.80 1.33 1.70 2.56 3.44

100 0.87 1.45 1.86 2.81 3.80

The values in italics are read from Fig. 14.1.2; the remainder are obtained by inter-
polation using Eqs. (14.1.1) and (14.1.2).



IDF Curves by Frequency Analysis

When local rainfall data are available, IDF curves can be developed using fre-
quency analysis. A commonly used distribution for rainfall frequency analysis
is the Extreme Value Type I or Gumbel distribution as discussed in Sec. 12.2.
For each duration selected, the annual maximum rainfall depths are extracted
from historical rainfall records, then frequency analysis is applied to the annual
data. In some situations, particularly when only a few years of data are available
(less than 20 to 25 years), an annual exceedence series for each duration may be
determined by ranking the depths and choosing the N largest values from a record
of N years. Such a series is shown in Table 14.2.2 for a rain gage at Coshocton,
Ohio. In the table, the lines connect precipitation data for various durations of the
same storm event. The design precipitation depths determined from the annual
exceedence series can then be adjusted to match those derived from an annual
maximum series by multiplying the depths by 0.88 for the 2-year return period
values, 0.96 for the 5-year return period values, and 0.99 for the 10-year return
period values (Hershfield, 1961). No adjustment of the estimates is required for
longer return periods.

Return period (years)

Duration (min)

FIGURE 14.2.2
Intensity-duration-frequency curves for Oklahoma City (Example 14.2.1).
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TABLE 14.2.2
Annual exceedence series of rainfall data for Coshocton, Ohio

Rank Return Maximum depth (in) and date for duration shown
period
(yr) 15 min 30 min 60 min 120 min

1 25.00 1.423 I 1 2.625 I 1 3.220 I 1 3.421
6/12/57 6/12/57 6/12/57 6/12/57

2 12.50 0.940 1.326 1.830 J 1.900
7/11/51 7/24/68 6/27/75 / ' 7 / 2 7 / 6 9

3 8.33 0.920 L 1.238 A 1.756 L / 1.883
6/12/59 ' \ 5/13/64 11 7/27/69 ' 8/21/60

4 6.25 0.910 1 1.177 I 1.510 1.792
5/13/64 1 6/23/52 8/21/60 7/4/69

5 5.00 0.890 \ 1.170 1.431 1.733
6/27/75 I 7/22/58 7/24/68 7/24/68

6 4.17 0.884 1 1.167 1.375 1.703
6/23/52 1 6/27/75 7/22/58 8/4/59

7 3.57 0.860 \ 1.149 1.313 J 1.623
8/14/73 1 6/17/70 6/17/70 /1 6/12/59

8 3.13 0.810 I I 1.087 1.306 / 1.609
7/27/69 Il 1 6/15/75 I 5/13/64 / 6/28/57

9 2.78 0.805 1 I 1.063 1.290 / 1.604
6/22/51 \ \ 8/22/51 6/23/52 / 6/13/72

10 2.50 0.783 1 1 1.060 1.269 / 1.600
6/24/56 1 1 7/11/51 4/25/61 / 7/28/61

11 2.27 0.770 1 Ll 1.040 1 I 1.225 I/ 1.570
8/15/75 1 I 6/12/59 I J I 6/12/59 I 4/25/61

12 2.08 0.770 \ 1.037 1.213 1.482
7/22/58 1 7/19/67 7/4/69 7/22/58

13 1.92 0.750 1 1.027 1.204 1.393
7/10/73 I 9/5/75 6/13/72 8/11/64

14 1.79 0.750 1 1.023 1.203 1.353
6/17/70 \ 7/10/73 8/11/64 5/13/64

15 1.67 0.733 1 1.000 I 1.200 1.351
7/19/67 1 7/10/55 8/3/63 9/24/70

16 1.56 0.732 H ° ' 9 7 5 U M 9 4 L 3 3 5

7/30/58 I 7/27/69 | 8/2/64 6/23/69
17 1.47 0.710 0.972 J 1.192 I 1.310

7/3/52 7/30/58 / | 9/12/57 R 8/14/57
18 1.39 0.707 0.934 / 1.174 \ 1.305

8/3/63 8/27/74 / 7/28/61 \ 6/24/57
19 1.32 0.700 0.919 / 1.143 \ 1.300

7/24/68 7/28/61 / 6/22/51 \ 6/11/60
20 1.25 0.700 J 0.907 l / 1.130 \ 1.300

6/4/63 /"I 9/12/57 f 9/24/70 \ 6/23/52
21 1.19 0.700 / 0.890 1.130 \ 1.290

6/22/60 / 8/14/73 7/19/67 \ 8/2/64
22 1.14 0.692 / 0.880 1.109 \ | 1.274

4/3/74 / 6/24/56 9/5/75 | 9/12/57
23 1.09 0.688 / 0.873 1.095 1.230

8/27/74 / 6/11/60 7/6/58 7/3/52
24 1.04 0.687 \J 0.869 1.094 1.220

9/12/57 I 7/4/69 6/28/57 7/6/58
25 1.00 0.670 0.850 1.063 1.200

4/13/55 8/11/64 8/27/74 9/5/75

Source: Wenzel, 1982, Copyright by the American Geophysical Union.



Example 14.2.3. Using the data presented in Table 14.2.2, determine the 2-
year and 25-year precipitation depth estimates for a 15-minute duration storm in
Coshocton, Ohio. Assume the Extreme Value Type I (Gumbel) distribution is
applicable.

Solution, The design rainfall depth for a given return period T is determined by
Eq. (12.3.3):

Xj\Td = *Td + KTSTd

where xjd and sjd are the mean and standard deviation of the rainfall depths for a
specified duration Td, and KT is the frequency factor given by Eq. (12.3.8):

tfr=- — [ o . 5 7 7 2 + I n ( i n - ^ 7 ) I

Consider a 15-minute duration for example; the mean and standard deviation of the
15-minute precipitation data in Table 14.2.2 are Ji5 = 0.799 in and 515 = 0.154
in, respectively. Using (12.3.8), K2 = -(V6/TT-)(0.5772 + ln{ln[77(7- 1)]}) =
-(V6/TT){ 0.5772 + In [In [2/1]} = -0.164; the corresponding value for T= 25 yr
is K25 = 2.044. Then, using (12.3.3) for a two-year return period,

*2,15=*15 + ^2^15

= 0.799-0.164 x 0.154

= 0.774 in

Because the data in Table 14.2.2 are an annual exceedence series, this value is
multiplied by 0.88 to obtain the design precipitation depth 0.774 x 0.88 = 0.68 in
for a two-year return period. For a 25-year return period

•*25,15=*15 + ^25^15

= 0.799 + 2.044X0.154

= 1.11 in

This value is not adjusted because its return period is greater than 10 years.

Equations for IDF Curves

Intensity-duration-frequency curves have also been expressed as equations to
avoid having to read the design rainfall intensity from a graph. For example,
Wenzel (1982) provided coefficients from a number of cities in the United States
for an equation of the form

•'= 5 j T ? (14'2-2)

where / is the design rainfall intensity, Tj is the duration, and c, e, and/ are
coefficients varying with location and return period. Table 14.2.3 shows values
of these coefficients for a 10-year return period in 10 U. S. cities.

It is also possible to extend (14.2.2) to include the return period T using the
equation



TABLE 14.2.3
Constants for rainfall equation
(14.2.2) for 10-year return period
storm intensities at various locations

Location c e f

Atlanta 97.5 0.83 6.88
Chicago 94.9 0.88 9.04
Cleveland 73.7 0.86 8.25
Denver 96.6 0.97 13.90
Houston 97.4 0.77 4.80
Los Angeles 20.3 0.63 2.06
Miami 124.2 0.81 6.19
New York 78.1 0.82 6.57
Santa Fe 62.5 0.89 9.10
St. Louis 104.7 0.89 9.44

Constants correspond to i in inches per hour and T^
in minutes. Source: Wenzel, 1982, Copyright by the
American Geophysical Union.

cTm

'• " YTTf <14-2-3)

or

cTm

I - J^J (14.2.4)

Example 14.2.4. Determine and compare the 10-yr, 20-minute design rainfall
intensities in Los Angeles and Denver.

Solution. The design rainfall intensity is computed using Td = 20 min, and the
values of the coefficients for Los Angeles (c = 20.3, e = 0.63, and/ = 2.06) from
Table 14.2.3, for which Eq. (14.2.2) gives

c
l = T* + /

20.3
~ 200-63 + 2.06

= 2.34 in/h

Similarly, for Denver i = c/(Te
d + f) = 96.6/(20° 97 + 13.90) = 3.00 in/h. The

design intensity in Denver is greater by 3.00 — 2.34 = 0.66 in/h, or 28 percent.

14.3 DESIGN HYETOGRAPHS FROM STORM
EVENT ANALYSIS

By analysis of observed storm events, the time sequence of precipitation in typical
storms can be determined. Huff (1967) developed time distribution relations for



heavy storms on areas ranging up to 400 mi2 in Illinois. Time distribution patterns
were developed for four probability groups, from the most severe (first quartile) to
the least severe (fourth quartile). Fig. 14.3.1 (a) shows the probability distribution
of first-quartile storms. These curves are smooth, reflecting average rainfall
distribution with time; they do not exhibit the burst characteristics of observed
storms. Fig. 14.3.1(6) shows selected histograms of first-quartile storms for 10-,
50-, and 90-percent cumulative probabilities of occurrence, each illustrating the
percentage of total storm rainfall for 10 percent increments of the storm duration.
The 50 percent histogram represents a cumulative rainfall pattern that should be
exceeded in about half of the storms. The 90 percent histogram can be interpreted
as a storm distribution that is equaled or exceeded in 10 percent or less of the
storms. The first quartile 50-percent distribution has been used in the ILLUDAS
storm drainage simulation model by Terstriep and Stall (1974).

