


Advanced Steel Design of
Structures





Advanced Steel Design of
Structures

Srinivasan Chandrasekaran



MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of
MATLAB® software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

International Standard Book Number-13: 978-0-367-23290-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has
not been obtained. If any copyright material has not been acknowledged, please write and let us
know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted or utilized in any form by any electronic, mechanical or other means,
now known or hereafter invented, including photocopying, microfilming and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
www.taylorandfrancis.com

and the CRC Press Web site at
www.crcpress.com



Contents
List of Figures .................................................................................................. ix
List of Tables .................................................................................................. xiii
Foreword by Jeom Kee Paik ............................................................................ xv
Foreword by Mubarak Wahab....................................................................... xvii
Preface ............................................................................................................ xix
About the Author .......................................................................................... xxi

Chapter 1 Introduction................................................................................... 1
1.1 Introduction ..........................................................................1
1.2 Compliant offshore platforms ...............................................2
1.3 New-generation offshore platforms .......................................5

1.3.1 Buoyant leg structures.............................................. 5
1.3.2 Triceratops ............................................................... 6
1.3.3 Buoyant leg storage regasification platform ............. 7

1.4 Design of stiffened cylindrical shell structures.......................9
1.5 Unsymmetrical bending ...................................................... 15
1.6 Curved beams...................................................................... 32

1.6.1 Bending of curved beams with small initial
curvature................................................................ 33

1.6.2 Deflection of the curved beam with small initial
curvature................................................................ 35

1.6.3 Curved beam with large initial curvature ............... 36
1.6.4 Simplified equations to estimate stresses in the

extreme fiber .......................................................... 41
Exercise problems ......................................................................... 41

Chapter 2 Plastic Design of Structures ......................................................... 49
2.1 Plastic Behavior of Structures............................................ 49
2.2 Shape Factor ..................................................................... 54

2.2.1 Rectangular Section ............................................... 54
2.2.2 Triangular Section.................................................. 55
2.2.3 Circular Section ..................................................... 57

2.3 MATLAB® Code for Calculating Shape Factor ............... 58
2.4 Moment Curvature Relationship....................................... 63
2.5 Mechanism........................................................................ 65
2.6 Static Theorem .................................................................. 66
2.7 Kinematic Theorem........................................................... 66
2.8 Uniqueness Theorem......................................................... 68

v



2.9 Exercises to Estimates Collapse Load................................ 68
2.9.1 Fixed Beam with a Central Point Load.................. 68
2.9.2 Fixed Beam with Uniformly Distributed Load ...... 70
2.9.3 Simply Supported Beam with Eccentric Load........ 71
2.9.4 Simply Supported Beam with a Central Point

Load ...................................................................... 73
2.10 Advantages and Disadvantages of Plastic Analysis ........... 74

2.10.1 Advantages .......................................................... 74
2.10.2 Disadvantages ...................................................... 74

2.11 Comparison of Elastic and Plastic Analysis ...................... 74
Exercises ....................................................................................... 75

Chapter 3 Blast, Fire, and Impact-Resistant Design ..................................... 89
3.1 Introduction ...................................................................... 89
3.2 Blast-Resistant Design....................................................... 89

3.2.1 Personnel Safety..................................................... 90
3.2.2 Controlled Shutdown............................................. 90
3.2.3 Financial Consideration......................................... 90
3.2.4 Preliminary Design ................................................ 91
3.2.5 Detailed Design ..................................................... 91

3.3 Blast Loads ....................................................................... 91
3.4 Classification of Explosions............................................... 92

3.4.1 Vapour Cloud Explosions ...................................... 92
3.4.2 Pressure Vessel Explosions..................................... 93
3.4.3 Condensed Phase Explosion .................................. 94
3.4.4 Dust Explosions..................................................... 94

3.5 Blast Wave Parameters ...................................................... 94
3.5.1 Peak Reflected Pressure.......................................... 96
3.5.2 Peak Dynamic Pressure.......................................... 97
3.5.3 Shock Front Velocity ............................................. 97
3.5.4 Blast Wavelength.................................................... 97

3.6 Design Blast Load for Buildings........................................ 99
3.6.1 Front Wall Load .................................................... 99
3.6.2 Side Wall Load .................................................... 100
3.6.3 Roof Load ........................................................... 102
3.6.4 Rear Wall Load.................................................... 102
3.6.5 Frame Loading .................................................... 103
3.6.6 Negative Pressure, Leakage Pressure and

Rebound Load..................................................... 104
3.7 Design Example: Computation of Blast Overpressure

for a Rectangular-Shaped Building.................................. 104
3.8 Fire Load ........................................................................ 108

vi Contents



3.9 Categorization of Fire ..................................................... 109
3.10 Characteristics of Fire ..................................................... 110

3.10.1 Auto-Ignition Temperature ................................ 110
3.10.2 Flashpoint.......................................................... 111
3.10.3 Fire Point ........................................................... 111

3.11 Classification of Fire ....................................................... 111
3.12 Fire Protection Systems in the Design ............................. 113
3.13 Steel at High Temperature ............................................... 114
3.14 Example Case Study: Behavior of an Offshore Deck

Plate Under Hydrocarbon Fire........................................ 116
3.15 Design for Fire ................................................................ 119

3.15.1 Zone Method ..................................................... 119
3.15.2 Linear Elastic Method ....................................... 119
3.15.3 Elastic–Plastic Method ...................................... 119

3.16 Impact Loads Due to Ship–Platform Collision ............... 120
3.16.1 Kinetic Energy ................................................... 121

3.17 Energy Absorption .......................................................... 122
3.18 An Example Problem on Ship Collision .......................... 124
3.19 Impact Analysis of Buoyant Legs of Offshore

Triceratops ...................................................................... 124
3.20 Functionally Graded Material......................................... 129

3.20.1 Material Characteristics of FGM....................... 132

Chapter 4 Stability of Structural Systems ................................................... 133
4.1 Conditions of Stability .................................................... 133
4.2 Buckling and Instability .................................................. 134
4.3 Euler Critical Load.......................................................... 139
4.4 Standard Beam Element, Neglecting Axial

Deformation.................................................................... 141
4.4.1 Rotational Coefficients......................................... 147

4.5 Stability Functions .......................................................... 150
4.5.1 Rotation Functions Under Axial Compressive

Load .................................................................... 150
4.5.2 Rotation Functions Under Zero Axial Load

(Special Case)....................................................... 154
4.5.3 Rotation Functions Under Axial Tensile Load .... 155
4.5.4 Translation Function Under Axial

Compressive Load ............................................... 156
4.6 Lateral Load Functions Under Uniformly Distributed

Load................................................................................ 159
4.7 Fixed Beam Under Tensile Axial Load............................ 163
4.8 Lateral Load Functions for Concentrated Load.............. 164

Contents vii



4.9 Exercise Problems on Stability Analysis .......................... 168
4.10 Critical Buckling Load .................................................... 201

Chapter 5 Mathieu Stability of Compliant Structures................................. 231
5.1 Introduction ...................................................................... 231
5.2 Mooring Systems .............................................................. 231
5.3 Mathieu Equation ............................................................. 233
5.4 Mathieu Stability for Compliant Structures ...................... 234
5.5 Mathieu Stability of Triceratops........................................ 235

5.5.1 Formulation of Mathieu Equation....................... 236
5.5.2 Mathematical Model............................................ 238

5.6 Influence of Parameters on Stability.................................. 239
5.6.1 Influence of Wave Height ..................................... 239
5.6.2 Influence of Wave Period ..................................... 242
5.6.3 Influence of Water Depth..................................... 243
5.6.4 Influence of Tether Stiffness ................................. 245
5.6.5 Influence of Increased Payload ............................ 246

5.7 Mathieu Stability of BLSRP.............................................. 248
5.7.1 Numerical Modeling............................................ 248
5.7.2 Mathieu Stability Under Tether Pullout............... 250
5.7.3 Mathieu Stability Analysis Under Eccentric

Loading ............................................................... 255
5.8 Numerical Modeling Example of Triceratops.................... 258

5.8.1 Typical Plots of Members Showing Instability..... 263
5.9 Numerical Model of BLSRP............................................. 263

References...................................................................................................... 265

Index.............................................................................................................. 277

viii Contents



List of Figures
Figure 1.1 Conceptual figure of TLP (Chandrasekaran, 2015b).................... 3
Figure 1.2 Neptune TLP (Chandrasekaran, 2015b) ...................................... 3
Figure 1.3 Tension Leg Platform mechanics (Chandrasekaran, 2015b)......... 4
Figure 1.4 Buoyant leg structures.................................................................. 6
Figure 1.5 Triceratops ................................................................................... 7
Figure 1.6 Buoyant leg storage regasification platforms ................................ 8
Figure 1.7 BLSRP scaled model installed in the wave flume.......................... 8
Figure 1.8 Buckling modes in orthogonally stiffened cylinders

(DNV-RP-C202) .......................................................................... 9
Figure 1.9 Uniform bending........................................................................ 15

Figure 1.10 Typical cross section................................................................... 17
Figure 2.1 Bending of beams....................................................................... 50
Figure 2.2 Plastic deformation .................................................................... 51
Figure 2.3 Force-equilibrium condition....................................................... 51
Figure 2.4 Elastic core................................................................................. 53
Figure 2.5 Rectangular section.................................................................... 55
Figure 2.6 Triangular section ...................................................................... 56
Figure 2.7 Fully plastic triangular section ................................................... 56
Figure 2.8 Circular section .......................................................................... 57
Figure 2.9 T-section .................................................................................... 61

Figure 2.10 T-section with equal area axis .................................................... 62
Figure 2.11 I-section ..................................................................................... 62
Figure 2.12 I-section with equal area axis ..................................................... 63
Figure 2.13 Collapse mechanisms ................................................................. 67
Figure 2.14 Plastic analysis theorems ............................................................ 68
Figure 2.15 Fixed beam with a central concentrated load ............................. 69
Figure 2.16 Fixed beam mechanism.............................................................. 69
Figure 2.17 Fixed beam with uniformly distributed load .............................. 70
Figure 2.18 Fixed beam mechanism under udl .............................................. 71
Figure 2.19 Simply supported beam with eccentric load ............................... 71
Figure 2.20 Simply supported beam mechanism ........................................... 72
Figure 2.21 Simply supported beam with a central concentrated load .......... 73
Figure 2.22 Simply supported beam mechanism ........................................... 74
Figure 2.23 Propped cantilever beam with uniformly distributed load.......... 75
Figure 2.24 Bending moment diagram .......................................................... 75
Figure 2.25 Beam mechanism ....................................................................... 77
Figure 2.26 Fixed beam eccentric concentrated load..................................... 77
Figure 2.27 Fixed beam mechanism.............................................................. 78
Figure 2.28 Fixed beam example................................................................... 78
Figure 2.29 Fixed beam mechanism.............................................................. 79
Figure 2.30 Frame example........................................................................... 80
Figure 2.31 Beam mechanism ....................................................................... 80

ix



Figure 2.32 Sway mechanism ........................................................................ 81
Figure 2.33 Combined mechanism................................................................ 82
Figure 2.34 Frame example........................................................................... 83
Figure 2.35 Beam mechanism ....................................................................... 83
Figure 2.36 Sway mechanism ........................................................................ 84
Figure 2.37 Combined mechanism................................................................ 85
Figure 2.38 Continuous beam example ......................................................... 85
Figure 2.39 Beam mechanism 1..................................................................... 86
Figure 2.40 Beam mechanism 2..................................................................... 86
Figure 2.41 Beam mechanism 3..................................................................... 87
Figure 3.1 Shock wave................................................................................. 95
Figure 3.2 Pressure wave ............................................................................. 95
Figure 3.3 Idealized shock wave .................................................................. 98
Figure 3.4 Idealized pressure wave .............................................................. 98
Figure 3.5 Idealized equivalent pressure load.............................................. 98
Figure 3.6 Front wall load......................................................................... 100
Figure 3.7 Equivalent load factor for side wall and roof load.