The U. S. Department of Agriculture, Soil Conservation Service (1986)

10% Probability

50% Probability

90% Probability

Probability

Cumulative percent of storm time Cumulative percent of storm time

(a) (b)

FIGURE 14.3.1
(a) Time disribution of first-quartile storms. The probability shown is the chance that the observed
storm pattern will lie to the left of the curve, (b) Selected histograms for first-quartile storms.
(Source: Huff, 1967, Copyright by the American Geophysical Union.)
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developed synthetic storm hyetographs for use in the United States for storms
of 6 and 24 hours duration. These hyetographs were derived from informa-
tion presented by Hershfield (1961) and Miller, Frederick, and Tracey (1973)
and additional storm data. Table 14.3.1 and Fig. 14.3.2 present the cumulative
hyetographs. There are four 24-hour duration storms, called Types I, IA, II, and
III, respectively; Figure 14.3.3 shows the geographic location within the United
States where they should be applied. Types I and IA are for the Pacific maritime
climate with wet winters and dry summers. Type III is for the Gulf of Mexico and
the Atlantic coastal areas, where tropical storms result in large 24-hour rainfall
amounts. Type II is for the remainder of the nation.

Pilgrim and Cordery (1975) developed a hyetograph analysis method that
is based on ranking the time intervals in a storm by the depth of precipitation
occurring in each, and repeating this exercise for many storms in the region.
By summing the ranks for each interval, a typical hyetograph shape can be
obtained. This approach is a standard method in Australian hydrologic design
(The Institution of Engineers Australia, 1987).

TABLE 14.3.1
SCS rainfall distributions

24-hour storm 6-hour storm

Hour* t/24 Type I Type IA Type II Type III Hour t t/6 Pt/P6

0 0 0 0 0 0 0 0 0
2.0 0.083 0.035 0.050 0.022 0.020 0.60 0.10 0.04
4.0 0.167 0.076 0.116 0.048 0.043 1.20 0.20 0.10
6.0 0.250 0.125 0.206 0.080 0.072 1.50 0.25 0.14
7.0 0.292 0.156 0.268 0.098 0.089 1.80 0.30 0.19
8.0 0.333 0.194 0.425 0.120 0.115 2.10 0.35 0.31
8.5 0.354 0.219 0.480 0.133 0.130 2.28 0.38 0.44
9.0 0.375 0.254 0.520 0.147 0.148 2.40 0.40 0.53
9.5 0.396 0.303 0.550 0.163 0.167 2.52 0.42 0.60
9.75 0.406 0.362 0.564 0.172 0.178 2.64 0.44 0.63

10.0 0.417 0.515 0.577 0.181 0.189 2.76 0.46 0.66
10.5 0.438 0.583 0.601 0.204 0.216 3.00 0.50 0.70
11.0 0.459 0.624 0.624 0.235 0.250 3.30 0.55 0.75
11.5 0.479 0.654 0.645 0.283 0.298 3.60 0.60 0.79
11.75 0.489 0.669 0.655 0.357 0.339 3.90 0.65 0.83
12.0 0.500 0.682 0.664 0.663 0.500 4.20 0.70 0.86
12.5 0.521 0.706 0.683 0.735 0.702 4.50 0.75 0.89
13.6 0.542 0.727 0.701 0.772 0.751 4.80 0.80 0.91
13.5 0.563 0.748 0.719 0.799 0.785 5.40 0.90 0.96
14.0 0.583 0.767 0.736 0.820 0.811 6.00 1.0 1.00
16.0 0.667 0.830 0.800 0.880 0.886
20.0 0.833 0.926 0.906 0.952 0.957
24.0 1.000 1.000 1.000 1.000 1.000

Source: U. S. Dept. of Agriculture, Soil Conservation Service, 1973, 1986.



Triangular Hyetograph Method

A triangle is a simple shape for a design hyetograph because once the design pre-
cipitation depth P and a duration Td are known, the base length and height of the
triangle are determined. Consider a triangular hyetograph as shown in Fig. 14.3.4.
The base length is Td and the height h, so the total depth of precipitation in the
hyetograph is given by P = \Tdh, from which

h=^r (14.3.1)

A storm advancement coefficient r is defined as the ratio of the time before the
peak ta to the total duration:

r = *f (14.3.2)

Then the recession time tb is given by

tb = Td - ta
(14.3.3)

= d-r)Td

A value for r of 0.5 corresponds to the peak intensity occurring in the middle
of the storm, while a value less than 0.5 will have the peak earlier and a value

Time (hours)

FIGURE 14.3.2
Soil Conservation Service 24-hour rainfall hyetographs. {Source: U. S. Dept. of Agriculture, Soil
Conservation Service, 1986.)
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FIGURE 14.3.3
Location within the United States for application of the SCS 24-hour rainfall hyetographs. (Source: U. S. Dept. of Agriculture, Soil
Conservation Service, 1986).

Type I
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Type II

Type III

Rainfall
Distribution



greater than 0.5 will have the peak later than the midpoint. A suitable value of r is
determined by computing the ratio of the peak intensity time to the storm duration
for a series of storms of various durations. The mean of these ratios, weighted
according to the duration of each event, is used for r. Values of r reported in
the literature are presented in Table 14.3.2, which shows that in many locations
storms tend to be of the advanced type, with r less than 0.5.

Yen and Chow (1980) analyzed 9869 storms at four locations: Urbana,
Illinois; Boston, Massachusetts; Elizabeth City, New Jersey; and San Luis Obis-
po, California. Their analysis indicated that the triangular hyetographs for most
heavy storms are nearly identical in shape, with only secondary effects from storm
duration, measurement inaccuracies, and geographic location.

Example 14.3.1. Determine the triangular hyetograph for the design of an urban
storm sewer in Urbana, Illinois. The design return period is 5 years, and the design

FIGURE 14.3.4
Triangular design hyetographs.
(a) A general triangular design
hyetograph. (b) Triangular design
hyetograph for a 5-year 15-minute
storm in Urbana, Illinois (Example
14.3.1).
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TABLE 14.3.2
Values of the storm advancement coefficient r
for various locations

Location r Reference

Baltimore 0.399 McPherson (1958)
Chicago 0.375 Keifer and Chu (1957)
Chicago 0.294 McPherson (1958)
Cincinnati 0.325 Preul and Papadakis (1973)
Cleveland 0.375 Havens and Emerson (1968)
Gauhati, India 0.416 Bandyopadhyay (1972)
Ontario 0.480 Marsalek (1978)
Philadelphia 0.414 McPherson (1958)

Source: Wenzel, 1982, Copyright by the American Geophysical Union.

rainstorm duration has been set at 15 minutes. The storm advancement coefficient
is r = 0.38.

Solution. From Fig. 14.1.2, for precipitation at Urbana (in central Illinois), P2,15=

0.88 in, and Pioo,i5 = 1-70 in. The depth for a 5-year return period is given by
Eq. (14.1.2) with a = 0.674 and b = 0.278 from Table 14.1.1:

P5,15=0.674P2,15 + 0.278P10(U5

= 0.674x0.88 + 0.278 x 1.70

= 1.07 in

The peak intensity h is calculated using (14.3.1) with Td = 15 min =0.25 h:

IP 2x1.07
* = ^ = ^ ^ = 8 - 5 6 m / h

The time ta to the peak intensity is calculated by (14.3.2):

ta = rTd = 0.38 x 0.25 = 0.095 h = 5.7 min

The recession time tt, is

tb = Td-ta= 0.25 - 0.095 = 0.155 h = 9.3 min

The resulting design hyetograph is plotted in Fig. 14.3.4(Z?). Values of precipitation
intensity at regular intervals can be calculated and converted to precipitation depth
for rainfall-runoff analysis for the storm sewer.

14.4 DESIGN PRECIPITATION HYETOGRAPHS
FROM IDF RELATIONSHIPS

In the hydrologic design methods developed many years ago, such as the rational
method, only the peak discharge was used. There was no consideration of the
time distribution of discharge (the discharge hydrograph) or the time distribution
of precipitation (the precipitation hyetograph). However, more recently developed
design methods, using unsteady flow analysis, require reliable prediction of the
design hyetograph to obtain design hydrographs.

Next Page



DESIGN
FLOWS

Hydrologic design for water control is concerned with mitigating the adverse
effects of high flows or floods. A flood is any high flow that overtops either
natural or artificial embankments along a stream. The magnitudes of floods are
described by flood discharge, flood elevation, and flood volume. Each of these
factors is important in the hydrologic design of different types of flow control
structures. A major portion of this chapter deals with development of the design
flow or design flood for flow regulation structures (detention basins, flood control
reservoirs, etc.) and flow conveyance structures (storm sewers, drainage channels,
flood levees, diversion structures, etc.). The purpose of flow regulation structures
is to smooth out peak discharges, thereby decreasing downstream flood elevation
peaks, and the purpose of flow conveyance structures is to safely convey the flow
to downstream points where the adverse effects of flows are controlled or are
minimal. This chapter discusses methods and simulation models that can be used
in the hydrologic design of flow control structures from urban drainage systems
to flood control reservoirs.

Hydrologic design for water use is concerned with the development of water
resources to meet human needs and with the conservation of the natural life in
water environments. As population and economic activity increase, so do the
demands for use of water. But these must be balanced against the finite supply
provided by nature and the desire to maintain healthy plant and animal life in
rivers, lakes, and estuaries. Hydrologic information plays a vital role in managing
the balance between supply and demand for water resources and in planning water
resource development projects. In contrast to hydrologic design for water control,
which is concerned with mitigating the adverse effects of high flows, hydrologic
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design for water use is directed at utilizing average flows and with mitigating the
effects of extremely low flows.