(Courtesy: UFC: 3-340-02, 2008.) ............................................ 101
Figure 3.8 Roof and sidewall load............................................................. 101
Figure 3.9 Rear wall loading ..................................................................... 102

Figure 3.10 Net lateral load on the rectangular building............................. 103
Figure 3.11 Building block and shock wave history .................................... 105
Figure 3.12 Variation of front wall load ...................................................... 106
Figure 3.13 Variation of side wall load........................................................ 107
Figure 3.14 Variation of roof load............................................................... 107
Figure 3.15 Variation of rear wall load ....................................................... 108
Figure 3.16 Material characteristics of carbon steel at high temperature .... 115
Figure 3.17 Thermal conductivity of carbon steel ....................................... 115
Figure 3.18 Specific heat of carbon steel ..................................................... 116
Figure 3.19 Thermal strain of carbon steel.................................................. 116
Figure 3.20 Stiffened steel plate of offshore deck......................................... 117
Figure 3.21 Middle bay under fire ............................................................... 117
Figure 3.22 Time–temperature curves for different fire conditions .............. 118
Figure 3.23 Temperature distribution in the stiffened plate ......................... 118
Figure 3.24 Maximum deformation in the plate.......................................... 118
Figure 3.25 Energy dissipation and design principles .................................. 121
Figure 3.26 Dissipation of strain energy in ship and platform..................... 123
Figure 3.27 True stress–strain curve of AH36 marine steel.......................... 125
Figure 3.28 Cylindrical shell and indenter model ........................................ 125
Figure 3.29 Indenter velocity ...................................................................... 126
Figure 3.30 Indenter displacement .............................................................. 126
Figure 3.31 Deformation of the buoyant leg ............................................... 127
Figure 3.32 Deformation of ring stiffener at the collision zone ................... 127
Figure 3.33 Load versus nondimensional displacement curve..................... 128
Figure 3.34 Energy absorbed by buoyant leg............................................... 128
Figure 3.35 Section of the functionally graded riser .................................... 130

x List of Figures



Figure 3.36 Stress–strain curve of FGM ..................................................... 131
Figure 3.37 Comparison of stress–strain curves of individual materials

used for grading ....................................................................... 131
Figure 4.1 Unstable condition ................................................................... 135
Figure 4.2 Stability illustrations: (a) stable; (b) neutrally stable;

(c) unstable ............................................................................... 136
Figure 4.3 Torsional buckiling of slender compression member ................ 137
Figure 4.4 Cantilever under flexural torsional buckling ............................ 137
Figure 4.5 Lateral–torsional buckling of I-section .................................... 138
Figure 4.6 Euler column............................................................................ 139
Figure 4.7 Free-body diagram of the column member............................... 140
Figure 4.8 Standard beam element ............................................................ 142
Figure 4.9 Rotational and translational moments in the standard beam ... 142

Figure 4.10 Unit rotation at the jth end of standard beam.......................... 143
Figure 4.11 Unit rotation at the jth end of standard beam.......................... 143
Figure 4.12 Unit displacement at the jth end of standard beam .................. 143
Figure 4.13 Unit displacement at the kth end of standard beam ................. 144
Figure 4.14 Rotation coefficients of standard beam .................................... 145
Figure 4.15 Unit rotation at the jth end of the simply supported beam....... 147
Figure 4.16 Unit rotation at the kth end of the simply supported beam...... 147
Figure 4.17 Unit rotation at the jth end of fixed beam ................................ 148
Figure 4.18 Unit rotation at the kth end of fixed beam ............................... 148
Figure 4.19 Simply supported beam with the unit moment at the jth end ... 149
Figure 4.20 Conjugate beam ....................................................................... 149
Figure 4.21 Fixed beam under axial compressive load ................................ 150
Figure 4.22 Unit rotation at the jth end of fixed beam ................................ 150
Figure 4.23 Free-body diagram under axial load and unit rotation

at the jth end ............................................................................ 151
Figure 4.24 Unit rotation at the kth end under axial load........................... 155
Figure 4.25 Unit translation at the jth end of the fixed beam under

axial load.................................................................................. 157
Figure 4.26 Fixed beam under uniformly distributed load and axial

compressive load ...................................................................... 159
Figure 4.27 Free-body diagram (x < aLi) .................................................... 159
Figure 4.28 Free-body diagram (x > aLi) .................................................... 161
Figure 4.29 Fixed beam under concentrated load and axial

compressive load ...................................................................... 164
Figure 4.30 Free-body diagram (x < aLi) .................................................... 165
Figure 4.31 Free-body diagram (x > aLi) .................................................... 167
Figure 5.1 Turret-mooring system............................................................. 232
Figure 5.2 Mathieu stability chart ............................................................. 234
Figure 5.3 Mathieu extended stability chart (Patel & Park, 1991) ............. 239
Figure 5.4 Numerical model of offshore triceratops .................................. 240
Figure 5.5 Tether tension variation in buoyant leg 1.................................. 241
Figure 5.6 Tether tension variation in buoyant leg 2.................................. 241
Figure 5.7 Tether tension variation in buoyant leg 3.................................. 241

List of Figures xi



Figure 5.8 Mathieu stability for different water depths.............................. 244
Figure 5.9 Mathieu stability chart for different tether stiffness .................. 246

Figure 5.10 Mathieu stability chart for increased payload cases.................. 248
Figure 5.11 Numerical model of BLSRP .................................................... 249
Figure 5.12 Tether tension variation in buoyant leg 1.................................. 251
Figure 5.13 Tether tension variation in buoyant leg 2.................................. 251
Figure 5.14 Tether tension variation in buoyant leg 3.................................. 251
Figure 5.15 Tether tension variation in buoyant leg 4.................................. 252
Figure 5.16 Tether tension variation in buoyant leg 5.................................. 252
Figure 5.17 Tether tension variation in buoyant leg 6.................................. 253
Figure 5.18 Postulated failure cases: (a) one leg affected and (b) two

legs affected .............................................................................. 253
Figure 5.19 Mathieu stability chart for BLSRP under tether

pullout cases............................................................................. 254
Figure 5.20 Eccentric loading on top of the buoyant leg (case 2) ................ 255
Figure 5.21 Eccentric load between two buoyant legs (case 3)..................... 256
Figure 5.22 Eccentric load on top of two consecutive buoyant legs

(case 4) ..................................................................................... 256
Figure 5.23 Mathieu stability chart for eccentric loading ............................ 257

xii List of Figures



List of Tables
Table 2.1 Shape factors................................................................................ 58
Table 3.1 Impulse functions......................................................................... 96
Table 3.2 Auto-ignition temperature for different materials....................... 111
Table 3.3 Functionally graded marine riser details .................................... 130
Table 3.4 Structural properties of individual materials used for grading.... 132
Table 4.1 Stability functions (negative sign indicates tensile axial load)..... 218
Table 5.1 Properties of triceratops ............................................................. 240
Table 5.2 Tension variation in tethers for different wave height (wave

period 15 s) ................................................................................ 242
Table 5.3 Influence of wave height on Mathieu parameters (wave

period 15 s) ................................................................................ 242
Table 5.4 Tension variation in tethers for different wave frequencies ......... 243
Table 5.5 Mathieu parameters for different wave frequencies (wave

height 8 m) ................................................................................. 243
Table 5.6 Dynamic tension variation in tethers for different

water depths............................................................................... 244
Table 5.7 Mathieu parameters for different water depth ............................ 244
Table 5.8 Tension variation in tethers for different stiffness ....................... 245
Table 5.9 Mathieu parameters for different stiffness .................................. 245

Table 5.10 Total mass and reduced pretension ............................................ 246
Table 5.11 Maximum tension variation under the increased payload .......... 247
Table 5.12 Mathieu parameters for increased payload ................................ 247
Table 5.13 Structural properties of BLSRP (Chandrasekaran

et al., 2015b)............................................................................... 250
Table 5.14 Maximum tension amplitude in tethers for postulated

cases of failure............................................................................ 254
Table 5.15 Mathieu parameters under postulated failure ............................ 254
Table 5.16 Tether tension variation for different eccentric loading cases ..... 257
Table 5.17 Mathieu parameters under eccentric loading ............................. 257
Table 5.18 Structural properties of triceratops and BLSRP of

example problems ...................................................................... 258

xiii





Foreword
Jeom Kee Paik
Department of Mechanical Engineering, University College London

Steel-framed structures are found in many engineering systems, including infra-
structures such as building, bridge, tower and offshore platforms. While in ser-
vice, they are rarely subjected to extreme conditions and accidents such as fires,
explosions and collisions, which may lead to catastrophes to personnel, asset and
the environment.

This book introduces advanced methods for designing steel-framed structures
in association with extreme conditions and accidents. Load characteristics of
accidents such as fires, explosions and collisions are presented. Analysis of
impact load effects is given in closed-form solutions. Structural instability due to
extreme conditions is described in detail with analytical solutions. The structural
responses under extreme conditions and accidents are obviously highly nonlinear,
and thus the book presents elastic-plastic design methods. Reliability of steel-
framed structural design largely depends on the degree of rotational restraints at
joints of steel-frame elements, among other factors. This book describes the
details to accurately take into account the effects of the rotational restraints at
joints of steel frames.

Analysis and design of structures under extreme conditions and accidents is a
challenging area, not only because of the highly nonlinear aspects but also
because of the difficulties in interacting between multiple physical processes and
multiple criteria. Nonlinear structural responses are due to not only geometrical
nonlinearities (e.g., buckling, large deformation) but also material nonlinearities
(e.g., plasticity). Thus, it is important to better understand the nonlinear behavior
of structures under extreme conditions and accidents. Approximate but closed-
form solution methods are useful at the preliminary design stage, although more
refined numerical computations and large-scale physical model testing may need
to be applied at later design stages.

This book is a handy source covering most of these aspects in varying
degrees in the individual chapters and associated exercises. I believe that this
book will be useful for university students and industry practitioners who deal
with advanced design of steel-framed structures under extreme conditions and
accidents.
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Foreword
Mubarak Wahab, PE, PhD
Deputy Head, Offshore Engineering Center, Universiti Teknologi
PETRONAS, Malaysia

I am honored to write this foreword as advances in steel structure design is a
highly sought-after topic in the domain of design of offshore structures. The off-
shore industry is a capital-intensive industry and is mostly dominated by steel
structures. Any advances in design mean efficiency, effectiveness and cost-saving.
Thus, the players in the offshore industry always welcome improvements. At the
time of low oil price, as in currently, any improvement, that is, lowering of the
cost in capital expenditure as well as in operating expenses, means big changes in
profitability and sustainability. The capital-intensive industry is vulnerable to eco-
nomic slowdown than labor-intensive industry because of fixed costs such as
overhead for structures, appurtenances, plants, equipment and depreciation on
the assets. In addition to this, utilizing steel structures in the offshore industry has
numerous advantages. Higher strength-to-weight ratio justifies the choice of
material, cylindrical and sturdy shape justifies the geometry, lower life-cycle cost
considering rapid construction process yields early return on investment, higher
ductility and toughness to resist accidental loads enables it to be the better choice
for the rough and busy ocean environment and so on. Meanwhile, Professor
Srinivasan Chandrasekaran, whom I know for the past couple of years, has
been instrumental in providing significant contributions to the engineering fra-
ternity with his numerous activities in the area of teaching, research, publication,
undergraduate and postgraduate student supervision, conducting short courses
and seminars as well as involving himself in national and international consultan-
cies. His current venture into publication of this book is timely, considering that
the demand for oil and gas is ever-increasing due to the economic growth of
developing countries and the depletion of near-shore resources, which has left
with no choice than moving toward deeper waters. Advancements in technology
in exploration and drilling have also made it possible to move into deeper waters.
This book aptly discussed the so-called new-generation offshore platforms (com-
pliant platforms) where steel is used as the main constructional material. When
discussing compliant platforms, stability of structural systems is critical. Stability
is achieved by ensuring good structural configuration, satisfying static equilib-
rium conditions and compatibility and force-displacement relationships in all
cases, including extreme and accidental cases. Concerning extreme cases, it is
inappropriate not to talk about plastic design methodology, considering extreme
loadings coming from fire, blast and impact. The book covers vastly on these
topics, including shape factor, MATLAB® coding for calculating shape factor,
moment-curvature relationship, static and kinematic theorems, uniqueness

xvii



theorem, classification of explosions, blast wave parameters, design blast loads,
fire load, fire categorization, characteristics and classification, fire protection sys-
tems, steel at high temperature, design for fire, impact loads due to ship–platform
collision, energy absorption, impact analysis of buoyant legs of offshore tricera-
tops and functionally graded material. Meanwhile, touching on the stability of
structural systems, the book extensively covers such topics as conditions of stabil-
ity, buckling and instability, Euler critical load, standard beam element, neglect-
ing axial deformation, stability functions, lateral load functions under uniformly
distributed load, fixed beam under tensile axial load, lateral load functions for
concentrated load, critical buckling load and MATLAB® code for stability
chart. Finally, a specific chapter on Mathieu stability is presented. This has
covered the mooring systems, compliant platforms specifically on Buoyant Leg
Storage Regasification Platforms and Triceratops. This chapter also has presented
the Mathieu’s equation, Mathieu’s equation for compliant structures, Mathieu
stability of triceratops, influence of parameters on stability, Mathieu stability of
BLSRP and numeric modeling example of Triceratops and BLSRP. Throughout
the book, descriptions are available for compliant platforms, namely Buoyant
Leg Structures, Triceratops and Buoyant Leg Storage Regasification Platforms,
deriving the concept and fundamental principles from TLP. In short, this book
explains the current advances in steel structure design related to floating compli-
ant offshore platforms. The design principles are viewed from the perspective of
plastic design; blast, fire and impact resistance design and stability of structural
systems. Numerous exercises and problems are shown to be solved in
MATLAB® code, which is an added value to the theoretical background pro-
vided by the book. Upon reading this book, one will find it easy to follow
through the fundamental theorem, mechanics involved, design principle and pro-
cedure as well as the MATLAB® coding to solve the encountered problems. I
hope that this book will become a premier reference for teachers, educators, stu-
dents and professionals across the globe to learn, teach, and practice the essence
of design of offshore structures relating to advances in structural steel design.
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Preface
Advanced steel design explores the domain of research and understanding both
analysis and design of steel structures in general and offshore compliant struc-
tures in particular. The convenience that steel possesses to recycling, repair and
retrofit in comparison to other construction materials, both commercial and
eco-friendly points of view is one of the primary advantages. The material
strength of steel beyond yield value intuits the plastic design of structures but
also warrants about the permanent plastic deformation under excessive loading.
A chapter in plastic design deals with a few examples, highlighting the basics.
Loads, acting on the offshore structures, are special that induces unsymmetrical
bending. Also, geometric sections like curved beams are quite common in form-
dominant elements. Both these topics are covered in detail while the concept is
presented with many exercise problems, solved using MATLAB® code. Design
of steel structures under conventional loads is well discussed in the literature.
However, special attention is required to understand the design procedure under
special loads such as blast, fire and impact. This book explains the concepts in
a separate chapter dedicated to the structural design under fire, blast and
impact loads. Recent advancement on functionally graded material and its use
in marine risers are also presented.