15.1 STORM SEWER DESIGN

Population growth and urban development can create potentially severe problems
in urban water management. One of the most important facilities in preserving
and improving the urban water environment is an adequate and properly function-
ing storm water drainage system. Construction of houses, commercial buildings,
parking lots, paved roads, and streets increases the impervious cover in a water-
shed, and reduces infiltration. Also, with urbanization, the spatial pattern of flow
in the watershed is altered and there is an increase in the hydraulic efficiency
of flow through artificial channels, curbing, gutters, and storm drainage and col-
lection systems. These factors increase the volume and velocity of runoff and
produce larger peak flood discharges from urbanized watersheds than occurred in
the preurbanized condition. Many urban drainage systems constructed under one
level of urbanization are now operating under a higher level of urbanization and
have inadequate capacity.

One view of the typical urban drainage system is shown in Fig. 15.1.1. The
system can be considered as consisting of two major types of elements: location
dements and transfer elements. Location elements are the places where the water

FIGURE 15.1.1
Typical urban drainage system. {Source: Roesner, 1982, Copyright by the American Geophysical
Union.)

River or bay
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stops and undergoes changes as a result of humanly controlled processes, for
example, water storage, water treatment, water use, and wastewater treatment.
Transfer elements connect the location elements; these elements include channels,
pipelines, storm sewers, sanitary sewers, and streets. The system is fed by
rainfall, influent water from various sources, and imported water in the pipes
or channels. The receiving water body can be a river, a lake, or an ocean. Figure
15.1.1 shows a storm sewer system for collection of storm drainage in a pipe
network and discharge to a receiving water body. This section considers the
design of a sewer system for storm drainage.

System concepts are increasingly being used as an aid in understanding
and developing solutions to complex urban problems. These problems involve
distributed systems, and must be analyzed to account for both spatial and temporal
variations. Urban watersheds vary in space in that the ground surface slope
and cover, and the soil type, change from place to place in the watershed.
They vary in time in that hydrologic characteristics change with the process of
urbanization. The mathematical formulation of models for urban water systems
distributed in both time and space is a complicated task. Consequently, spatial
variation is sometimes ignored, and the system is treated as being lumped. Some
spatial variation can be introduced by dividing the watershed system into several
subsystems that are each considered lumped, and then linking these lumped-
system models together to produce a model of the entire system.

Models can be used as tools for planning and management. In particular, a
number of computerized watershed simulation models have been proposed. The
determination of the runoff volume and peak discharge rate are important issues in
urban stormwater management, and methods for calculating these variables range
from the well-known rational formula to advanced computer simulation models
such as the Storm Water Management Model (SWMM; see Huber, et al., 1975).

Design Philosophy

A storm sewer system is a network of pipes used to convey storm runoff in a
city. The design of storm sewer systems involves the determination of diameters,
slopes, and crown or invert elevations for each pipe in the system. The crown
and invert elevations of a pipe are, respectively, the elevations of the top and the
bottom of the pipe circumference.

The selection of a layout, or network of pipe locations, for a storm sewer
system requires a considerable amount of subjective judgment. Hydrologists are
usually able to investigate only a few of the possible layouts. Generally, manholes
are placed at street intersections and at major changes in grade, or ground surface
slope, and the sewers are sloped in the direction of the ground surface, so as
to connect with downstream submains and trunk sewers. Once a layout has
been selected, the rational method can be used to select pipe diameters. This
conventional design approach is based on a set of design standards and criteria,
such as those set forth by the American Society of Civil Engineers (1960) and
various planning agencies.



Storm drainage design can be divided into two aspects: runoff prediction
and system design. In recent years, rainfall-runoff modeling for urban watersheds
has been a popular activity and a variety of such rainfall-runoff models are
now available, as described by Chow and Yen (1977), Heeps and Mein (1974),
Brandstetter (1976), McPherson (1975), Colyer and Pbthick (1977), Yen (1978),
and Kibler (1982). Computer models are described more fully in Sec. 15.2.

The following constraints and assumptions are commonly used in storm
sewer design practice:

1. Free-surface flow exists for the design discharges; that is, the sewer system is
designed for "gravity flow"; pumping stations and pressurized sewers are not
considered.

2. The sewers are of commercially available circular sizes no smaller than 8
inches in diameter.

3. The design diameter is the smallest commercially available pipe having flow
capacity equal to or greater than the design discharge and satisfying all the
appropriate constraints.

4. Storm sewers must be placed at a depth such that they will not be susceptible
to frost, will be able to drain basements, and will have sufficient cushioning
to prevent breakage due to ground surface loading. To these ends, minimum
cover depths must be specified.

5. The sewers are joined at junctions such that the crown elevation of the
upstream sewer is no lower than that of the downstream sewer.

6. To prevent or reduce excessive deposition of solid material in the sewers, a
minimum permissible flow velocity at design discharge or at barely full-pipe
gravity flow is specified (e.g., 2.5 ft/s).

7. To prevent scour and other undesirable effects of high-velocity flow, a maxi-
mum permissible flow velocity is also specified.

8. At any junction or manhole the downstream sewer cannot be smaller than any
of the upstream sewers at that junction.

9. The sewer system is a dendritic, or branching, network converging in the
downstream direction without closed loops.

Rational Method

The rational method, which can be traced back to the mid-nineteenth century, is
still probably the most widely used method for design of storm sewers (Pilgrim,
1986; Linsley, 1986). Although valid criticisms have been raised about the
adequacy of this method, it continues to be used for sewer design because of
its simplicity. Once the layout is selected and the pipe sizes determined by the
rational method, the adequacy of the system can be checked by dynamic routing
of flow hydrographs through the system.

The idea behind the rational method is that if a rainfall of intensity i begins
instantaneously and continues indefinitely, the rate of runoff will increase until



the time of concentration £c, when all of the watershed is contributing to flow at
the outlet. The product of rainfall intensity / and watershed area A is the inflow
rate for the system, /A, and the ratio of this rate to the rate of peak discharge Q
(which occurs at time tc) is termed the runoff coefficient C (0 < C < 1). This is
expressed in the rational formula:

Q = CiA (15.1.1)

Commonly, Q is in cubic feet per second (cfs), i is in inches per hour, and A is in
acres, and the conversion (1 cfs = 1.008 acre-in/hr) is considered to be included
in the runoff coefficient. The duration used for the determination of the design
precipitation intensity / in (15.1.1) is the time of concentration of the watershed.

In urban areas, the drainage area usually consists of subareas or subcatch-
ments of different surface characteristics. As a result, a composite analysis is
required that must account for the various surface characteristics. The areas of
the subcatchments are denoted by Aj and the runoff coefficients of each subcatch-
ment are denoted by C7-. The peak runoff is then computed using the following
form of the rational formula:

m

Q = I^CjAj (15.1.2)

where m is the number of subcatchments drained by a sewer.
The assumptions associated with the rational method are:

1. The computed peak rate of runoff at the outlet point is a function of the average
rainfall rate during the time of concentration, that is, the peak discharge does
not result from a more intense storm of shorter duration, during which only a
portion of the watershed is contributing to runoff at the outlet.

2. The time of concentration employed is the time for the runoff to become
established and flow from the most remote part of the drainage area to the
inflow point of the sewer being designed.

3. Rainfall intensity is constant throughout the storm duration.

Runoff Coefficient

The runoff coefficient C is the least precise variable of the rational method. Its
use in the formula implies a fixed ratio of peak runoff rate to rainfall rate for the
drainage basin, which in reality is not the case. Proper selection of the runoff
coefficient requires judgment and experience on the part of the hydrologist. The
proportion of the total rainfall that will reach the storm drains depends on the
percent imperviousness, slope, and ponding character of the surface. Impervious
surfaces, such as asphalt pavements and roofs of buildings, will produce nearly
100 percent runoff after the surface has become thoroughly wet, regardless of the
slope. Field inspection and aerial photographs are useful in estimating the nature
of the surface within the drainage area.



The runoff coefficient is also dependent on the character and condition of the
soil. The infiltration rate decreases as rainfall continues, and is also influenced
by the antecedent moisture condition of the soil. Other factors influencing the
runoff coefficient are rainfall intensity, proximity of the water table, degree of
soil compaction, porosity of the subsoil, vegetation, ground slope, and depression
storage. A reasonable coefficient must be chosen to represent the integrated effects
of all these factors. Suggested coefficients for various surface types as used in
Austin, Texas are given in Table 15.1.1.

TABLE 15.1.1
Runoff coefficients for use in the rational method

Return Period (years)

Character of surface 2 5 10 25 50 100 500

Developed
Asphaltic 0.73 0.77 0.81 0.86 0.90 0.95 1.00

Concrete/roof 0.75 0.80 0.83 0.88 0.92 0.97 1.00

Grass areas (lawns, parks, etc.)

Poor condition (grass cover less than 50% of the area)

Hat, 0-2% 0.32 0.34 0.37 0.40 0.44 0.47 0.58
Average, 2-7% 0.37 0.40 0.43 0.46 0.49 0.53 0.61
Steep, over 7% 0.40 0.43 0.45 0.49 0.52 0.55 0.62

Fair condition (grass cover on 50% to 75% of the area)

Flat, 0-2% 0.25 0.28 0.30 0.34 0.37 0.41 0.53
Average, 2-7% 0.33 0.36 0.38 0.42 0.45 0.49 0.58
Steep, over 7% 0.37 0.40 0.42 0.46 0.49 0.53 0.60

Good condition (grass cover larger than 75% of the area)

Flat, 0-2% 0.21 0.23 0.25 0.29 0.32 0.36 0.49
Average, 2-7% 0.29 0.32 0.35 0.39 0.42 0.46 0.56
Steep, over 7% 0.34 0.37 0.40 0.44 0.47 0.51 0.58

Undeveloped

Cultivated Land

Flat, 0-2% 0.31 0.34 0.36 0.40 0.43 0.47 0.57
Average, 2-7% 0.35 0.38 0.41 0.44 0.48 0.51 0.60

Steep, over 7% 0.39 0.42 0.44 0.48 0.51 0.54 0.61

Pasture/Range

Flat, 0-2% 0.25 0.28 0.30 0.34 0.37 0.41 0.53
Average, 2-7% 0.33 0.36 0.38 0.42 0.45 0.49 0.58

Steep, over 7% 0.37 0.40 0.42 0.46 0.49 0.53 0.60

Forest/Woodlands

Flat, 0-2% 0.22 0.25 0.28 0.31 0.35 0.39 0.48
Average, 2-7% 0.31 0.34 0.36 0.40 0.43 0.47 0.56
Steep, over 7% 0.35 0.39 0.41 0.45 0.48 0.52 0.58

Note: The values in the table are the standards used by the City of Austin, Texas. Used with permission.



Rainfall Intensity

The rainfall intensity / is the average rainfall rate in inches per hour for a particular
drainage basin or subbasin. The intensity is selected on the basis of the design
rainfall duration and return period as described in Sec. 14.2. The design duration
is equal to the time of concentration for the drainage area under consideration.
The return period is established by design standards or chosen by the hydrologist
as a design parameter.

Runoff is assumed to reach a peak at the time of concetration tc when the
entire watershed is contributing to flow at the outlet. The time of concentration
is the time for a drop of water to flow from the remotest point in the watershed
to the point of interest. A trial and error procedure can be used to determine
the critical time of concentration where there are several possible flow paths to
consider. The time of concentration to any point in a storm drainage system is
the sum of the inlet time to (the time it takes for flow from the remotest point to
reach the sewer inlet), and the flow time tf in the upstream sewers connected to
the outer point:

tc = to + tf (15.1.3)

The flow time is given by Eq. (5.7.3):

* = £# (15.1.4)
/ = i Vi

where L1- is the length of the /th pipe along the flow path, and V1- is the flow
velocity in the pipe.

The inlet time, or time of concentration for the case of no upstream sewers,
can be obtained by experimental observations, or it can be estimated by using
formulas such as those listed in Table 15.1.2. There may exist several possible
flow routes for different catchments drained by a sewer; the longest time of
concentration among the times for different routes is assumed to be the critical
time of concentration of the area drained.

Because the areas contributing to most storm sewer inlets are relatively
small, it is also customary to determine the inlet time on the basis of experience
under similar conditions. Inlet time decreases as the slope and imperviousness of
the surface increases, and it increases as the distance over which the water has to
travel increases and as retention by the contact surfaces increases. All inlet times
determined on the basis of experience should be verified by direct overland flow
computation.

Drainage Area

The size and shape of the catchment or subcatchment under consideration must
be determined. The area may be determined by planimetering topographic maps,
or by field surveys where topographic data has changed or where the mapped
contour interval is too great to distinguish the direction of flow. The drainage area



TABLE'15.1.2
Summary of time of concentration formulas

Remarks

Developed from SCS data for seven rural basins in Tennessee
with well-defined channel and steep slopes (3% to 10%); for
overland flow on concrete or asphalt surfaces multiply tc by
0.4; for concrete channels multiply by 0.2; no adjustments for
overland flow on bare soil or flow in roadside ditches.

Essentially the Kirpich formula; developed from small moun-
tainous basins in California (U. S. Bureau of Reclamation,
1973, pp. 67-71).

Developed in laboratory experiments by Bureau of Public
Roads for overland flow on roadway and turf surfaces; val-
ues of the retardance coefficient range from 0.0070 for very
smooth pavement to 0.012 for concrete pavement to 0.06 for
dense turf; solution requires iteration; product i times L should
be < 500.

Developed from air field drainage data assembled by the Corps
of Engineers; method is intended for use on airfield drainage
problems, but has been used frequently for overland flow in
urban basins.

Formula for tc (min)

f c = 0.0078L077T0385

L = length of channel/ditch
from headwater to outlet,
ft

S = average watershed slope,
ft/ft

rc=60(11.9L3/H)0-385

L — length of longest
watercourse, mi

H = elevation difference
between divide and
outlet, ft

_ 41.025(0.0007/ + c)L0-33

fc £0.333; 0.667

i = rainfall intensity, in/h
c = retardance coefficient
L = length of flow path, ft
S= slope of flow path, ft/ft

tc= 1.8(1.1-C)L0-50/^-333

C = rational method runoff
coefficient

L = length of overland flow, ft
S= surface slope, %

Method and Date

Kirpich (1940)

California
Culverts
Practice
(1942)

Izzard (1946)

Federal Aviation
Administration
(1970)



TABLE 15.1.2 (cont.)
Summary of time of concentration formulas

Remarks

Overland flow equation developed from kinematic wave anal-
ysis of surface runoff from developed surfaces; method
requires iteration since both i (rainfall intensity) and tc are
unknown; superposition of intensity-duration-frequency curve
gives direct graphical solution for tc

Equation developed by SCS from agricultural watershed data;
it has been adapted to small urban basins under 2000 acres;
found generally good where area is completely paved; for
mixed areas it tends to overestimate; adjustment factors are
applied to correct for channel improvement and impervious
area; the equation assumes that tc = 1.67 X basin lag.

Overland flow charts in Fig. 3-1 of TR 55 show average veloc-
ity as function of watercourse slope and surface cover. (See
also Table 5.7.1)

Formula for tc (min)

tc (i0As03)
L = length of overland flow, ft

n = Manning roughness
coefficient

i = rainfall intensity in/h
S = average overland slope

ft/ft

100L08[(1000/CN)-9]0-7

tc 1900 S0-5

L = hydraulic length of
watershed (longest flow
path), ft

CN = SCS runoff curve number
S = average watershed slope, %

tc 60^ v
L = length of flow path, ft
V= average velocity in feet

per second from Fig. 3-1
of TR 55 for various
surfaces

Method and Date

Kinematic wave
formulas

Morgali and
Linsley
(1965)

Aron and
Erborge (1973)

SCS lag
equation
(1973)

SCS average
velocity
charts (1975, 1986)

Source: Kibler, 1982, Copyright by the American Geophysical Union.



contributing to the system being designed and the drainage subarea contributing
to each inlet point must be measured. The outline of the drainage divide must
follow the actual watershed boundary, rather than commercial land boundaries,
as may be used in the design of sanitary sewers. The drainage divide lines are
influenced by pavement slopes, locations of downspouts and paved and unpaved
yards, grading of lawns, and many other features introduced by urbanization.

Pipe Capacity

In choosing storm sewer pipe diameters, the mimimum required diameter is com-
puted, and the next larger commercially available size is selected. Commercial
pipes are available in diameters of 8, 10, 12, 15, 16, and 18 in, at increments of
3 in between 18 and 36 in, and at increments of 6 in between 3 ft and 10 ft.

Once the design discharge Q entering the sewer pipe has been calculated
by the rational formula, the diameter of pipe D required to carry this discharge
is determined. It is usually assumed that the pipe is flowing full under gravity
but is not pressurized, so the pipe capacity can be calculated by the Manning or
Darcy-Weisbach equations for open-channel flow. For Manning's equation, the
area is A = TTD2/4, and the hydraulic radius is R = AIP = (<7TD2/4)/ITD = DIA.
The friction slope 5/ is set equal to the bed slope of the pipe, So, thus assuming
uniform flow, and the discharge is computed for full pipe flow as

Q=h*2.sy2ABv3
n J

_L49 1 /2/^\/Df

= ^ S l / 2 D 8 / 3 ( 1 5 1 5 )

This is solved for the required diameter D as

/ \3/8

which is valid for Q in cubic feet per second, and D in feet. When using SI
units, with Q in cubic meters per second and D in meters, the coefficient 2.16 is
replaced by 2.16 x 1.49 = 3.21 in Eq.(15.1.6).

Using the Darcy-Weisbach equation (2.5.4), with A, R, and Sf as for
Manning's equation,

/Q \ 1 / 2

Q=4^RSf)
(15.1.7)



Solved for D, this gives

where / i s the Darcy-Weisbach friction factor and g is acceleration due to gravity.
Equation (15.1.8) is valid for any dimensionally consistent set of units.

Assessment of the Rational Method

The rational method is criticized by some hydrologists because of its simplified
approach to the calculation of design flow rates. Nevertheless, the rational method
is still widely used for the design of storm sewer systems in the United States and
other countries because of its simplicity and the fact that the required dimensions
of the storm sewers are determined as the computation proceeds. More realistic
flow simulation procedures involving the routing of flow hydrographs require the
dimensions of the flow conveyance structures to be predetermined. The storm
sewer system design produced by the rational method can be considered as a
preliminary design whose adequacy can be checked by routing flow hydrographs
through the system.

The uncertainties involved in the rational method can be examined by the
risk analysis procedures described in Chap. 13 (Yen, 1975; Yen, et al., 1976;
Yen, 1978). In this case, the loading on the system is described by the rational
formula (15.1.2) and the capacity by the pipe conveyance equations (15.1.5) or
(15.1.7). Problems 15.1.8 to 15.1.16 address this subject.

Example 15.1.1. A hypothetical drainage basin comprising seven subcatchments
is shown in Fig. 15.1.2. Determine the required capacity of the storm sewer EB
draining subarea III for a five-year return period storm. This subcatchment has
an area of 4 acres, a runoff coefficient of 0.6, and an inlet time of 10 minutes.

FIGURE 15.1.2
The drainage basin and storm sewer system for
Examples 15.1.1 and 15.1.2.