Form-dominant design is highly advantageous in structures that require the
recentering capability of a high order. Offshore compliant structures are spe-
cial geometric forms of floating structures that operate under positive buoy-
ancy. Common examples are offshore platforms and naval rescue vessels.
While their stability is mainly governed by their hydrodynamic characteristics,
structural stability can be examined using Mathieu stability equations and
charts. One of the chapters of this book deals with the Mathieu stability of
complaint structural systems, with applied examples on new-generation off-
shore production and exploration platforms. Numerical studies that are car-
ried out on such offshore platforms are presented in detail for the benefit of
the users as the details of the discussed subject are very scarce in the literature.
Mathieu stability is investigated for two types of compliant structures, wherein
various parameters that influence their stability are addressed through detailed
numerical investigations.

Stability of structural systems is extremely important. They become more
vital in offshore structures, as they alleviate the encountered environmental
loads by their geometric form and not by their strength. While the configur-
ation of any structural system is posed to a challenge under the given loads
and boundary conditions, under the satisfied conditions of static equilibrium,
compatibility and force–displacement relationships, it is said to be stable. Stabil-
ity, therefore, demands an understanding of failure. This book includes a separate
chapter which deals with the derivation of stability functions for fixed beam,
using the classical matrix method of structural analysis. Numerical examples of
frames under lateral loads are solved using MATLAB® program. Complete
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coding, along with detailed input and output for the example problems are given
in this chapter.

The author expresses his immense gratitude to all his teachers, research
scholars, Graduate students and colleagues for their support and advice at
various capacities. The author also expresses thanks to the Centre of Con-
tinuing Education, Indian Institute of Technology Madras, for extending
administrative support in preparing the manuscript of this book. The author
also thanks MATLAB® for permitting usage of MATLAB® codes throughout
the text of this book.
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1 Introduction

1.1 INTRODUCTION

Steel, as a construction material, possesses a lot of salient advantages. High
ratio of strength to weight overcomes the increase in cost (Chandrasekaran &
Gupta, 2007a; Chandrasekaran & Srivastava, 2007; Chandrasekaran, Dubey
and Tripati, 2006). Further, a lower life-cycle cost resulting from rapid construc-
tion process yields an early return on investment (RoI). Special structural prop-
erties of steel, namely increased ductility and toughness to resist accidental
loads, make it the best choice for the infrastructure industry (Chandrasekaran
et al., 2005, 2008a, 2010b, 2011b, 2006; Chandrasekaran & Gupta, 2007b).
Convenience, steel possess to recycling, repair and retrofit are added advan-
tages, both in commercial and eco-friendly points of view (Chandrasekaran et
al., 2005, 2006c, 2007, 2003). With an increased initial cost of steel, as a con-
struction material, it can result in a low life-cycle cost because of its early return
(Chandrasekaran & Chandak, 2004b, 2003b; Chandrasekaran et al., 2003;
Chandrasekaran, Dubey et al., 2006a). Steel structures enjoy lower periodic
maintenance in addition to a lower cost of dismantling the structure. Further,
from the architectural perspective, steel also possesses 3Fs namely feasibility,
functionality and suitability for form-dominant design (Chandrasekaran and
Roy, 2004a, 2004b, 2006; Chandrasekaran & Srivastava, 2006; Chandrasekaran
et al., 2005, 2005a, 2007c, 2010a; Chandrasekaran & Roy, 2006; Chandrase-
karan et al., 2005b). In particular, steel is the most commonly used construction
material for offshore structures (Chandrasekaran, 2015a, 2015b; Chandrase-
karan & Chandak, 2004a; Chandrasekaran, Jain et al., 2007a, 2007c). It is
necessary to use steel in offshore structures as they are subjected to the environ-
mental loads that arise from waves, wind, current, ice load, seabed movement,
shock and impact caused by vessels, and fire loads that arise from hydrocarbon
leaks (Chandrasekaran et al., 2007, 2004a, 2007b; Chandrasekaran & Jain,
2016b). For increased serviecaebility conditions, stiffness of the members are
enhanced to aviod large deflections, while safety to both the user and the envir-
onment can be achieved by using material of higher strength and robustness
(Chandrasekaran & Dubey, 2006; Chandrasekaran, Jain et al., 2006a). Steel, as
a construction material, possesses both sets of advantages.

Stability of structural systems in general and steel structures, in particular, is
extremely important; it shall continue to remain as a common domain of interest
in structural engineering applications (Chandrasekaran, 2015b; Chandrasekaran,
Muranjan et al., 2006b; Chandrasekaran, Seriono et al., 2008b, 2007c, 2009b).
Stability is extremely important in offshore structures, as most of the compliant
structures alleviate the encountered environmental loads by their geometric form
and not by strength (Agarwal & Jain, 2003; Chandak & Chandrasekaran, 2009;
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Chandrasekaran & Jain, 2002a, 2002b; Chandrasekaran et al., 2004a, 2004b;
Chandrasekaran & Sharma, 2010a; Chandrasekaran & Thailammai, 2018).
The configuration of any structural system is posed to a challenge under the
given loads and boundary conditions (Chandrasekaran, Chandak et al., 2006a;
Chandrasekaran, Jain et al., 2006b). However, if the structural configuration sat-
isfies the conditions of static equilibrium, compatibility and force–displacement
relationships, then it is said to be stable (Chandrasekaran & Gaurav, 2008; Chan-
drasekaran & Gupta, 2007a; Chandrasekaran et al., 2003; Chandrasekaran et al.,
2008b; Chandrasekaran & Tripati, 2005, 2004). It is furthermore interesting to
note that it has to remain stable even under the disturbances caused by accidental
loads, geometric imperfections and eccentricities caused by construction irregu-
larities (Chandrasekaran & Thomas, 2016a; Chandrasekaran et al., 2006, 2007d,
2007e, 2008b; Davenport, 1961). An unstable condition is often referred to as a
failed state (Chandrasekaran & Khader, 2016). Even though such structure can
withstand loads (maybe in a decreased magnitude), but it is considered as failed
as it cannot perform its intended function (Chandrasekaran et al., 2009a).

Stability, therefore, demands an understanding of failure. Two types of failures
are common in structural systems: material and geometry. In case of material fail-
ure, stresses exceed the permissible limits imposed by the codes for a pre-agreed
design procedure (Fraldi et al., 2009; Serino et al., 2008a, 2008b, 2008c). Complica-
tions that arise due to the changes (or degradation) in the stress–strain relationship
follow in such cases. However, more concern is with the latter type of failure, as
this will disable the structural system to perform its intended function. It is more
important in offshore structures for a simple reason that most of the compliant off-
shore platforms bank upon the recentering capacity (Chandrasekaran et al.,
2006c, 2007, 2007h, 2007g). The following section explains the necessity of geo-
metric stability in compliant new-generation offshore platforms.

1.2 COMPLIANT OFFSHORE PLATFORMS

The demand for oil and gas and the depletion of resources near shore have
made the companies move toward deeper waters. Also, the sophisticated drill-
ing and extraction technology also enhanced the possibility of oil and gas
extraction in deep waters (Chandrasekaran et al., 2007a, 2007b, 2007c, 2007d,
2007e, 2007f, 2007g, 2007h). With the improved geophysical exploration tech-
nology, oil and gas deposits in the seabed can now be detected to a depth of
12 km. Thus, many new oil deposits have been discovered recently, and 481
larger fields have been discovered between 2007 and 2012 in deep and ultra-
deep waters. It is highly important to note that the newly discovered offshore
fields are comparatively larger than newly discovered onshore fields. It makes
the ultra-deepwater production more attractive despite the higher extraction
costs (Chandrasekaran et al., 2008a; Ertas & Lee, 1989; Glanville et al., 1991;
Halkyard, 1996; Harding et al., 1983; Reddy & Swamidas, 2016). For example,
let us consider offshore Tension Leg Platforms (TLPs). TLPs consist of vertical
columns and pontoons, which are position-restrained by tethers as shown
in Fig. 1.1. The columns and pontoons are designed as tubular members
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FIGURE 1.2 Neptune TLP (Chandrasekaran, 2015b).
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to enhance the buoyancy of the structure (Chandrasekaran et al., 2012; Chan-
drasekaran & Thomas, 2016a). Figure 1.2 shows the Neptune TLP, indicating
the main components. Taut-moored tethers balance the excess buoyancy
(Chandrasekaran et al., 2010a, 2014, 2013c, 2011a, 2010b; Haritos, 1985).
These tethers are wired ropes which are under very high initial pretension
and are capable of sustaining very large tensile loads. TLPs are vertically moored
compliant structures with a restrained heave, roll and pitch motions in a vertical
plane and are compliant in a horizontal plane by allowing surge, sway and
yaw motions (Chandrasekaran & Madavi, 2014a, 2014b, 2014c, 2014d, 2014e;
Chandrasekaran et al., 2013c).

Figure 1.3 shows the TLP mechanics. Under the action of wave loads, the
platform will move along the direction of waves, causing a set-down in the platform
in the vertical plane (Chandrasekaran & Koshti, 2013; Jain & Chandrasekaran,
2004, 1997; Jefferys & Patel, 1982). This structural action also modifies the tether
tension significantly. Apart from this fact, the most important is the recentering
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FIGURE 1.3 Tension Leg Platform mechanics (Chandrasekaran, 2015b).
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capability, inherited by the geometric design (Chandrasekaran, 2014, 2015a, 2017a,
2017b; Chandrasekaran & Srinath, 2013). While the platform undergoes offset, a
set-down effect imposes hydrodynamic stability and controls the effect of offset on
the geometric motion of the platform (Chandrasekaran & Madhavi, 2015a,
2015b, 2015c, 2015d, 2015e). Change in tether tension imposes an additional
resistance in the opposite direction to that of the wave (or any other lateral) load,
enabling the platform to regain its original geometric position (Chandrase-
karan et al., 2014a, 2014b; Siddiqui & Ahmad, 2001; Wang et al., 2016).
While this is referred to as recentering, geometric stability is inherently
imposed in the design. Such methods of design are often referred to as form-
dominant design, which forms the basis for most of the compliant offshore struc-
tures (Chandrasekaran, 2013a, 2013b, 2013c; Chandrasekaran et al., 2017).

1.3 NEW-GENERATION OFFSHORE PLATFORMS

The need for an innovative and adaptable structural form had paved the way for
the development of new-generation offshore platform (Chandrasekaran, 2018a,
2018b, 2018c, 2019a, 2019b). New-generation offshore platforms are developed
to meet the complexities that arise in deep and ultra-deepwater conditions (Chan-
drasekaran & Nassery, 2015b; Chandrasekaran & Roy, 2005). The hostile and
harsh environmental conditions necessitate an innovative and adaptive structural
form with complaint characteristics that are cost effective and advantageous
(Chandrasekaran & Jain, 2016; Chandrasekaran & Sharma, 2010a; Roy et al.,
2017). Due to the non-availability of preceding similar geometry for comparison,
it is highly important to analyze and understand the structural behavior of the
newly developed platforms under different environmental conditions (Chandrase-
karan & Nagavinothini, 2017a, 2017b, 2018a, 2018b, 2018c). Offshore platforms
that are conceptualized very recently are discussed below.

1.3.1 BUOYANT LEG STRUCTURES

Buoyant leg structures (BLS) consist of a cylindrical hull connected to the seabed
by cylindrical tubes of smaller diameter or tethers (Shaver et al., 2001). The long
water-piercing cylindrical hull makes the platform positive buoyant, which
enables stability even under the removal of tethers. The hull also protects the
risers from the wave and current action. The tension buoyant tower concept
was first proposed by Halkyard (1996). Later, the structural form was suitably
modified by other researchers to enhance the suitability of the platform in deep
waters. BLS is a deep drafted structure which is relatively insensitive to water
depth. The structural form of BLS resembles Spar, and the structural action
resembles TLP, where tethers restrain the vertical motion. BLS is a very simple
structure which enables easy fabrication, transportation and installation. It is
installed by ballasting, pull down, or both pull down and ballasting methods. It
is advantageous than the spar platform because of its simple hull form with
improved motion characteristics. They are also more economical than TLPs and
spars due to less commissioning cost. The structural form is shown in Fig. 1.4.
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1.3.2 TRICERATOPS

The concept of triceratops was developed by White et al. (2005), consider-
ing the various advantages of buoyant leg structures. Triceratops consists
of a deck and three buoyant legs, which are position restrained by a set of
taut moored tethers as shown in Fig. 1.5. The innovative component of
triceratops which makes it different from other new-generation platforms is
the ball joint. The ball joints are used for connecting the deck and buoy-
ant legs. Ball joints restrain the transfer of rotational motion and allow
only translational motion between the deck and buoyant legs. Thus, under
the action of wave loads on buoyant legs, the rotational degrees such as
roll, pitch and yaw motions will not be transferred to the deck and thus provide a
convenient workspace for the crew on top of the deck (Chandrasekaran &
Bhattacharyya, 2012; Chandrasekaran & Madhuri, 2012; Chandrasekaran et
al., 2015a). Thus, a combined response of the deck and the buoyant legs
should be studied while analyzing this structure, unlike other offshore plat-
forms (Chandrasekaran & Chithambaram, 2016; Chandrasekaran et al., 2016;
Chandrasekaran & Thailammai, 2018). These distinct motion characteristics also
provide uniqueness to this platform. Triceratops is stiff in the vertical plane and
compliant in the horizontal plane, similar to that of TLPs (Chandrasekaran &
Nagavinothini, 2019a, 2019b). The buoyant legs of triceratops resemble the hull
of the spar platform. This platform derives advantages from both TLP and spar.
Also, triceratops attracts fewer forces due to the reduced waterplane area.