The design precipitation intensity for this location is given by / = 120!T0 115I(Td +
27), where i is the intensity in inches per hour, T is the return period, and Td is
the duration in minutes. The ground elevations at points E and B are 498.43 and
495.55 ft above mean sea level, respectively, and the length of pipe EB is 450 ft.
Assume Manning's n is 0.015. Calculate the flow time in the pipe.

Solution. The time of concentration for flow into sewer EB is simply the 10-minute
inlet time for flow from subcatchment III to point E. So, Tj= 10 min and the design
rainfall intensity with T = 5 years is

, _ 1207° 175

1 " (Td + 27)

= 120(5)0175

(10 + 27)

= 4.30 in/h

The design discharge is given by Eq. (15.1.1):

Q = CiA

= 0.6X4.30X4

= 10.3cfs

The slope of the pipe EB is the difference between the ground elevations at points
E and B divided by the length of the pipe: S0 = (498.43 - 495.55)/450 = 0.0064.
The required pipe diameter is calculated from (15.1.6):

13/8

/ \ 3 / 8

2.16X 10,3 x 0.015

\ V0.0064 J
= 1.71 ft

The diameter is rounded up to the next commercially available pipe size, 1.75 ft or
21 in.

The flow velocity through pipe EB is found by taking the nominal diameter
(1.75 ft), and assuming the pipe is flowing full with Q = 10.3 cfs. Hence, V =
QIA = 10.3/(TTX 1.752/4) = 4.28 ft/s. The flow time is LIV= 450/4.28 = 105 s =
1.75 min. It should be noted that a slight error in the computed flow time is
caused by assuming that the pipe is flowing full. The velocity for partially-full-pipe
flow can be determined using Newton's iteration technique presented in Chap. 5, if
necessary.
Example 15.1.2. Determine the diameter for pipes AB, BC, and CD in the 27-
acre drainage basin shown in Fig. 15.1.2. The area, runoff coefficients, and inlet
time for each subcatchment are shown in Table 15.1.3, and the length and slope for
each pipe are in columns 2 and 3 of Table 15.1.4. Use the same rainfall intensity
equation as in Example 15.1.1 and assume the pipes have Manning's n = 0.015.



Solution. The same method as was illustrated in Example 15.1.1 is used for each
pipe, except that now the time of concentration must include both inlet time and
flow time through upstream sewers. The results obtained in Example 15.1.1 for
pipe EB are shown in the first row of Table 15.1.4.

Pipe AB. This pipe drains subcatchments I and II. From Table 15.1.3, Ai= 2
acres, C\ = 0.7, and the inlet time is h = 5 min, while Au = 3 acres, Cu = 0.7,
and tu = 7 min. Hence, the total area drained by pipe AB is 5 acres and X CA =
CIAI 4- CnAn = 0.7 X 2 + 0.7 X 3 = 3.5. The time of concentration used is 7
min, the larger of the two inlet times. The calculations for the required diameter
are carried out in the same way as in Example 15.1.1; the results are shown in the
second row of Table 15.1.4. The calculated diameter, 1.94 ft, is rounded up to a
commercial size of 2.0 ft (24 in) for pipe AB.

Pipe BC. This pipe drains subcatchments I through V: subcatchments I and II
through pipe AB, subcatchment III through pipe EB, and subcatchments IV and V
directly. There are thus four possible flow paths for water to reach point B; the time
of concentration is the largest of their flow times. The flow time for flow coming
from pipe AB is 7 minutes inlet time plus 1.76 minutes travel time, or 8.76 minutes;
for the flow from pipe EB it is 10 minutes inlet time plus 1.75 minutes flow time,
or 11.75 minutes; and the inlet times for subcatchments IV and V are 10 min and
15 min, respectively. Thus, the time of concentration for pipe BC is taken as 15 min.

For subcatchments I and II, XCA = 3.5, as shown previously. For subcatch-
ments III to V, the values of the runoff coefficient and catchment area are given in
Table 15.1.3; at point C, using these values, XCA = 3.5 + 0 . 6 x 4 + 0 . 6 x 4 +
0.5 x 5 = 10.8. Proceeding as in Example 15.1.1, the calculated pipe diameter
is 2.87 ft, which is rounded up to 3.0 ft (36 in) for pipe BC (third row of Table
15.1.4).

Pipe CD. This pipe drains all seven subcatchments. Using the same method
as for the previous pipes, its time of concentration (to point C) is found to be 15
minutes (to point B) plus 1.2 minutes flow time in pipe BC, or 16.2 minutes, and
XCA = 15.3. The calculated diameter, 3.22 ft, is rounded up to a commercial size
of 3.50 ft (42 in) (fourth row of Table 15.1.4).

The required diameters for pipes AB, BC, and CD are 21, 36, and 42 in,
respectively.

TABLE 15.1.3
Characteristics of the drainage basin
for Example 15.1.2
Catchment Area Runoff Inlet

coefficient time
A C t,
(acres) (min)

I 2 0.7 5
II 3 0.7 7

III 4 0.6 10
IV 4 0.6 10
V 5 0.5 15

VI 4.5 0.5 15
VII 4.5 0.5 15



TABLE 15.1.4
Design of sewers by the rational method (Examples 15.1.1 and 15.1.2)

12
Flow
time
LIV
(min)

1.75
1.76
1.15
1.28

11
Flow
velocity
QIA
(ft/s)

4.28
5.21
5.78
5.85

10
Pipe
size
used
(ft)

1.75
2.00
3.00
3.50

9
Computed
sewer
diameter
(ft)

1.71
1.94
2.87
3.22

8
Design
discharge
Q
(cfs)

10.3
16.4
40.9
56.3

7
Rainfall
intensity

(in/hr)

4.30
4.68
3.79
3.68

6

(min)

10.0
7.0

15.0
16.2

5
2 CA

2.4
3.5

10.8
15.3

4
Total
area
drained
(acres)

4
5

18
27

3
Slope

(ft/ft)

0.0064
0.0081
0.0064
0.0064

2
Length
L

(ft)

450
550
400
450

1
Sewer
pipe

EB
AB
BC
CD



15.2 SIMULATING DESIGN FLOWS

Since the early 1960s, a host of deterministic hydrologic simulation models have
been developed. These models include event simulation models for modeling a
single rainfall-runoff event and continuous simulation models, which have soil
moisture accounting procedures to simulate runoff from rainfall in hourly or
daily intervals over long time periods. Examples of event simulation models
include: the U. S. Army Corps of Engineers (1981) HEC-I flood hydrograph
model; the Soil Conservation Service (1965) TR-20 computer program for project
hydrology; the U. S. Environmental Protection Agency (1977) SWMM storm
water management model; and the Illinois State Water Survey ILLUDAS model,
by Terstriep and Stall (1974). Examples of continuous simulation models include:
the U. S. National Weather Service runoff forecast system (Day, 1985); the U. S.
Army Corps of Engineers (1976) STORM model; and the U. S. Army Corps of
Engineers (1972) SSARR streamflow synthesis and reservoir regulation model.
This is by no means a complete list of available models, but it covers most of the
models commonly used in hydrologic practice. The HEC-I model is probably the
most widely used hydrologic event simulation model. The acronym HEC stands
for Hydrologic Engineering Center, the U. S. Army Corps of Engineers research
facility in Davis, California, where this model was developed.

HEC-I Model

HEC-I is designed to simulate the surface runoff resulting from precipitation
by representing the basin as an interconnected system of components. Each
component models an aspect of the rainfall-runoff process within a subbasin
or subarea; components include subarea surface runoff, stream channels, and
reservoirs. Each component is represented by a set of parameters that specifies
the particular characteristics of the component and the mathematical relations
describing its physical processes. The end result of the modeling process is the
computation of direct runoff hydrographs for various subareas and streamflow
hydrographs at desired locations in the watershed.

A subarea land surface runoff component is used to represent the movement
of water over the land surface and into stream channels. The input to this com-
ponent is a rainfall hyetograph. Excess rainfall is computed by subtracting infil-
tration and detention losses, based on an infiltration function that may be chosen
from several options, including the SCS curve number loss rate as presented in
Sec. 5.5. Rainfall and infiltration are assumed to be uniformly distributed over
the subbasin. The resulting rainfall excesses are then applied to the unit hydro-
graph to derive the subarea outlet runoff hydrograph. Unit hydrograph options
include the Snyder's unit hydrograph and the SCS dimensionless unit hydrograph
presented in Chap. 7. Alternatively, a kinematic wave model can be used to find
subbasin runoff hydrographs.

A stream routing component is used to represent flood wave movement
in a channel. The input to this component is an upstream hydrograph resulting
from individual or combined contributions of subarea runoff, streamflow



routings, or diversions. This hydrograph is routed to a downstream point, using
the characteristics of the channel. The techniques available to route the runoff
hydrograph include the Muskingum method, level-pool routing, and the kinematic
wave method.

A suitable combination of subarea runoff and streamflow routing compo-
nents can be used to represent a rainfall-runoff and stream routing problem. The
connectivity of the stream network components is implied by the order in which
the input data components are arranged. Simulation must always begin at the
uppermost subarea in a branch of the stream network, and proceed downstream
until a confluence is reached. Before simulating below the confluence, all flows
above it must be routed. The flows are combined at the confluence, and the
combined flow is routed downstream.

Use of a reservoir component is similar to that of a streamflow routing
component. A reservoir component represents the storage-outflow characteristics
of a reservoir or flood-retarding structure. The reservoir component functions by
receiving upstream inflows and routing them through a reservoir using storage
routing methods. The reservoir outflow is solely a function of storage (or water
surface elevation) in the reservoir and is not dependent on downstream controls.
Spillway characteristics are entered along with top-of-dam characteristics for
overtopping. A simplified dam-break option is also available.

Example 15.2.1. (Adapted from Ford, 1986.) A rainfall-runoff model using the
HEC-I computer program is to be developed for the Castro Valley Creek catchment,
shown in Fig. 15.2.1 in order to analyze the effects of urbanization. The catchment

FIGURE 15.2.1
The Castro Valley watershed (Example 15.2.1).
{Source: Ford, 1986.)Outlet



is divided into four subcatchments; a schematic diagram of the watershed is shown
in Fig. 15.2.2. Subcatchment 4 is undergoing urbanization through development of
a new residential area, and a detention reservoir in subcatchment 4 and downstream
channel modifications are being investigated, the purpose of which is to reduce the
effects of the additional flow resulting from the development. The objective of the
problem is to calculate the runoff hydrograph at the catchment outlet for three dif-
ferent conditons: (1) the existing condition throughout the catchment, (2) the existing
condition in subcatchments 1 to 3 with subcatchment 4 urbanized, and (3) the same
as (2) but with a modified channel and a reservoir in subcatchment 4. Subarea runoff
computations are performed using Snyder's synthetic unit hydrograph with rainfall
loss rates determined using the SCS curve number method, channel routing is carried
out by the Muskingum method, and routing through the reservoir by the level-pool
method.

The following Table presents the existing characteristics of the subcatch-
ments. The total watershed area is 5.51 mi2.

Subcatchment Area Watershed Length to SCS curve
length centroid number
L LCA CN

(mi2) (mi) (mi)

1 1.52 2.65 1.40 70
2 2.17 1.85 0.68 84
3 0.96 1.13 0.60 80
4 0.86 1.49 0.79 70

The parameters for Snyder's synthetic unit hydrograph for the existing condition are
Cp = 0.25 and Ct = 0.38. The flood wave travel time (Muskingum coefficient K)
for the stream reach passing through subarea 3 is estimated as 0.3 h, and the travel
time for subarea 1 is estimated as 0.6 h. The Muskingum X has been approximated
as 0.2 for each of the two stream reaches.

The design rainfall is a hypothetical 100-year-return-period storm defined by
the following depth-duration data.

FIGURE 15.2.2
Schematic diagram of Castro Valley watershed showing components of HEC-I analysis.
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Duration 5 min 15 min Ih 2 h 3 h 6 h 12 h 24 h

Rainfall (in) 0.38 0.74 1.30 1.70 2.10 3.00 5.00 7.00

A residential development in subcatchment 4 will increase the impervious area so
that the developed SCS curve number will be 85. The unit hydrograph parameters
are expected to change to Ct = 0.19 and Cp = 0.5. Modification of the channel
through subcatchment 1 will change its Muskingum routing parameters to K = 0.4 h
and X = 0.3. The detention reservoir to be constructed at the outlet of subcatchment
4 has the following characteristics:

Low-level outlet Reservoir capacity Elevation
Diameter 5ft (acre'ft> (ft above MSL)
Cross-sectional area 19.63 ft Q ^gg ^
Orifice coefficient 0.71 ^ 394 2
Centerline elevation 391 ft ^ 398 2

(above MSL) l g m s

Overflow spillway (ogee type) 23 401.8

Length 30 ft 3 0 4 ^ 8

Weir coefficient 2.86
Crest elevation 401.8 ft

(above MSL)

Solution. The parameters used for Snyder's unit hydrograph in HEC-I are tp and
Cp\ tp is calculated for the existing condition using Eq. (7.7.2) with C\ = 1.0, and
Ct, L, and LQA as given above. For example, for subcatchment 1,

tp = Ct(LLcx)03 = 0.38(2.65 x 1.40)03 = 0.56 h

The results of this calculation for the four subcatchments are:

Subcatchment

1 2 3 4 4
urbanized

Ct 0.38 0.38 0.38 0.38 0.19
tp 0.56 0.41 0.34 0.40 0.20

The HEC-I input for the Castro Valley Creek catchment is shown in
Table 15.2.1. The data file has been annotated in the figure so that it can be under-
stood better. Use of HEC-Ts multiplan option enables the runoff hydrographs for
all three conditions to be calculated in one computer run. Plan 1 is for existing
conditions, plan 2 has subcatchment 4 urbanized, and plan 3 introduces the reser-
voir and channel modifications.

Each component operation begins with a KK card. The input has been set
up so that the runoff from subcatchment 4 is determined first, then routing through
the proposed detention reservoir is performed, followed by the Muskingum rout-
ing through subcatchment 1. Next, the rainfall-runoff computation is performed for



56 64 72 80

[Identification cards]

[Time step (min) and duration of computation]
[Multiplan option with 3 plans]

[Component identification card]
[Comment card]
2.10 3.00 5.00 7.00 [Precip]
[Basin area in square miles]
[SCS loss rate parameters CN = 70]
[Snyders unit hydrograph parameters, tp and Cp]
[Second plan, urbanized conditions]

[Third plan, also urbanized]

[Reservoir in subarea 4]

[Runoff not routed through reservoir
in plans 1 and 2]

TABLE 15.2.1
HEC-I input for the Castro Valley watershed (Example 15.2.1).
Column: 1 8 16 24 32 40 48

Row:
1 ID CASTROVALLEYCREEKCATCHMENT
2 ID CONSIDER EXISTING CONDITIONS, DEVELOPED CONDITIONS AND
3 ID DEVELOPED CONDITIONS WITH IMPROVEMENTS
4 IT 5 0 0 289
5 JP 3

* PLANl = EXISTING CONDITIONS
* PLAN2 = URBANIZED CONDITIONS
* PLAN3 = URBANIZED CONDITIONS WITH IMPROVEMENTS

6 KK SUB4
7 KM RUNOFF COMPUTATIONS FOR SUBCATCHMENT 4
8 PH 1 5.51 0.38 0.74 1.30 1.70
9 BA 0.86

10 LS 0 70
11 US 0.40 0.25
12 KP 2
13 LS 0 85
14 US 0.20 0.5
15 KP 3
16 LS 0 85
17 US 0.20 0.5

18 KK RES4
19 KM ROUTE SUB4 THROUGH RESERVOIR
20 KP 1
21 RN
22 KP 2
23 RN



TABLE 15.2.1 (cont.)

HEC-I input for the Castro Valley watershed (Example 15.2.1).

8 16 24 32 40 48 56 64 72 80

3 [Routing through reservoir in plan 3]
1 STOR 0 [Reservoir routing]
0 6 12 18 23 30 [Volume in acre-ft]

388.5 394.2 398.2 400.8 401.8 405.8 [Elevation in feet above MSL]
391 19.63 0.71 0.5 [Pipe outlet characteristics]

401.8 30 2.86 1.5 [Spillway characteristics]

OUT [Channel routing component]
ROUTE SUBCATCHMENT 4 RUNOFF TO OUTLET

1 [Plans 1 and 2 are the same.]
1 0.6 0.2 [Muskingum parameters K = 0.6 h, X = 0.2]
3
1 0.4 0.3 [New Muskingum parameters for plan 3]

SUBl [Runoff from subarea 1]
RUNOFF COMPUTATIONS FOR SUBCATCHMENT 1

1.52
0 70

0.56 0.25

OUT [Addition of two hydrographs]
COMBINE SUBCATCHMENT 1 RUNOFF WITH SUBCATCHMENT RUNOFF ROUTED TO OUTLET

2

SUB2 [Runoff from subarea 2]
RUNOFF COMPUTATIONS FOR SUBCATCHMENT 2

2.17
0 84

0.41 0.25

Column: 1

24 KP
25 RS
26 SV
27 SE
28 SL
29 SS

30 KK
31 KM
32 KP
33 RM
34 KP
35 RM

36 KK
37 KM
38 BA
39 LS
40 US

41 KK
42 KM
43 HC

44 KK
45 KM
46 BA
47 LS
48 US



TABLE 15.2.1 (cont.)
HEC-I input for the Castro Valley watershed (Example 15.2.1).

56 64 72 80

[Channel routing to outlet by the Muskingum method]

[Addition of two hydrographs]

[Addition of two hydrographs]

[Termination card]

8 16 24 32 40 48

OUT
ROUTE SUBCATCHMENT 2 RUNOFF TO OUTLET

1 0.3 0.2

OUT
COMBINE HYDROGRAPHS AT OUTLET

2

SUB3
RUNOFF COMPUTATIONS FOR SUBCATCHMENT 3

0.96
0 80

0.34 0.25

OUT
COMBINE HYDROGRAPHS AT OUTLET

2

Column: 1

49 KK
50 KM
51 RM

52 KK
53 KM
54 HC

55 KK
56 KM
57 BA
58 LS
59 US

60 KK
61 KM
62 HC

63 ZZ

The comments in brackets [ ] are for interpretation of the figure only and are not part of the actual input data.



subcatchment 1 and the resulting runoff hydrograph added to the runoff hydrograph
from subcatchment 4. Next, rainfall-runoff computations are performed for sub-
catchment 2, and this runoff is routed through subcatchment 3 and added to the
outlet hydrograph. The final step is to perform the rainfall-runoff computations for
subcatchment 3 and to add this result to the outlet hydrograph.

The resulting runoff hydrographs at the outlet of subcatchment 4 and at the
outlet of the entire catchment for each of the three plans are shown in Fig. 15.2.3.
The peak discharge from subcatchment 4 under existing conditions is 271 cfs, and
under urbanized conditions, 909 cfs. The detention reservoir reduces the peak dis-
charge to 482 cfs. The peak water surface elevation in the reservoir is 402.88 ft
above mean sea level (MSL) at time 12.67 h. The peak discharges at the outlet are
1906 cfs for existing conditions, 2258 cfs for urbanized conditions, and 2105 cfs
for urbanized conditions with the reservoir and channel modifications.