FIGURE 1.4 Buoyant leg structures.
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1.3.3 BUOYANT LEG STORAGE REGASIFICATION PLATFORM

Buoyant leg storage regasification platform (BLSRP) is developed to overcome
the limitations in storage capacity of floating storage regasification units (FSRU).
BLSRP consists of a circular deck and six buoyant legs, which are inclined at 20°
to the deck as shown in Fig. 1.6. The deck of the platform consists of regasifica-
tion equipment, storage tanks and seawater pumps. The buoyant legs are position
restrained by taut-moored tethers. The structure remains stiff in the vertical plane
and compliant in the horizontal plane. The buoyant legs are connected to the
deck by hinged joints, which restrain the transfer of rotational motion and allow
only translation motion. Thus, this platform has combined advantages of TLP,
spar and triceratops. The symmetrical geometric form also makes the platform
insensitive to the direction of wave load action.

One of the common facts among all the new-generation offshore platforms
is the strong dependency on their geometric form to ensure stability while in
action. In such situations, a stability failure will commonly refer to the con-
figuration failure, in general, and inability toward recentering, in particular.
It is important to note that the loss of stability is a function of type (or nature) of
load, in addition to its magnitude. The loss of stability due to tensile loads falls in
material instability, whereas the loss of stability under compression loads is

FIGURE 1.5 Triceratops.
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commonly referred to as buckling failure. Hence, instability in any form, be it
material specific or geometry specific, is emphasized that the load at which
instability occurs depends upon the sectional properties of the members like stiff-
ness by an large, not depends on the material strength. In clear terms, the mater-
ial of the member may be strong enough to resist the failure, but the member is
said to be failed if it is unstable. It is because the member is unfit to disburse the
encountered loads, which is the intended function.

BLSRP is one of the recent innovative structural geometry developed to
suit the requirements of the offshore industry. It consists of a deck, which is
connected to six buoyant legs through hinged joints. The buoyant legs are pos-
ition restrained by a set of taut-moored tethers. The hinged joints restrain the

FIGURE 1.6 Buoyant leg storage regasification platforms.

FIGURE 1.7 BLSRP scaled model installed in the wave flume.
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transfer of rotational motion and allow only the transfer of translational
motion between the leg and buoyant legs. This platform provides increased
storage facility and regasification capacity of natural gas. The experimental
model of BLSRP is shown in Fig. 1.7.

1.4 DESIGN OF STIFFENED CYLINDRICAL SHELL STRUCTURES

The stiffened cylinders are one of the major structural components of floating
and compliant structures. It can be classified into ring-stiffened, stringer-stiff-
ened and ring-stringer-stiffened cylinders. The former is known as orthogon-
ally stiffened cylinders. Stringers are longitudinal stiffeners, which are attached
either externally or internally to the cylinder at equidistance apart. The stiff-
eners may be of a flat bar, angle or T section. Stiffeners, when integrally
welded to the shell, help resist the lateral loads. The structure is fabricated
from hot- or cold-formed plates with butt welding to establish structural integ-
rity between the cylinders and the stringers. Geometrical distortion and
residual stresses are some of the common problems that occur due to the
welding process. Upon the types of failure, the orthogonally stiffened cylinder
shall buckle and fail in different modes namely shell buckling, panel stiffener
buckling, panel ring buckling and column buckling (DNV-RP-C202). Figure
1.8 shows some of these modes of failure.

FIGURE 1.8 Buckling modes in orthogonally stiffened cylinders (DNV-RP-C202).
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Exercise 1
Check the stability of the ring-stiffened circular cylinder under an axial
compressive stress of 30 N/mm2 against shell buckling. Take the diameter of
cylinder as 5.0 m, the thickness of cylinder as 30 mm, length of the cylinder
as 8.0 m, spacing of the ring stiffeners as 800 mm c/c and yield strength of
steel as 433 N/mm2.

Solution

(i) Stability requirements:

According to Section 1.3.1 of DNV-RP-C202, the stability requirements of a
circular cylinder subjected to axial stress is given as

σd � fksd ð1:1Þ

where σd is the design shell buckling strength, fksd ¼ fks
γM

fks , is the characteris-
tic buckling strength.

(ii) Characteristic buckling strength

fks ¼ fyffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �λ

4
q ð1:2Þ

�λ2 ¼ fy
σd

σao
fEa

þ σmo

fEm
þ σho

fEh
þ τo
fEτ

� �
ð1:3Þ

σd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σa þ σmð Þ2 � σa þ σmð Þσh þ σh2 þ 3τ2

q
ð1:4Þ

Following values hold good:

Design axial stress, σa = –30 N/mm2

Design bending stress, σm = 0
Design circumferential stress, σh = 0
Design shear stress, τ = 0
Substituting in Eq. (1.4), we get:

σd ¼ 30N=mm2

Characteristic buckling strength of circular cylinder for check under shell
buckling is given as (Section 3.4.2, p. 15)

fE ¼ C
π2E

12 1� γ2ð Þ2
t
l

� �2
ð1:5Þ
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Reduced buckling coefficient is as follows:

C ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρξ

�

� �2
s

ð1:6Þ

From Table 3.2 of the code, we get:
� ¼ 1 ð1:7aÞ

ξ ¼ 0:702Zl

Zl ¼ l2

rt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p
ð1:7bÞ

ρ ¼ 0:5 1þ r
150t

h i�0:5
ð1:7cÞ

where
Distance between ring stiffeners, l = 800 mm
Cylinder radius, r = 2500 mm
Cylinder thickness, t = 30 mm
Poisson’s ratio, γ = 0.3

Substituting in Eq. (1.7), we get:

Zl ¼ 7:765

ξ ¼ 5:451

ρ ¼ 0:401

From Eq. (1.6), we get:

C ¼ 2:404

Thus, characteristic buckling strength is given by the following relationship:

fE ¼ C
π2E

12 1� γ2ð Þ2
t
l

� �2
ð1:8Þ

fE ¼ 2:404� π2 � 2:1� 105

12 1� 0:32
	 
2 30

800

� �2

¼ 641:643 N=mm2 ð1:9Þ

(iii) Check for stability

From Eq. (1.3), we get:

�λ2 ¼ fy
σd

σao
fEa

� �
¼ 0:675
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Substituting in Eq. (1.2), we get:

fks ¼ fyffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �λ

4
q ¼ 297:514 N=mm2

From Section 3.1, we get:

γM ¼ 0:85þ 0:60λ for 0:5 � λ � 1:0

Thus, γM ¼ 1:343

Now, fksd ¼ fks
γM

¼ 221:538 N=mm2

Since σd ¼ 30 N=mm2, σd5fksd
Hence, the circular cylinder is safe against shell buckling.

Exercise 2

Calculate the characteristic buckling strength of orthogonally stiffened cylindrical
shell with the following details:

Shell dimensions:
Diameter of the shell = 10.0 m
Thickness of the outer shell = 40 mm

Stiffeners details:
Type: flat bar (300 × 40 mm)
Ring frames spacing = 1000 mm
Longitudinal stiffener spacing = 600 mm

Load and material details:
Axial compressive stress = 40 N/mm2

Circumferential compressive stress = 70 40 N/mm2

Yield strength of steel = 433 N/mm2

Solution:

(i) Characteristic buckling strength

fks ¼ fyffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �λ

4
q ð1:10Þ

�λ2 ¼ fy
σd

σao
fEa

þ σmo

fEm
þ σho

fEh
þ τo
fEτ

� �
ð1:11Þ

σd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σa þ σmð Þ2 � σa þ σmð Þσh þ σh2 þ 3τ2

q
ð1:12Þ

Design axial stress, σa = – 40 N/mm2

Design bending stress, σm = 0
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Design circumferential stress, σh = –70 N/mm2

Design shear stress, τ = 0
Substituting in Eq. (1.4), we get:

σd ¼ 60:828 N=mm2

(ii) Elastic buckling strength
According to Section 3.3.2, p. 14, aspect ratio = l/s
where

Distance between ring stiffeners, l = 1000 mm
Distance between longitudinal stiffeners, s = 600 mm
Thus, aspect ratio = 1.667 > 1.0

So, the characteristic buckling strength of cylindrical shells under check for
shell buckling is given as follows:

fE ¼ C
π2E

12 1� γ2ð Þ2
t
l

� �2
ð1:13Þ

Reduced buckling coefficient is as follows:

C ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρξ

�

� �2
s

ð1:14Þ

(a) Elastic buckling strength under axial stress:

From Table 3.2, � ¼ 4

ξ ¼ 0:702Zs; Zs ¼
s2

rt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p
ð1:15Þ

ρ ¼ 0:5 1þ r
150t

h i�0:5

where
Distance between longitudinal stiffeners, s = 600 mm
Cylinder radius, r = 5000 mm
Cylinder thickness, t = 40 mm
Poisson’s ratio, γ = 0.3

Substituting the values from the above equations, we get:

Zl ¼ 1:638

ξ ¼ 1:150

ρ ¼ 0:369
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From Eq. (1.14), we get C = 4.022
Thus, characteristic buckling strength is given as

fEa ¼ C
π2E

12 1� γ2ð Þ2
t
l

� �2

¼ 4:022� π2 � 2:1� 105

12 1� 0:32
	 
2 40

600

� �2

¼ 3392:782 N=mm2

(b) Elastic buckling strength under circumferential stress
From Table 3.2,

� ¼ 1þ s
l

� �2� �2

ξ ¼ 1:04
s
l

ffiffiffiffiffi
Zs

p
; Zl ¼ s2

rt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p
ð1:16Þ

ρ ¼ 0:6

Distance between longitudinal stiffeners, s = 600 mm
Cylinder radius, r = 5000 mm
Cylinder thickness, t = 40 mm
Poisson’s ratio, γ = 0.3
Substituting in Eq. (1.14), we get:

� ¼ 1:85

ξ ¼ 0:799

From Eq. (1.12), we get:
C ¼ 1:911

Thus, characteristic buckling strength is given as

fEh ¼ C
π2E

12 1� γ2ð Þ2
t
l

� �2

¼ 1:911� π2 � 2:1� 105

12 1� 0:32
	 
2 40

600

� �2

¼ 1612:035 N=mm2
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Substituting the values from the above equations, we get:

�λ2 ¼ fy
σd

σao
fEa

þ σho
fEh

� �
¼ 0:393

�λ ¼ 0:627

Thus, the characteristic buckling strength is given as

fks ¼ fyffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �λ

4
q ¼ 402:996 N=mm2

1.5 UNSYMMETRICAL BENDING

In members generally idealized as one dimensional, it is comfortable to com-
pute the stresses in the cross section for the loads applied at the prefixed
points, as the bending takes place parallel to the plane of applied moment.
While using the simple bending equation, it is assumed that the neutral axis
of the cross section is perpendicular to the plane of loading.

In Fig. 1.9, the YY-axis is the trace of the plane of the applied moment. Bend-
ing moment in the YY-axis is said to be zero and mathematically as follows:

X
My ¼

ð
A

σxdA ¼ 0 ð1:17Þ

and
Ð
zy dA ¼ 0only when the ZZ-axis and YY-axis are the principal axes of

inertia.

FIGURE 1.9 Uniform bending.
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For symmetrical bending,

i. It is essential that the plane containing none of the principal axes of
inertia, the plane of the applied moment and the plane of deflection
should coincide.

ii. It is also obvious that the neutral axis will coincide with other princi-
pal axes of inertia.

When the trace of the plane of the applied moment does not coincide with any
of the principal axes of inertia, then this type of bending is called unsymmetrical
bending or non-uniplanar bending. Under such conditions in unsymmetrical
bending, neutral axis is no longer perpendicular to the trace of the applied
moment plane, and the deflection curve is not plane. The major consequence of
unsymmetrical bending is that the members that are symmetric about a vertical
axis with thin-walled sections will undergo twisting under transverse loads. The
reasons for the unsymmetrical bending are as follows:

i. The section is symmetrical, but the line of action of the load is
inclined to both the principal axes.

The section is unsymmetrical, and the line of action of the load is along any
centroidal axis.