Hydrograph at RES4

Plan 2

Plan 3

Time (hrs)

Hydrograph at outlet

FIGURE 15.2.3
Discharge hydrographs at
RES4 and at outlet (Example
15.2.1). Plan 1 is for
existing conditions, Plan 2 has
subcatchment 4 urbanized, and
Plan 3 introduces a reservoir
and channel modifications
downstream of subcatchment
4.
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Urban Storm Drainage Models

The first computerized models of urban storm drainage were developed during
the late 1960s, and since that time a multitude of models have been discussed
in the literature. The models applicable to design of storm sewer systems can be
classified as design models, flow prediction models, and planning models.

Design models. These models determine the sizes and other geometric dimen-
sions of storm sewers (and of other facilities) for a new system or an extension or
improvement to an existing system. The design computations are usually carried
out for a specified design return period.

Design models may be classified further into hydraulic design models and
least-cost optimal design models. Hydraulic design models range from the simple
rational method to much more sophisticated flow simulation models based upon
solving the dynamic wave equations. One example of a hydraulic design model
is ILLUDAS (Illinois Urban Drainage Area Simulator), developed by Terstriep
and Stall (1974), which is popular both in the United States and abroad. This
model is an extension of the British TRRL (Transportation and Road Research
Laboratory) model (Watkins, 1962) to include both paved-area and grassed-area
hydrographs. A flow chart for the ILLUDAS program is given in Fig. 15.2.4.

Least-cost optimal design models are intended for determining the lowest-
cost storm sewer layout and pipe diameters that will convey storm drainage
adequately. These models are based on optimization techniques such as linear pro-
gramming, dynamic programming, nonlinear programming, heuristic techniques,
or a combination of these. The flow simulation for the sewer network is con-
sidered a part of the optimization. One of the more comprehensive models of
this type is a dynamic programming model called ILSD (Illinois Sewer Design)
developed by Yen, et al. (1976).

Flow prediction models. These models simulate the flow of storm water in
existing systems of known geometric sizes or in proposed systems with prede-
termined geometric sizes. Most flow prediction models simulate the flow for a
single rainfall event, but some can simulate the response to a sequence of events.
The simulation might be for historical, real-time, or synthetically-generated storm
events. At least some simple hydraulics is considered in most models. A model
may or may not include water quality simulation. The purpose of a flow simula-
tion may be to check the adequacy and performance of an existing or proposed
system for flood mitigation and water pollution control, to provide information
for storm water management, or to form part of a real-time operational control
system.

An emerging design philosophy is to use either traditional (rational method)
or more advanced optimization methods for designing a storm sewer system, then
checking the final design by detailed hydraulic simulation and cost analysis. An
example of this approach is a British design and analysis procedure called the
Wallingford Storm Sewer Package (WASSP; see Price, 1981).



FIGURE 15.2.4
Flowchart for the ILLUDAS urban storm drainage model {Source: Terstriep and Stall, 1974).
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Planning models. These models are used for broader planning studies of urban
stormwater problems, usually for a relatively large space frame and over a
relatively long period of time. The quantity and quality of storm water is treated
in a gross manner, considering only the mass conservation of water and pollutants
without considering the dynamics of their motion through the system. Planning
models are employed for such tasks as studies of receiving water quality and
treatment facilities. They do not require detailed geometric information on the
drainage facilities as do the first two groups of models. Typical examples of
planning models are: (1) STORM (Storage, Treatment, Overflow, Runoff Model),
created by the U. S. Army Corps of Engineers (1976); (2) SWMM (Storm
Water Management Model), developed by Metcalf and Eddy, Inc., the University
of Florida, and Water Resources Engineers, Inc., (Metcalf and Eddy, 1971;
U. S. Environmental Protection Agency, 1977); (3) RUNQUAL (Runoff Quality),
which includes the hydraulic portion of the SWMM RUNOFF model and the
stream water quality model QUAL-II (Roesner, Giguere, and Davis, 1977);
(4) HSPF (Hydrocomp Simulation Program—Fortran) developed by Johnson, et
al. (1980), which is a later version of the Stanford Watershed Model; and (5)
MITCAT (MIT catchment model) by Harley, Perkins, and Eagleson (1970).

15.3 FLOOD PLAIN ANALYSIS

A flood plain is the normally dry land area adjoining rivers, streams, lakes,
bays, or oceans that is inundated during flood events. The most common causes
of flooding are the overflow of streams and rivers and abnormally high tides
resulting from severe storms. The flood plain can include the full width of narrow
stream valleys, or broad areas along streams in wide, flat valleys. As shown in
Fig. 15.3.1, the channel and flood plain are both integral parts of the natural
conveyance of a stream. The flood plain carries flow in excess of the channel
capacity and the greater the discharge, the further the extent of flow over the
flood plain.

The first step in any flood plain analysis is to collect data, including
topographic maps, flood flow data if a gaging station is nearby, rainfall data
if flood flow data are not available, and surveyed cross sections and channel
roughness estimates at a number of points along the stream.

A determination of the flood discharge for the desired return period is
required. If gaged flow records are available, a flood flow frequency analysis
can be performed. If gaged data are not available, then a rainfall-runoff analysis
must be performed to determine the flood discharge. The rainfall hyetograph is
determined for the desired return period, a synthetic unit hydrograph is developed
for each subarea of the drainage basin, and the direct runoff hydrograph from
each subarea is calculated. The subarea direct runoff hydrographs are routed
downstream and added to determine the total direct runoff hydrograph at the most
downstream part of the drainage basin, as was illustrated in Example 15.2.1 for
Castro Valley. The peak discharge of the most downstream hydrograph is used
as the design flood discharge.



Once the flood discharge for the desired return period has been determined,
the next step is to determine the profile of water surface elevation along the
channel. This analysis can be carried out assuming steady, gradually-varied,
nonuniform flow using a one-dimensional model such as HEC-2 (U. S. Army
Corps of Engineers, 1982), or a two-dimensional model based upon either finite
differences or finite elements (Lee and Bennett, 1981; Lee, et al., 1982; Mays
and Taur, 1984). One-dimensional models allow the flow properties to vary along
the channel only, while two-dimensional models account for changes across the
channel as well. Alternatively, an unsteady flow analysis can be performed to
identify the maximum water surface elevation at various cross sections during the
propagation of the flood wave through a stream or river reach, using DAMBRK,
DWOPER, or FLDWAV, as described in Chap. 10. Unsteady flow models are
necessary for flood plain delineation in large lakes because the storage in the lake
alters the shape and peak discharge of the flood hydrograph as it passes through.

FIGURE 15.3.1
Typical sections and profiles in an unobstructed reach of stream valley. {Source: Waananen, et al.,
1977. Used by permission.)
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After the water surface elevations have been determined, the area covered
by the flood plain is delineated. The lateral extent of the flood plain is determined
by finding ground points on both sides of the stream that correspond to the
flood profile (water surface) elevations. Ground elevations in the flood plain
can be determined from topographic maps, street maps, or stereo aerial photos.
Topographic maps are the most convenient, with the elevations given by contour
lines. The flood plain boundary is determined by following the contour line that
corresponds to the flood profile elevation for a particular area. Of course, the
flood plain delineation is only as accurate as the topographic maps used. After
flood levels have been determined for a particular reach of stream the actual
location of the flood plain boundaries should be checked by field surveys.

In order to provide a standard national procedure, the 100-year flood has
been adopted by the U. S. Federal Emergency Management Agency (FEMA)
as the base flood for purposes of flood plain management measures. The 500-
year flood is also employed to indicate additional areas of flood risk in the
community. For each stream studied in detail, the boundaries of the 100- and
500-year floods are normally delineated using the flood elevations determined at
each cross section. Between cross sections, the boundaries are interpolated using
topographic maps at a scale of 1:24,000 with a contour interval of 10 feet or 20
feet. In cases where the 100- and 500-year flood boundaries are close together,
only the 100-year boundary is shown.

Encroachment on flood plains, such as by artificial fill material, reduces
the flood-carrying capacity, increases the flood heights of streams, and increases
flood hazards in areas beyond the encroachment. One aspect of flood plain
management involves balancing the economic gain from flood plain development
against the resulting increase in flood hazard. For purposes of FEMA studies, the
100-year flood area is divided into a floodway and a floodway fringe, as shown
in Fig. 15.3.2. The floodway is the channel of a stream plus any adjacent flood

FIGURE 15.3.2
Definition of floodway and floodway fringe. The floodway fringe is the area between the designated
floodway limit and the limit of the selected flood. The floodway limit is defined so that encroachment
limited to the floodway fringe will not significantly increase flood elevation. The 100-year flood is
commonly used and a one-foot allowable increase is standard in the United States.
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plain areas that must be kept free of encroachment in order for the 100-year flood
to be carried without substantial increases in flood heights. FEMA's minimum
standards allow an increase in flood height of 1.0 foot, provided that hazardous
velocities are not produced. The floodway fringe is the portion of the flood plain
that could be completely obstructed without increasing the water surface elevation
of the 100-year flood by more than 1.0 foot at any point.

FIGURE 15.3.3
Flood hazard map for Napa, California. (Source: Waananen, et al., 1977 Used with permission.)
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Two types of flood plain inundation maps, flood-prone area and flood hazard
maps, have been used. Flood-prone area maps show areas likely to be flooded
by virtue of their proximity to a river, stream, bay, ocean, or other watercourse
as determined from readily available information. Flood hazard maps such as
Fig. 15.3.3 for Napa, California, show the extent of inundation as determined
from a thorough technical study of flooding at a given location. Flood hazard
maps are commonly used in flood plain information reports and require updating
when changes have occurred in the channels, on the flood plains, and in upstream
areas. These changes include structural modifications and channel or flood plain
modifications in upstream areas. Development of new buildings on the flood
plain, obstructions, or other land use changes can affect the stream discharges,
water surface elevation, and flow velocities, thereby changing the elevation
profile defining the flood plain.

15.4 FLOOD CONTROL RESERVOIR DESIGN

Urbanization increases both the volume and the velocity of runoff, and efforts
have been made in urban areas to offset these effects. Storm water detention basins
provide one means of managing storm water. A storm water detention basin can
range from as simple a structure as the backwater effect behind a highway or road
culvert, up to a large reservoir with sophisticated control devices.

Detention is the holding of runoff for a short period of time before releasing
it to the natural water course. The terms "detention" and "retention" are often
misused; retention is the holding of water in a storage facility for a considerable
length of time, for aesthetic, agricultural, consumptive, or other uses. The water
might never be discharged to a natural watercourse, but instead be consumed by
plants, evaporation, or infiltration into the ground. Detention facilities generally
do not significantly reduce the total volume of surface runoff, but simply reduce
peak flow rates by redistributing the flow hydrograph. However, there are excep-
tions: for example, the reduced surface runoff volume from land areas that have
been contour-plowed, and the reduced surface runoff from detention basins on
granular soils.

On-site detention of storm water is storage of runoff on or near the site where
precipitation occurs. In some applications, the runoff may first be conducted short
distances by collector sewers located on or adjacent to the site of the detention
facility. On-site detention is distinguished from downstream detention by its
proximity to the upper end of a basin and its use of small detention facilities as
opposed to the larger dams normally associated with downstream detention.

The concept of detaining runoff and releasing it at a regulated rate is an
important principle in storm water management. In areas having appreciable
topographic relief, detention storage attenuates peak flow rates and the high
kinetic energy of surface runoff. Such flow attenuation can reduce soil erosion and
the amounts of contaminants of various kinds that are assimilated and transported
by urban runoff from land, pavements, and other surfaces. Several different



methods exist for the detention of storm water, including underground storage,
storage in basins and ponds, parking lot storage, and rooftop detention.

There are several considerations involved in the design of storm water
detention facilities. These are: (1) the selection of a design rainfall event, (2) the
volume of storage needed, (3) the maximum permitted release rate, (4) pollution
control requirements and opportunities, and (5) design of the outlet works for
releasing the detained water. Flow simulation models such as the HEC-I model
can be used to perform reservoir routing to check the adequacy of detention basin
designs.

The hypothetical ponded area in Fig. 15.4.1 serves as an example of a
detention pond. Figure 15.4.2 provides a comparison of the outflow hydrographs
from this detention pond with the corresponding inflow hydrographs for various
flow volumes. In all cases, the detention pond reduces the flood peak discharge,
but less so when the volume of runoff is large than when it is small.

Modified Rational Method

The modified rational method is an extension of the rational method for rainfalls
lasting longer than the time of concentration. This method was developed so that
the concepts of the rational method could be used to develop hydrographs for
storage design, rather than just flood peak discharges for storm sewer design.
The modified rational method can be used for the preliminary design of detention
storage for watersheds of up to 20 or 30 acres.

The shape of the hydrograph produced by the modified rational method
is a trapezoid, constructed by setting the duration of the rising and recession

P = ponding area
E = embankment
C = culvert
h = height
/ = length
w = width
0 = angle used in

determination
of slope

FIGURE 15.4.1
Schematic representation of wedge-shaped ponding area with box culvert outlet. (Source: Craig and
Rankl, 1978. Used with permission.)
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FIGURE 15.4.2
Comparison of inflow and outflow hydrographs for a detention basin. The inflow peaks are all 1000
cfs; however, the inflow volumes vary. The ponding area is a hypothetical wedge-shaped storage
area (Fig. 15.4.1), and a 4 ft x 4 ft box culvert serves as the outlet. The pond width is 60 ft with
a slope of 0.02 ft/ft. The flow with the largest volume results in the highest outflow rate from the
pond. (Source: Craig and Rankl, 1978. Used with permission.)
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limbs equal to the time of concentration tC9 and computing the peak discharge
assuming various rainfall durations. Figure 15.4.3 illustrates modified-rational-
method hydrographs developed for a drainage basin that has a 10-minute time
of concentration and is subject to rainfall of various durations longer than 10
minutes. For example, consider the tallest trapezoid in the figure. Its rainfall
duration is Tj = 20 min, and the corresponding rainfall intensity / is used in the
rational formula (15.1.1) to compute the peak discharge. The hydrograph rises
linearly to this discharge at the time of concentration (10 minutes), is constant
until the rainfall ceases (20 minutes), then recedes linearly to zero discharge at 30
minutes. The hydrographs for longer rainfall durations have lower peak discharges
because their rainfall intensities are lower.

If an allowable discharge out of a proposed detention basin is known, such
as from a requirement that the peak discharge from the detention pond not be
greater than the peak discharge from the area under predeveloped conditions, then
the required detention storage for each rainfall duration can be approximated by
determining the area of the trapezoidal hydrograph above the allowable discharge.
By calculating the storage for hydrographs of rainfalls of various durations,
the hydrologist can determine the critical duration for the design storm as the
one requiring the greatest detention storage. This critical duration can also be
determined analytically.

FIGURE 15.4.3
Typical storm water runoff
hydrographs for the modified
rational method with various
rainfall durations.Time (min)
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Figure 15.4.4 is a representation of inflow and outflow hydrographs for a
detention basin design. In this figure, a is the ratio of the peak discharge before
development, QA (or peak discharge from the detention basin), and the peak
discharge after development, Qp:

a= Qf- (15.4.1)

The ratio of the times to peak in the two hydrographs is y. Vr is the volume of
runoff after development. The volume of storage V5 needed in the basin is the
accumulated volume of inflow minus outflow during the period when the inflow
rate exceeds the outflow rate, shown shaded in the figure.

Using the geometry of the trapezoidal hydrographs, the ratio of the volume
of storage to the volume of runoff, VJVr, can be determined (Donahue, McCuen,
and Bondelid, 1981):

3—-R(^)]
where Td is the duration of the precipitation and Tp is the time to peak of the
inflow hydrograph.

FIGURE 15.4.4
Inflow and outflow hydrographs for detention design. The outflow hydrograph is based on the
inflow hydrograph for predeveloped conditions or on other more restrictive outflow criteria. {Source:
Donahue, McCuen, and Bondelid, 1981. Used with permission.)
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Consider a rainfall intensity-duration relationship of the form

' - YTTi <15A3)

where / is rainfall intensity and a and b are coefficients. The volume of runoff
after development is equal to the volume under the inflow hydrograph:

Vr = QpTd (15.4.4)

The volume of storage is determined by substituting (15.4.4) into (15.4.2), and
rearranging to get

= TdQp - QATd - QATP + ^ ^ + ^ 7 T " (15.4.6)

where a has been replaced by QAIQP-

The duration that results in the maximum detention is determined by sub-
stituting Qp = CiA = CAa/(Td + b), then differentiating (15.4.6) with respect to
Td and setting the derivative equal to zero:

_ -TdCAa CAa Q2
ATP

(Td + b)2 Td + b QA 2CAa

bCAa Q1Jp

(Td + b)2 UA 2CAa

where it is assumed that QA, Tp, and y are constants. Solving for Td,

1/2

Td= - ^ V -b (15.4.7)

^A 2CAa

The time to peak Tp is set equal to the time of concentration.

Example 15.4.1. Determine the critical duration Td (i.e., the one that requires
the maximum detention storage) for a 25-acre watershed with a developed runoff
coefficient C = 0.825. The allowable discharge is the predevelopment discharge
of 18 cfs. The time of concentration for the developed conditions is 20 min, and
for undeveloped conditions is 40 min. The applicable rainfall-intensity-duration
relationship is

. = 96.6
1 ~ Td + 13.9



Solution. The critical duration is found from Eq. (15.4.7):

T = (13.9)(0.825)(25.0)(96.6)\ 1/2 ^ 9

(18)2(20)
2(0.825)(25)(96.6) /

= 27.23 min

Example 15.4.2. Determine the maximum detention storage for the watershed
described in Example 15.4.1 if y = 40/20 = 2.

Solution. The peak discharge for the duration of 27.23 min is

= 48.44 cfs
By Eq. (15.4.6), then,

Vs = (27.23)(48.44) - (18)(27.23) - (18)(20) + (18)(20)(|) + ^ ~ ^ J ^

= 895.77 cfs • min x 60 s/min

= 53,746. ft3

As a comparison, from (15.4.4), Vr = QpTd = 48.44 x 27.23 = 1319 cfs • min =
79,140 ft3, so VsIVr = 53,746/79,140 = 0.68. Hence the detention pond will store
68% of its inflow hydrograph in this example.

15,5 FLOODFORECASTING

Flood forecasting is an expanding area of application of hydrologic techniques.
The goal is to obtain real-time precipitation and stream flow data through a
microwave, radio, or satellite communications network, insert the data into rain-
fall-runoff and stream flow routing programs, and forecast flood flow rates and
water levels for periods of from a few hours to a few days ahead, depending on
the size of the watershed. Flood forecasts are used to provide warnings for people
to evacuate areas threatened by floods, and to help water management personnel
operate flood control structures, such as gated spillways on reservoirs. The data
collection systems used in flood forecasting are described in Chap. 6.

The components involved in a flood forecasting model for a large reservoir
system can be illustrated by considering a model developed at the University of
Texas at Austin for the Highland Lakes reservoir system on the lower Colorado
River basin in central Texas (Fig. 15.5.1; see Unver, Mays, and Lansey, 1987).
This system is characterized by integrated operation of several reservoirs for
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Radiometer 180 
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Sewer design 494 

Shear stress 33 276 

Significance level 368 406 

Simulation 507 

Single phase flow 26 

Skewness, coefficient of 361 

Skewness map 400 

Snow measurement 182 
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Statistics 350 359 
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