In the case of unsymmetrical bending, the applied moment will cause bend-
ing about both the principal axes of inertia, which should be located to calcu-
late the stresses at any point in the cross section. If the moment acts on the
plane of symmetry, then the conventional simple bending equation can be
used to calculate the stresses:

σb ¼ M
I
y ð1:18Þ

However, if the load acts on another plane, then it becomes unsymmetric
where one cannot use the conventional equation of flexure to obtain the stres-
ses. In such a case, the following procedure has to be followed to estimate the
stresses:

Step 1: To transform the problem of unsymmetric bending to uniplanar bending

Consider a cross section of the beam under the action of a bending moment
M (Fig. 1.10)
Let,

ZZ and YY = co-ordinate axes passing through the centroid.
UU and VV = principal axes inclined at an angle α to the ZZ and YY axes,

respectively.
The axes are shown in the figure.
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To locate the principal axes of inertia, the following relationship is valid:

u ¼ z cos αþ y sin α ð1:19aÞ

v ¼ �z sin αþ y cos α ð1:19bÞ

The angle is measured in the positive coordinate. The moment of inertia
about UU and VV axes should be calculated to estimate the bending stresses,
as discussed below:

Iu ¼
ð
A
v2dA

¼
ð
A

�zsinαþ ycosαð Þ2dA

¼
ð
A

z2sin2αþ y2cos2α� 2zsinαcosα
	 


dA

¼ sin2α
ð
A
z2dAþ cos2α

ð
A
y2dA� sin2α

ð
A
yzdA

¼ Iysin2αþ IZcos2α� IyZsin2α

cos2α ¼ 1� 2sin2α

¼ 2cos2α� 1

FIGURE 1.10 Typical cross section.
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Substituting in the above equation,

Iu ¼ Iy
2

1� cos2αð Þ þ IZ
2

1þ cos2αð Þ � IyZsin2α

¼ IY þ IZ
2

þ IZ þ IY
2

cos2α� IYZsin2α

Iu ¼ IY þ IZ
2

þ IZ þ IY
2

cos2α� IYZsin2α

IV ¼
ð
A
u2dA

¼
ð
A

zcosαþ ysinαð Þ2dA

¼
ð
A

z2cos2αþ Y 2sinα2 þ 2zysinαcosα
	 


dA

IV ¼ cos2α
ð
A
Z2dAþ sin2α

ð
A
y2dAþ sin2α

ð
A
zydA

¼ cos2αIy þ sin2αIz þ Izysin2α

¼ 1þ cos2αð Þ Iy
2
þ 1� cos2αIz

2
þ Izysin2α

IV ¼ Iz � Iy
2

� Iz � Iy
2

cos2αþ Izysin2α

Iu þ IV ¼ Iz þ Iy

Iuv ¼
ð
A
uvð ÞdA

¼
ð
A
zcosαþ ysinαð Þ �zsinαþ cosαð ÞdA

¼
ð
A

�z2sinαcosα� yzsin2α� yzcos2α� y2sinαcosα
	 


dA

ð
A
z2dA ¼ Iy
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ð
A
yz2dA ¼ Iz

ð
A
yz2dA ¼ Iyz

Using the above relationship,

Iuv ¼ �Iysinαcosαþ Izsinαcosαþ Iyz cosα2 � sinα2
	 


Iuv ¼ Iz þ Iy
2

sin2αþ Iyzcos2α

for u,v being the principal axes of inertia,

Iuv ¼ 0

Iuv ¼ Iz þ Iysin2α
2

þ Iyzcos2α ¼ 0

tan 2αð Þ ¼ � 2Iyz
Iz � Iy

Step 2: To determine the bending stress at any point in the cross section

The moment about the principal axes are given as

Mu ¼ Mzcoxα

Mv ¼ Mzsinα
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Stress at any point p(u,v),

Mu

Iv
vð Þ � compressive stress

Mu

Iv
uð Þ � tensile stress

Consider the following tensile stress:

σp ¼ Mu

Iu
vþMv

Iu
u

¼ � Mu

Iu
vþMv

Iu
u

� �

Negative sign indicates compressive stress.
The nature of the resultant bending stress will always depend upon the

quadrant in which it lies. So that the signs of u and v have to be taken into
account while determining the resultant stress. It is also to be noted that the
maximum stress will occur at a point which is at the greatest distance from
the neutral axis. On one side of the neutral axis, all the points will carry the
stresses of the same nature and opposite nature on the other side.

Exercise problems

Example 1
Find the stresses on the simply supported beam shown in the figure.
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�y ¼
P

ayP
a

�y ¼ 60� 10� 5ð Þ þ 70� 10� 45ð Þ
60� 10ð Þ þ 70� 10ð Þ ¼ 26:54 mm

IY ¼ 10� 603

12
þ 70� 103

12

¼ 1:858� 105mm4

IZ ¼ 60� 103

12
þ 60� 10� 21:54ð Þ2 þ 10� 703

12
þ 70� 10� 18:46ð Þ2

¼ 8:0078� 105mm4

Moment about Z-axis = load × perpendicular distance = 50 × 3/4 = 37.5 kNm.

MATLAB® Code

%% INPUT
% calculate the values of moment of inertia of the section in mm^4
Iy = 1.858e5;
Iz = 8.877e5;
Mz = 37.5; % Moment about Z axis in kNm
ybar = 26.54; % location of centroidal axis in mm
zbar = 0;
te = 60; %angle of inclination of load

%% Principal axis location
Iu = Iz;
Iv = Iy;

%% Stress calculation
Mu = Mz*cosd(te);Mv = -Mz*sind(te);

% calculation for point A
ua = 30;
va = 26.54;
sa = -(Mu*(10^6)*va/Iu)+(Mv*(10^6)*ua/Iv);

% calculation for point B
ub = 5;
vb = -53.46;
sb = -(Mu*(10^6)*vb/Iu)+(Mv*(10^6)*ub/Iv);

fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n \n',sb);
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Output:
Stress at point A = -5804.27 N/mm^2
Stress at point B = 255.23 N/mm^2

Example 2
A purlin of a roof truss ISLC 125 is placed at an angle of 45°. Purlins are
placed at 500 mm c/c along the principal rafter within 3.0 m spacing. Assume
the purlin will act as a simply supported beam with the uniformly distributed
load. Find the maximum stresses at A and B due to the self-weight of the
member. Dead load in the member is 2 kN/m2.

Load from purlin =
1:5� 2ð Þ þ ð10:7� 10Þ

1000
3

¼ 1:107 kN=m

Moment ¼ wl2

8
¼ 1:107þ 3ð Þ2

8
¼ 1:245 kNm

α ¼ 45�

MU ¼ MZ cos α ¼ 0:88 kNm

MV ¼ �MZ sin α ¼ �0:88 kNm

For ISLC 125,
IU ¼ IZ ¼ 356:8� 104 mm4

IV ¼ IY ¼ 57:2� 104 mm4
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Point A: (44.6 mm, 62.5 mm)
Point B: (–20.4 mm, –162.5 mm)

MATLAB® Code

%% Unsymmetrical bending - Channel section
clc;
clear;

%% INPUT
% calculate the values of moment of inertia of the section in mm^4
Iy = 57.2e4;
Iz = 356.8e4;
Mz = 1.245; % Moment about Z axis in kNm
ybar = 62.5; % location of centroidal axis in mm
zbar = 20.4;
te = 45; %angle of inclination of load

%% Principal axis location
Iu = Iz;
Iv = Iy;

%% Stress calculation
Mu = Mz*cosd(te);
Mv = -Mz*sind(te);

% calculation for point A
ua = 44.6;
va = 62.5;
sa = -(Mu*(10^6)*va/Iu)+(Mv*(10^6)*ua/Iv);

% calculation for point B
ub = -20.4;
vb = -62.5;
sb = -(Mu*(10^6)*vb/Iu)+(Mv*(10^6)*ub/Iv);

fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n \n',sb);

Output:
Stress at point A = -84.06 N/mm^2
Stress at point B = 46.82 N/mm^2

Example 3
Consider a simply supported beam of length 3.0 m with a uniformly distributed
load of 10 kN/m. The beam has a rectangular cross section of 100 mm × 150 mm.
The applied load makes an angle 30° with the vertical plane. Calculate the stresses
at points A (top right corner of the section) and B (bottom left corner of the sec-
tion). Also locate the neutral axis of the section.
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Moment ¼ wl2

8
¼ 10þ 3ð Þ2

8
¼ 11:25 kNm

α ¼ 30�

MU ¼ MZ cos α ¼ 27:735 kNm

MV ¼ �MZ sin α ¼ �41:6 kNm

Point A: (50 mm, 75 mm)
Point B: (–50 mm, –75 mm)

MATLAB® Code:

%% Unsymmetrical bending - Rectangular section
clc;
clear;

%% INPUT
% calculate the values of moment of inertia of the section in mm^4
Iy = 2.813e7;
Iz = 1.25e7;
Mz = 11.25; % Moment about Z axis in kNm
te = 30; %angle of inclination of load

%% Principal axis location
Iu = Iz;
Iv = Iy;

%% Stress calculation
Mu = Mz*cosd(te);
Mv = -Mz*sind(te);

% calculation for point A - on flange top
ua = 50;
va = 75;
sa = -(Mu*(10^6)*va/Iu)+(Mv*(10^6)*ua/Iv);

% calculation for point B - on web bottom
ub = -50;
vb = -75;
sb = -(Mu*(10^6)*vb/Iu)+(Mv*(10^6)*ub/Iv);

fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n \n',sb);

% location of neutral axis
vbyu=Iu*Mv/(Iv*Mu);
be=atand(vbyu);
fprintf('Beta = %6.2f degrees \n',be);

24 Advanced Steel Design of Structures



Output:
Stress at point A = -68.45 N/mm^2
Stress at point B = 68.45 N/mm^2
Beta = -14.39 degrees

Location of neutral axis:

σX ¼ � MU

IU
v�MV

IV
u

� �

To locate the neutral axis, substituting σX= 0,

v
u
¼ tan β

where β is the inclination between the neutral axis and U.

β ¼ �14:39�

Example 4
A simply supported beam of section 190 mm × 50 mm has a span of 3.0 m. It
rests on the support such that 190 mm face makes an angle of 45° with the
horizontal. It carries a load of 100 kN at the mid-span. Find the stresses at
points A and B. Also locate the neutral axis of the section.

IY ¼ 50� 1903

12
¼ 2:858� 107 mm4

IZ ¼ 190� 503

12
¼ 0:198� 107 mm4
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Mz ¼ wl
4

¼ 75 kNm

θ ¼ 45�

Point A: (95 mm, 25 mm)
Point B: (–95 mm, –25 mm)

MATLAB® Code

%% Unsymmetrical bending - Rectangular section
clc;
clear;

%% INPUT
% calculate the values of moment of inertia of the section in mm^4
Iy = 2.858e7;
Iz = 0.198e7;
Mz = 75; % Moment about Z axis in kNm
te = 45; %angle of inclination of load

%% Principal axis location
Iu = Iz;
Iv = Iy;

%% Stress calculation
Mu = Mz*cosd(te);
Mv = -Mz*sind(te);

% calculation for point A - on flange top
ua = 95;
va = 25;
sa = -(Mu*(10^6)*va/Iu)+(Mv*(10^6)*ua/Iv);

% calculation for point B - on web bottom
ub = -95;
vb = -25;
sb = -(Mu*(10^6)*vb/Iu)+(Mv*(10^6)*ub/Iv);

fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n \n',sb);

% location of neutral axis
vbyu=Iu*Mv/(Iv*Mu);
be=atand(vbyu);
fprintf('Beta = %6.2f degrees \n',be);

Output:
Stress at point A = -845.89 N/mm^2
Stress at point B = 845.89 N/mm^2
Beta = -3.96 degrees
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Example 5
Consider a cantilever beam with two concentrated loads of 10 kN and 7 kN
at 2.0 m and 3.0 m from the left end, acting at 30° and 45°, respectively, at
the centroid of the T section. Find the stresses at points A, B, C and D.

�y ¼
P

ayP
a

�y ¼ 100� 20� 10ð Þ þ 80� 20� 60ð Þ
100� 20ð Þ þ 80� 20ð Þ ¼ 38:89 mm

IY ¼ 20� 1003

12
þ 80� 203

12
¼ 1:72� 106 mm4

IZ ¼ 100� 203

12
þ 10� 20� 28:89ð Þ2 þ 20� 803

12
þ 80� 20� 60� 38:89ð Þ2

¼ 1:832� 107 mm4

MU ¼ MZ cos α

MU ¼ 10� 2� sin 30ð Þ þ 7� 3� cos 45ð Þ½ � ¼ 32:17 kNm
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MV ¼ �MZ sin α

MV ¼ � 10� 2� sin 30ð Þ þ 7� 3� cos 45ð Þ½ � ¼ �24:85 kNm

Point A: (50 mm, 38.80 mm)
Point B: (–50 mm, 38.80 mm)
Point C: (–10 mm, –61.11 mm)
Point D: (10 mm, –61.11 mm)

MATLAB® Code

%% Unsymmetrical bending - T section
clc;
clear;

%% INPUT
% calculate the values of moment of inertia of the section in mm^4
Iy = 1.72e6;
Iz = 8.877e5;
Mz = 37.5; % Moment about Z axis in kNm
ybar = 38.89; % location of centroidal axis in mm
zbar = 0;
te = 60; %angle of inclination of load

%% Principal axis location
Iu = Iz;
Iv = Iy;

%% Stress calculation
Mu = 32.17; % in kNm
Mv = 24.85;

% calculation for point A - on flange top right
ua = 50;
va = 38.89;
sa = -(Mu*(10^6)*va/Iu)+(Mv*(10^6)*ua/Iv);

% calculation for point B - on flange top left
ub = -50;
vb = 38.89;
sb = -(Mu*(10^6)*vb/Iu)+(Mv*(10^6)*ub/Iv);

% calculation for point C - on web bottom left
uc = -10;
vc = 61.11;
sc = -(Mu*(10^6)*vc/Iu)+(Mv*(10^6)*uc/Iv);

% calculation for point D - on web bottom right
ud = 10;
vd = -61.11;
sd = -(Mu*(10^6)*vd/Iu)+(Mv*(10^6)*ud/Iv);
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fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n',sb);
fprintf('Stress at point C = %6.2f N/mm^2 \n',sc);
fprintf('Stress at point D = %6.2f N/mm^2 \n',sd);

Output:
Stress at point A = -686.98 N/mm^2
Stress at point B = -2131.75 N/mm^2
Stress at point C = -2359.09 N/mm^2
Stress at point D = 2359.09 N/mm^2

Example 6:
Find the stresses at points A and B for the following.

IY ¼ 50� 1003

12
þ 100� 15� 42:52
	 
� �

� 2
� �

þ 170� 153

12

¼ 7:97� 106 mm4

IZ ¼ 100� 153

12
þ 100� 15� 92:5ð Þ2

� �
� 2

� �
þ 15� 1703

12

¼ 3:187� 107 mm4

Introduction 29



IYZ ¼
ð
zy dA

¼ 100� 15� 42:5� 92:5ð Þ½ � þ 100� 15� �42:5ð Þ � �92:5ð Þ½ �
¼ 1:179� 107 mm4

Moment about Z-axis = load × perpendicular distance = 20 × 4 = 80 kNm.

MATLAB® Code

%% Unsymmetrical bending - Z section
clc;
clear;

%% INPUT
% calculate the values of moment of inertia of the section in mm^4
Iy = 7.97e6;
Iz = 3.187e7;
Iyz = 1.179e7;
Iuv = 0;
Mz = -80; % Moment about Z axis in kNm

%% Principal axis location
tt = (-2*Iyz)/(Iz-Iy);
al = (atand(tt)+180)/2;
Iu = ((Iy+Iz)/2)+(((Iz-Iy)*cosd(2*al))/2)-(Iy*sind(2*al));
Iv = (Iz+Iy)-Iu;

%% Stress calculation
Mu = Mz*cos(al);
Mv = -Mz*sin(al);
ra = Mv*Iu/(Mu*Iv);
be = atand(ra);

% calculation for point A - on flange top
ya = 92.5;
za = 100;
ua = (za*cos(al))+(ya*sin(al));
va = -(za*sin(al))+(ya*cos(al));
sa = -(Mu*(10^6)*va/Iu)+(Mv*(10^6)*ua/Iv);

% calculation for point B - on web bottom
yb = -92.5;
zb = -100;
ub = (zb*cos(al))+(yb*sin(al));
vb = -(zb*sin(al))+(yb*cos(al));
sb = -(Mu*(10^6)*vb/Iu)+(Mv*(10^6)*ub/Iv);

fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n \n',sb);
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Output:
Stress at point A = 407.93 N/mm^2
Stress at point B = -407.93 N/mm^2

Example 7
For a beam cross section shown in the figure, locate the point of the neutral
axis and maximum stresses at points A and B, under the action of the external
moment of 1 MNm.

�x ¼
P

axP
a

�x ¼ 90� 100� 450ð Þ � 2þ 390� 10� 300ð Þ
90� 10ð Þ � 2þ 390� 10ð Þ ¼ 123:28 mm

IY ¼ 10� 9003

12
þ 900� 10� h450� 423:28i2
� �� �

� 2
� �

þ 390� 103

12
þ 390� 10� 123:282
	 


¼ 1:287� 109 mm4

IZ ¼ 900� 103

12
þ 900� 10� 200ð Þ2

� �
� 2

� �
þ 10� 3903

12

¼ 7:696� 108 mm4

Point A: (–476.72 mm, 205 mm)
Point B: (423.28 mm, –205 mm)
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MATLAB® Code

%% Unsymmetrical bending - Rectangular section
clc;
clear;

%% INPUT
% calculate the values of moment of inertia of the section in mm^4
Iy = 1.287e9;
Iz = 7.696e8;
Mz = 1000; % Moment about Z axis in kNm
te = 30; %angle of inclination of load

%% Principal axis location
Iu = Iz;
Iv = Iy;

%% Stress calculation
Mu = Mz*cosd(te);
Mv = -Mz*sind(te);

% calculation for point A - on flange top
ua = -476.72;
va = 205;
sa = -(Mu*(10^6)*va/Iu)+(Mv*(10^6)*ua/Iv);

% calculation for point B - on web bottom
ub = 423.28;
vb = -205;
sb = -(Mu*(10^6)*vb/Iu)+(Mv*(10^6)*ub/Iv);

fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n \n',sb);

% location of neutral axis
vbyu=Iu*Mv/(Iv*Mu);
be=atand(vbyu);
fprintf('Beta = %6.2f degrees \n',be);

Output:
Stress at point A = -45.48 N/mm^2
Stress at point B = 66.24 N/mm^2
Beta = -19.05 degrees

1.6 CURVED BEAMS

The curved beams are classified based on the initial curvature into:

i. Beams with small initial curvature
The ratio of the initial radius of curvature and the depth of the sec-
tion is greater than 10.
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ii. Beams with large initial curvature
The ratio of the initial radius of curvature and the depth of the sec-
tion is less than or equal to 10.

1.6.1 BENDING OF CURVED BEAMS WITH SMALL INITIAL CURVATURE

Let,
dφ′ be the angle subtended after deformation.
R be the initial radius of curvature.
dφ be the angle subtended at the center of curvature by the portion ‘abcd.’
R′ be the radius of curvature after moment M is applied.
If R′ < R, then the applied moment will tend to close the curvature. Let us

consider a fiber PQ at a distance y from the neutral axis.
Then,
The original length of the fiber = (R + y) dφ
Length of the fiber after application of the moment = (R′ + y) dφ′
Change in length of the fiber = (R′ + y) dφ′ – (R + y) dφ

Strain, 2¼ R0yð Þd’0 Rþ yð Þd’
Rþ yð Þd’

As the length of the fiber at the neutral axis remains unchanged,

ds ¼ Rd’ ¼ R0d’0

Substituting the above equation in the strain equation,

ε ¼ y d’0 � d’ð Þ
Rþ yð Þd’

In the above equation, y may be neglected, since y ≪ R.
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Hence,

ε ¼ y d’0 � d’ð Þ
Rd’

On simplification,
ε ¼ yd’0

Rd’
� yd’
Rd’

¼ y
d’0

ds
� d’

ds

� �

ε ¼ y
1
R0 �

1
R

� �

Substituting ε ¼ σ=E,

y
1
R0 �

1
R

� �
¼ σ

E

σ
y
¼ E

1
R0 �

1
R

� �

The assumptions made in deriving the equation are as follows:

i. Every cross section of the curved beam remains plane and perpen-
dicular to the centroidal axis, before and after the application of the
external moment.

ii. To satisfy the above condition, it is to be agreed that the net force
acting on any cross section of the curved beam should be zero. If the
net force is not equal to zero, then it may result in warping.

Mathematically, ð
A
σdA ¼ 0

ð
Ey

1
R0 �

1
R

� �
dA ¼ 0

E
1
R0 �

1
R

� � ð
ydA ¼ 0

Since E ð1=R0Þ � ð1=RÞð Þ ≠ 0Ð
ydA ¼ 0 which implies that the geometric axis of the curved beam should

coincide with the neutral axis of the curved beam. As the curved beam is in
equilibrium condition under the applied moment, it can be stated thatð

σydA ¼M
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Substituting for σ in the above equation,

E
1
R0 �

1
R

� � ð
y2dA ¼ M

Since
Ð
y2dA ¼ I,

E
1
R0 �

1
R

� �
I ¼ M

Thus,

M
I

¼ σ
y
¼ E

1
R0 �

1
R

� �

1.6.2 DEFLECTION OF THE CURVED BEAM WITH SMALL INITIAL CURVATURE

For deriving the deflection of the curved beam, the Castigliano’s theorem is
used. The strain energy of the curved beam is given as

U ¼
ð
1
2
MΔd’0

where dφ′ is the change in the angle produced by the moment M at the center
of curvature.

From the following equation,

M
I

¼ E
1
R0 �

1
R

� �

Multiplying ds on both the sides of the equation,

M
I
ds ¼ E

1
R0 �

1
R

� �
ds

Since the length of the fiber remains unchanged,

ds ¼ Rd’ ¼ R0d’0

M
I
ds ¼ E d’� d’0ð Þds

M
EI

ds ¼ Δd’
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Thus, the strain of the curved beam is given as

U ¼
ð
1
2
M2ds
EI

By partially differentiating U with respect to p,

Δ ¼ ∂U
∂p

¼
ð
M
EI

∂M
∂p

ds

Similarly, the angular rotation may be obtained by partially differentiating U
with respect to the angular momentum Mo,

θ ¼ ∂U
∂Mo

¼
ð
M
EI

∂M
∂Mo

ds

1.6.3 CURVED BEAM WITH LARGE INITIAL CURVATURE

Consider a strip in the cross section of the curved beam, the concave side is
called intrados, and the convex side is called extrados. The important points
to be noted are:

i. Stress variation is nonlinear across the cross section; it is hyperbolic.
Experimental studies showed that stress on the concave side is large
than that of the convex side.

ii. Neutral axis will shift toward the center of curvature.
iii. Neutral axis will not pass through the centroid of the cross section

since, σconcaveside ≠ σconvexside

Let us consider a curved beam with radius, R. It is subjected to a moment,
M, which tends to decrease the radius of curvature. The cross-section details
are shown in the above figure. It causes tension in the extrados compression
in the intrados.

Consider an element ABDC, subtending an angle d’ð Þ at the center. Under
the applied moment, M, this element deforms to AB D0C0 for curvature. It is
assumed that AB is fixed and only plane CD rotates and thus face CD rotates
to C0D0 subtending an angle Δd’.

Initial lengths of the fiber PQ at distance y from the centroidal axis is given as

Rþ yð Þd’

Change in length of the fiber on the application of the moment, M, is
given as

yþ eð ÞΔd’

36 Advanced Steel Design of Structures



where
e is the distance of the neutral axis measured from the centroidal axis
M is applied in such a manner that the neutral axis is shifted towards the

center of curvature

Strain;2 ¼ yþ eð ÞΔd’
Rþ yð Þd’

Assuming that the longitudinal fibers do not undergo any deformation, stress
is given as

σ ¼ E
yþ e
Rþ y

� �

It shows that the stress distribution is nonlinear and hyperbolic.
The basic assumption made is that every section normal to the centroid

axis remains plane and perpendicular, before and after application of
moment M.

total compressive force = total tensile force
Since the average stress on the concave side is more than the convex side,

the neutral axis will shift toward the center of curvature.
Equate the sum of internal forces to zero at the cross section.
Mathematically, ð

A
σdA ¼ 0
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Substituting the expression for stress, we getð
A
E
Ad’
d’

yþ e
yþ R

� �
dA ¼ 0

E
Δd’
d’

ð
A

yþ e
yþ R

� �
dA ¼ 0

Since E Δd’
d’ ≠ 0 and it is a constant,

ð
A

yþ e
yþ R

� �
dA ¼ 0

ð
A

y
Rþ y

� �
dAþ e

ð
A

1
yþ R

� �
dA ¼ 0

We know that the first integral term,
Ð
A

y
Rþy dA ¼ mA, where m is a constant

depending on the geometry of the X section. The quantity mA is termed as
the modified area of the cross section which is modified due to the application
of moment, M.

The second integral term is e
Ð
A

1
Rþyð Þ dA

e
ð
A

1
Rþ yð Þ dA ¼ e

ð
Rþ y� y

R
:

1
Rþ yð Þ dA

¼ e
R

ð
A

Rþ y
Rþ y

dA�
ð
A

ydA
Rþ y

¼ eA
R

� e
R

mAð Þ

Thus,
mAþ eA

R
� emA

R
¼ 0

mþ e
R
� em

R
¼ 0

m ¼ e
m
R
� 1
R

� �

m ¼ e
R

m� 1ð Þ

e ¼ m
m� 1

� �
R

where m is the geometry property of the section.
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It is to be noted that the applied moment in the cross section should be
equal to the resisting moment for any equation.

Hence, by applying the following condition:ð
A
σdAð Þy ¼ M

Substitution for stress,
Ð
A

y2þye
Rþy dA is to be evaluated.

ð
A

y2dA
Rþ y

þ e
ð
A

y
yþ R

dA ¼
ð
A

y� Ry
Rþ y

� �
dAþ e

ð
A

y
yþ R

dA

We know that ð
A
ydA ¼ 0

Hence, ð
A

y2 þ ye
Rþ y

� �
dA ¼ �R

ð
A

y
Rþ y

� �
dAþ e

ð
A

ydA
Rþ y

¼ �R mAð Þ þ emA ¼ �mA R� eð Þ

�E
Δd’
d’

� �
¼ M

mA R� eð Þ

Since, m ¼ e
R�e

E
Δd’
d’

¼ M
Ae

On simplification,
e ¼ M

Ae
yþ e
Rþ y

� �

It is also known that,

σ ¼ M
m� 1ð ÞR

σ ¼ M
AR

m� 1ð Þ
m

yþ m
m�1

	 

R

Rþ y

� �
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¼ m
AR

m� 1ð Þ
m

m� 1ð ÞyþmR
m� 1ð Þ Rþ yð Þ

� �

σ ¼ M
AR

1
m

m yþ Rð Þ � y
yþ R

� �

σ ¼ M
AR

1� 1
m

y
Rþ y

� �� �

The above equation named as Winkler Bach equation, in which
σ is the tensile/compressive stress at distance y from the centroidal axis (not

from the NA),
M is the applied moment (causing a decrease in curvature),
A area of cross section,
m is the section properties (geometry/shape of the cross section),
R is the radius of curvature of the unstressed curved beam.

Sign convention
y is negative when measured toward the concave side and positive when meas-
ured toward the convex side. With the sign convention, negative stress indi-
cates compressive stress, and positive stress indicates tensile stress.

In the plastic design to enable maximum load capacity, designers use sec-
tions with large shape factors

σ ¼ M
Ae

yþ e
yþ R

� �� �

where e is the offset of the neutral axis from the center of gravity measured
toward the center of curvature. Specific stress equations for intrados and
extrados to be used to find the maximum stress are the extreme fibers as
follows:

σintrados ¼ M
Ae

�hi þ e
R� hi

� �
¼ �M

Ae
hi þ e
ri

� �

σextrados ¼ M
Ae

ho þ e
Rþ ho

� �
¼ M

Ae
eþ hoð Þ
ro

� �

From the above equations, it is clear that stress is a function of the parameter
‘m’. We already know that

mA ¼
ð
A

y
Rþ y

dA
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1.6.4 SIMPLIFIED EQUATIONS TO ESTIMATE STRESSES IN THE EXTREME FIBER

σ ¼ K
Mh
I

where K is a factor to be used for intrados and extrados as below:

Kintrados ¼
M
Mh

hi � eð Þ
ri

Mhi
2I

Kextrados ¼
ho þ e
r0

Mh0
2I

ki and k0 are called stress correction factors as given in the following table:

EXERCISE PROBLEMS

Example 1
Consider an open section, comprising of 100 MN load as shown in the figure.
Compute the stresses at points A and B in the curved beam.

Cross section R/h Factors e

Ki Ko

Circular 1.2 3.41 0.54 0.224R

1.4 2.40 0.60 0.151R

1.6 1.96 0.65 0.108R

1.8 1.75 0.68 0.084R

2.0 1.62 0.71 0.009R

3.0 1.33 0.79 0.030R

4.0 1.23 0.84 0.016R

6.0 1.14 0.89 0.007R

Rectangular 1.2 2.89 0.57 0.305R

1.4 2.13 0.63 0.204R

1.6 1.79 0.67 0.149R

1.8 1.63 0.70 0.112R

2.0 1.52 0.73 0.090R

3.0 1.30 0.81 0.041R

4.0 1.20 0.85 0.021R

6.0 1.12 0.90 0.0093R

Introduction 41



MATLAB® Code

% Curved beam - T section
clc;
clear;

%% INPUT
p=100; % load acting on the beam in kN
%Geometric properties
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r1=100;
r2=120;
r3=270;
r=157.22;
h1=112.78;
h2=57.22;
h3=37.22;
b1=120;
b2=20;
a= 5400;% cross sectional area in mm^2
m=1-(r/a)*((b1*log(r2/r1))+(b2*log(r3/r2))); % sectional prop-
erty (no unit)
e=m*r/(m-1); % eccentricity in mm

%% Section AB on the centroidal axis
sd=-p*1000/a; % direct stress in N/mm^2
M=p*r/1000; % moment at CG in kNm
si=-(M*1000000*(h2-e)/(a*e*r1)); % stress at intrados in N/mm^2
so=(M*1000000*(h1+e)/(a*e*r3)); % stress at extrados in N/mm^2
sa=sd+si; % total stress at intrados
sb=sd+so; % total stress at extrados
fprintf('SOLUTION: \n');
fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n',sb);

Output:
Stress at point A = -97.04 N/mm^2
Stress at point B = 70.84 N/mm^2

Example 2
A circular ring of the rectangular cross section has a horizontal slit as shown
in the figure. Find the stresses at A and B.

MATLAB® Code

% Curved beam with a trapezoidal cross section
clc;
clear;

%% INPUT
h=100; % height of the seciton in mm
b1=80; % breadth of the section in mm
b2=30;
r1=150; % inner radius of the beam in mm
p=5; % load action on the beam in kN

%% Geometric properties
b3=(b1-b2)/2;
x=((2*h*b3/3)+(b2*h))/(b1+b2); % Location of neutral axis
hi=x;
ho=h-x;
R=r1+x; % radius of the curved beam in mm
r2=r1+h; % outer radius of the curved beam in mm
a=(b1+b2)*h/2; % cross sectional area in mm^2
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m=1-((R/a)*((b2+((r2*(b1-b2))/(r2-r1)))*log(r2/r1)-(b1-b2))); %
sectional property
e=m*R/(m-1); % eccentricity in mm
I=(2*(((b3*(h)^3)/36)+(0.5*b3*h*((h/3)-x)*((h/3)-x))))+(((b2*(h)
^3)/12)+(b2*h*((h/2)-x)*((h/2)-x))); % moment of inertia in mm^2

%% Section AB on the centroidal axis
sd=-p*1000/a; % direct stress in N/mm^2
M=p*R/1000; % moment at CG in kNm
si=-(M*1000000*(hi-e)/(a*e*r1)); % stress at intrados in N/mm^2
so=(M*1000000*(ho+e)/(a*e*r2)); % stress at extrados in N/mm^2
sa=sd+si; % total stress at intrados
sb=sd+so; % total stress at extrados
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fprintf('SOLUTION: \n');
fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n',sb);

Output:
SOLUTION:
Stress at point A = -12.35 N/mm^2
Stress at point B = 10.05 N/mm^2

Example 3
Find the stresses developed at points A and B of the curved beam with a cir-
cular cross-section shown in the figure.
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MATLAB® Code

% Crane hook problem with Circular cross-section
clc;
clear;

%% INPUT

r1=80; % inner radius of the beam in mm
d=80; % diameter of the section in mm
p=7; % load action on the beam in kN

%% Geometric properties
x=d/2; % Location of neutral axis
hi=x;
ho=d-x;
R=r1+x; % radius of the curved beam in mm
r2=r1+d; % outer radius of the curved beam in mm
a=3.14*d*d/4; % cross sectional area in mm^2
m=1-(2*((R/d)^2))+(2*(R/d)*sqrt(((R/d)^2)-1)); % sectional
property
e=m*R/(m-1); % eccentricity in mm

%% Section AB - stress calculation - Winkler Bach equation
sd=p*1000/a; % direct stress in N/mm^2
M=-p*R/1000; % moment at CG in kNm
ri=r1;
ro=r2;
si=-M*1000000*(hi-e)/(a*e*ri); % Stress at intrados
so=M*1000000*(ho+e)/(a*e*ro); % stress at extrados
sa=sd+si; % total stress in intrados
sb=sd+so; % total stress at extrados
fprintf('SOLUTION FROM WINKLER BACH EQUATION: \n');
fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n \n',sb);

Output:
SOLUTION FROM WINKLER BACH EQUATION:
Stress at point A = 4.77 N/mm^2
Stress at point B = -2.39 N/mm^2

Example 4:
Find the stresses at point A and B of the crane hook of the trapezoidal cross-
section under the action of 70 kN load as shown in the figure.

MATLAB® Code

% Crane hook problem with a trapezoidal cross section
clc;
clear;

%% INPUT
h=120; % height of the seciton in mm
b1=100; % breadth of the section in mm
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b2=40;
r1=70; % inner radius of the beam in mm
p=70; % load action on the beam in kN

%% Geometric properties
b3=(b1-b2)/2;
x=((2*h*b3/3)+(b2*h))/(b1+b2); % Location of neutral axis
hi=x;
ho=h-x;
R=r1+x; % radius of the curved beam in mm
r2=r1+h; % outer radius of the curved beam in mm
a=(b1+b2)*h/2; % cross sectional area in mm^2
m=1-((R/a)*((b2+((r2*(b1-b2))/(r2-r1)))*log(r2/r1)-(b1-b2))); %
sectional property
e=m*R/(m-1); % eccentricity in mm
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I=(2*(((b3*(h)^3)/36)+(0.5*b3*h*((h/3)-x)*((h/3)-x))))+(((b2*(h)
^3)/12)+(b2*h*((h/2)-x)*((h/2)-x))); % moment of inertia in mm^2

%% Section AB - stress calculation - Winkler Bach equation
sd=p*1000/a; % direct stress in N/mm^2
M=-p*(R+50)/1000; % moment at CG in kNm
ri=r1;
ro=r2;
si=-M*1000000*(hi-e)/(a*e*ri); % Stress at intrados
so=M*1000000*(ho+e)/(a*e*ro); % stress at extrados
sa=sd+si; % total stress in intrados
sb=sd+so; % total stress at extrados
fprintf('SOLUTION FROM WINKLER BACH EQUATION: \n');
fprintf('Stress at point A = %6.2f N/mm^2 \n',sa);
fprintf('Stress at point B = %6.2f N/mm^2 \n \n',sb);

Output:
SOLUTION FROM WINKLER BACH EQUATION:
Stress at point A = 102.87 N/mm^2
Stress at point B = -55.65 N/mm^2
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2 Plastic Design of
Structures

2.1 PLASTIC BEHAVIOR OF STRUCTURES

Ultimate Limit State design deals with the collapse modes, which converts the
structure into a mechanism. The formation of mechanism enables excessive
yielding which finally leads to collapse. Steel is common construction material
for the land-based and offshore structure. From the stress–strain curve of steel,
it is evident that the material has got very good capacity beyond the first yield
which is not used in the elastic design of structures. This material strength
beyond yield value, which is not utilized in the elastic design principle, is effect-
ively utilized in the plastic design of structures. This excessive material strength
beyond the yield value is called reserve strength. The load carrying capacity of
the structure can be increased by using the reserve strength of the material.
However, this also promotes large permanent plastic deformation in the struc-
ture under excessive loading. Hence, it is mandatory to check the structure for
both loads carrying capacity and ductility (API, 2000). As the reserve strength is
also used in the plastic design of structures, the failure occurs by two modes by
the load acting on the structure exceeding the maximum load carrying capacity
and the strain developed in the structure reaching the ultimate strain. The failure
under this case is catastrophic and instantaneous.

The yield stress of the material is not the deciding factor concerning the failure
of the structure. An important factor that governs the behavior of the material is
residual stress. It is to be noted that the first yield generally occurs due to the
presence of the residual stresses and imperfections in the material developed
during fabrication. The residual stress essentially develops from the welding pro-
cess; flame cuttings used to create openings and hot rolling. These stresses are
essentially tensile. It can be eliminated by preheating before welding, postheating
after welding and peening and hammering of welds to elongate, which reduce the
tensile stresses in the weld. The residual stresses are responsible for the following
change in material behavior:

• brittle fracture failure,
• stress corrosion,
• buckling strength reduction,
• inelastic behavior in metals.

As the development of residual stresses in the material is unavoidable, the yield
stress governs the elastic design of structures is not correct. As the residual
stresses also induce inelastic behavior in the material, the designers shifted from
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elastic design to ultimate load design. The most advantageous factor of steel is its
ductility, which is the sign to use the reserve strength more confidently. The ductility
of the material enables the redistribution of the moment from the high stresses
region of the member to the adjacent location. Thus, the load carrying capacity can
be extended beyond the yield stress. It also shows that plastic design can be effect-
ively used in the design of steel structures to avoid a conservative design. The ultim-
ate load design uses the material capability to the maximum which is a positive
point in the design perspective. Failure is the major criteria based on which the
design principles are formulated. The failure can occur in a structure through differ-
ent modes such as

• instability of the structure,
• fatigue failure,
• excessive deformation,
• combination of above.

In practice, the structure may continue to carry the load beyond the first
yield, if the failure is initiated by any one of the above modes. Thus, the
design should account for the actual failure criteria which are plastic deform-
ation, through which a structure becomes a mechanism.

Consider a beam subjected to pure bending as shown in Fig. 2.1. The top
fibers will undergo contraction, and the lower fibers will undergo extension
due to the applied moment.

The stress variation along the cross section of the member is shown in Fig.
2.2. Under a purely elastic state, the stresses developed in the top and bottom
fibers will be lesser than that of the yield stress. The stresses at the extreme top
and bottom fibers will reach the yield stress at the strain hardening stage. When
the material enters into the elastoplastic region, the height of the elastic core gets
reduced with the top and bottom fibers reaching the yield stress. When the mater-
ial is fully plastic, the neutral axis will shift down to the equal area axis. The area

FIGURE 2.1 Bending of beams.
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above and below this axis is equal as shown in Fig. 2.3. Let the cross-sectional
area of the beam above and below the equal area axis be A1 and A2, respectively.
The total compressive force acts at a distance of y1 above the equal area axis, and
the total tensile force acts at a distance of y2 below the equal area axis.

The assumptions made in the plastic analysis of structures are as follows:

• Material obeys Hooke’s law until the stress reaches first yield values.
On further straining stress remains constant at yield stress.

• Upper and lower yield points in tension and compression fibers are
the same.

• Material is homogeneous, isotropic in both elastic and plastic states.
• The transverse plane section will remain plane and normal to the lon-

gitudinal axis of the member after bending.
• There is no resultant force acting on the member.
• The cross section is symmetric about an axis through which its cen-

troid passes, and it is parallel to the plane of bending.

FIGURE 2.2 Plastic deformation.

FIGURE 2.3 Force-equilibrium condition.
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• The beam is subjected to moment only, no shear force is considered.
• Every layer is free to expand and contract. It remains independent to

the adjacent layer.

In plastic design, the moment acting on the member is increased until stress in
the full cross section reaches the yield stress, and thus the entire cross section is
effectively utilized. Under the force equilibrium condition, the total compressive
force and total tensile equal will be equal. At this condition, the moment acting
on the section is equal to the moment of resistance of the plastic section. Thus,

C ¼ T ð2:1Þ

From the assumptions listed above, we get:

σyA1 ¼ σyA2 ð2:2Þ

As the area of the cross section above and below the equal area axis is the
same, the area can be expressed as follows:

A1 ¼ A2 ¼ A
2

ð2:3Þ

Taking moment about the equal area axis,

M ¼ Cy1 þ Ty2 ð2:4Þ

¼ σyA1y1 þ σyA2y2 ð2:5Þ

¼ σy
A
2

y1 þ y2ð Þ ð2:6Þ

¼ σyZp ð2:7Þ

Thus,

Mp ¼ σyZp ð2:8Þ

where the plastic section modulus is given as below:

Zp ¼ A
2

y1 þ y2ð Þ ð2:9Þ

The plastic section modulus, Zp, is defined as the static moment of the cross sec-
tion above and below the equal area axis. It is also called as resisting modulus of
fully plasticized section. Therefore, the following relationship holds good:

Mp ¼ Mult ¼ σyZp ð2:10Þ
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We also know the following relationship:

Me ¼ σyZe ð2:11Þ

Consider a rectangular section in the elastoplastic region as shown in Fig. 2.4.
The section has moment carrying capacities in both elastic and plastic

regions. Let M1 be the moment capacity of the elastic section, and M2 is the
moment capacity of the plastic section.

Thus, Mtotal = M1 + M2. The moment carrying capacity of the elastic sec-
tion is given as

M1 ¼ σy
1
2
b :

e
2

� �
� 2
3
� e
2

� �
� 2 ð2:12Þ

M1 ¼ σy
be2

6
ð2:13Þ

If the section is fully plastic, then the section modulus is given as

Z1 ¼ bh
2

� �
� h

4

� �
� 2 ¼ bh2

4
ð2:14Þ

In the elastic section of the elastoplastic region, the depth of the elastic core is
‘e.’ Thus, the section modulus is given as

Z2 ¼ be
2

� �
� e

4

� �
� 2 ¼ be2

4
ð2:15Þ

FIGURE 2.4 Elastic core.
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The moment capacity of the plastic section is given by the following relationship:

M2 ¼ σy
bh2

4
� be

4

� �
ð2:16Þ

Thus, the total moment is the sum of the moments of both the elastic and
plastic sections and is given as

M ¼ M1 þM2 ¼ σy
bh2

4

� �
1� e2

3h2

� �
ð2:17Þ

For a rectangular section, we know that the plastic section modulus is given as

Zp ¼ bh2

4
ð2:18Þ

Thus, the total moment is written as follows:

M ¼ σyzp 1� e2

3h2

� �
ð2:19Þ

Thus,

M ¼ Mp 1� e2

3h2

� �
ð2:20Þ

The depth of the elastic core can be calculated from the above equation if the
moment applied to the section is known.

2.2 SHAPE FACTOR

Shape factor is the ratio of the plastic moment and the yield moment. It is
given by the following relationship:

S ¼ Mp

Me
¼ Zp

Ze
ð2:21Þ

It is a geometric property of the member and is varied with the change in the
cross section of the member. Shape factors for a few standard sections are
estimated in the following section.

2.2.1 RECTANGULAR SECTION

Consider a rectangular section of breadth ‘b’ and height ‘h’ as shown in
Fig. 2.5.
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The plastic section modulus is given as

Zp ¼ A
2

y1 þ y2ð Þ ð2:22Þ

Also, for the rectangular section, the plastic section modulus is given as

Zp ¼ bh
2

h
4
þ h
4

� �
¼ bh2

4
ð2:23Þ

The elastic section modulus is given by the following relationship:

Ze ¼ I
ymax

ð2:24Þ

For the rectangular section, the following relationship holds good:

Ze ¼ bh3

12
� 2
h
¼ bh2

6
ð2:25Þ

The ratio of the plastic section modulus to the elastic section modulus, which
is the shape factor is computed as 1.5 for rectangular section.

2.2.2 TRIANGULAR SECTION

Consider a triangle of breadth ‘b’ and height ‘h’ as shown in Fig. 2.6.

Moment of inertia of the section is, I ¼ bh3

36
and ymax ¼ y1

Thus, the elastic section modulus is given as

Ze ¼ I
ymax

¼ bh2

24
ð2:26Þ

Consider the triangular section in the fully plastic state as shown in Fig. 2.7.

b1
b
¼ h1

h
) b1 ¼ b� h1

h
ð2:27Þ

FIGURE 2.5 Rectangular section.
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As the areas above and below the axis are equal, we get the following relationship:

A1 ¼ A
2

ð2:28Þ

Thus,
1
2
� b1h1 ¼ 1

4
� bh ð2:29Þ

h1 ¼ hffiffiffi
2

p ð2:30Þ
Similarly, from the geometry, the following equation holds good:

b1 ¼ bffiffiffi
2

p ð2:31Þ

FIGURE 2.6 Triangular section.

FIGURE 2.7 Fully plastic triangular section.
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The distance between the equal area axis and the centroid of the section A1 is
given by the following equation:

y1 ¼ 1
3
h1 ¼ h

3
ffiffiffi
2

p ¼ 0:236h ð2:32Þ

y2 ¼
h� hffiffi

2
p

� �
3

bffiffi
2

p þ 2b
bffiffi
2

p þ b

 !
¼ 0:155h ð2:33Þ

The plastic section modulus of the triangular section is given as follows:

Zp ¼ A
2

y1 þ y2ð Þ ¼ 0:098bh2 ð2:34Þ

Thus, the shape factor (S) is computed as 2.346.

2.2.3 CIRCULAR SECTION

Consider a circular section of radius ‘r’ as shown in Fig. 2.8.

For a circular section, A ¼ πrr; y ¼ 4r
3π

; I ¼ πd4

64
; ymax ¼ r

The plastic and elastic section modulus of the circular section is given as

Zp ¼ A
2

y1 þ y2ð Þ ¼ 4r2

3
ð2:34Þ

Ze ¼ I
ymax

¼ πr2

4
ð2:35Þ

FIGURE 2.8 Circular section.
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Thus, shape factor (S) is computed as 1.7.
The shape factors of other commonly used sections are listed in Table 2.1.

2.3 MATLAB® CODE FOR CALCULATING SHAPE FACTOR

%% This MATLAB® code is for the calculation of sectional properties
and shape factor

% Re-type the following code MATLAB® new script and run the file with
suitable inputs

clc;
clear;
sy=415; % Yield stress in N/mm2
E=2.1e5; % Young’s modulus in N/mm2
%% Shape factor
% Mention the type of section here
% Change the input values under each type
type=3;
% rectangular section - 0
% Circular solid - 1
% Tubular - 2
% Square/ rectangular hollow section - 3
if type == 0
% rectangular section
b=100; % smaller dimension of the section in mm
h=200; % larger dimension of the section in mm
a=b*h; % area of the section in mm2
ybar1=h/4;
ybar2=h/4;
I=(b*(h^3))/12;
zp=0.5*a*(ybar1+ybar2);
zy=I/(h/2);
sf=zp/zy;
fprintf (‘SECTION DETAILS:\n’);
fprintf (‘Section type: Rectangular section\n’);
fprintf (‘Smaller dimension,b = %d mm\n’,b);
fprintf (‘Larger dimension,h = %d mm\n\n’,h);
fprintf (‘SECTION PROPERTIES:\n’);
fprintf (‘Area,A = %d mm^2\n’,a);

TABLE 2.1 Shape factors
Sl. no. Cross section Shape factor

1 Tubular section (r1: outer radius, r2: inner radius) S ¼ 16r1
3π

r31�r32
r41�r42

� �
2 I-section 1.1–1.8

3 Box section (square) 1.2

4 Box section (rectangle) 1.25

5 Diamond section of four equal sides 2
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fprintf (‘Moment of Inertia, I= %d mm^4\n’,I);
fprintf (‘Shape Factor = %6.3f \n’, sf);

elseif type == 1
% circular solid
D=100; % Diamter of the section
A=pi*(D^2)/4;
r=D/2;
ybar1=4*r/(3*pi);
ybar2=ybar1;
zp=0.5*A*(ybar1+ybar2);
I=pi*(D^4)/64;
zy=I/r;
sf1=zp/zy;
fprintf (‘SECTION DETAILS:\n’);
fprintf (‘Section type: Circular section\n’);
fprintf (‘Diameter,D = %d mm\n\n’,D);
fprintf (‘SECTION PROPERTIES:\n’);
fprintf (‘Area,A = %d mm^2\n’,A);
fprintf (‘Moment of Inertia, I= %d mm^4\n’,I);
fprintf (‘Shape Factor = %6.3f \n’, sf1);

elseif type == 2
% Tubular member
D=100; % Outer diamter of the section
d=80; % Inner diameter of the section
t=(D-d)/2; % Thickness of the section
A=pi*((D^2)-(d^2))/4;
Iy=pi*((D^4)-(d^4))/64;
r1=D/2;
r2=d/2;
ybar1=(((pi*(r1^2)/2)*(4*r1/(3*pi)))-((pi*(r2^2)/2)*(4*r2/
(3*pi))))/(0.5*pi*((r1^2)-(r2^2)));

ybar2=ybar1;
zy=Iy/r1;
zp=0.5*A*(ybar1+ybar2);
sf2=zp/zy;
fprintf (‘SECTION DETAILS:\n’);
fprintf (‘Section type: Tubular section\n’);
fprintf (‘Outer Diameter,D = %d mm\n’,D);
fprintf (‘Inner Diameter,D = %d mm\n\n’,d);
fprintf (‘SECTION PROPERTIES:\n’);
fprintf (‘Area,A = %d mm^2\n’,A);
fprintf (‘Moment of Inertia, Iy= %d mm^4\n’,Iy);
fprintf (‘Shape Factor = %6.3f \n\n’, sf2);

elseif type == 3
% Hollow section
b=100; %flange width
d=80; % web depth
t=10; % thickness
b1=b-(2*t);
d1=d-(2*t);
A=2*(b+d)*t; % Area in mm2
Iy=d*d*t*((3*b)+d)/6;
Iz=b*b*t*(b+(3*d))/6;
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zy=Iy/(d/2);
ybar1= ((b*d*d/8)-(b1*d1*d1/8))/(0.5*A);
ybar2=ybar1;
zp=0.5*A*(ybar1+ybar2);
sf3=zp/zy;
fprintf (‘SECTION DETAILS:\n’);
fprintf (‘Section type: Hollow section\n’);
fprintf (‘Flange width,b = %d mm\n’,b);
fprintf (‘Web depth,d = %d mm\n’,d);
fprintf (‘Thickness,t = %d mm\n\n’,t);
fprintf (‘SECTION PROPERTIES:\n’);
fprintf (‘Area,A = %d mm^2\n’,A);
fprintf (‘Moment of Inertia, Iy= %d mm^4\n’,Iy);
fprintf (‘Moment of Inertia, Iz= %d mm^4\n’,Iz);
fprintf (‘Shape Factor = %6.3f \n\n’, sf3);

end

a) Output for rectangular section:

SECTION DETAILS:
Section type: Rectangular section
Smaller dimension, b = 100 mm
Larger dimension, h = 200 mm
SECTION PROPERTIES:
Area, A = 20000 mm^2
Moment of Inertia, I= 6.666667e+07 mm^4
Shape Factor = 1.500

b) Output for solid circular section:

SECTION DETAILS:
Section type: Circular section
Diameter, D = 100 mm
SECTION PROPERTIES:
Area, A = 7.853982e+03 mm^2
Moment of Inertia, I= 4.908739e+06 mm^4
Shape Factor = 1.698

c) Output for tubular section:

SECTION DETAILS:
Section type: Tubular section
Outer Diameter, D = 100 mm
Inner Diameter, D = 80 mm
SECTION PROPERTIES:
Area,A = 2.827433e+03 mm^2
Moment of Inertia, Iy= 2.898119e+06 mm^4
Shape Factor = 1.403

d) Output for hollow section:

SECTION DETAILS:
Section type: Hollow section
Flange width, b = 100 mm
Web depth, d = 80 mm
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Thickness, t = 10 mm
SECTION PROPERTIES:
Area,A = 3600 mm^2
Moment of Inertia, Iy= 4.053333e+06 mm^4
Moment of Inertia, Iz= 5.666667e+06 mm^4
Shape Factor = 0.868

Example 2.1:
Determine the plastic moment and plastic section modulus for the T-section
shown in Fig. 2.9. Take fy = 410 N/mm2.

Solution:
Area of the section = 100� 10ð Þ þ 150� 20ð Þ ¼ 4000 m2

Location of the equal area axis:
Consider the equal area axis is located at a distance ‘y’ from the bottom of the
section.

(20 × y) = 4000/2
y = 100 mm

The total cross section is then divided into three sections as shown in
Fig. 2.10.
Plastic section modulus, Zp = (100 × 10 × 55) + (20 × 50 × 25) + (20 × 100 × 50)

= 1.8 x 105 mm3

Plastic moment, Mp = Zp × fy
= 1.8 × 105 × 410
= 73.80 kNm

FIGURE 2.9 T-section.
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Example 2.2
Determine the plastic moment and plastic section modulus for the I-section
shown in Fig. 2.11. Take fy = 410 N/mm2.

Solution:
Area of the section = (50 × 10) + (10 × 100) + (100 × 10) = 2500 mm2

FIGURE 2.11 I-section.

FIGURE 2.10 T-section with equal area axis.

62 Advanced Steel Design of Structures



Location of the equal area axis:
Consider the equal area axis is located at a distance ‘y’ from the bottom of the
section.

(100 × 10) + (00 × y) = 2500/2
y = 25 mm

The total cross section is then divided into three sections as shown in
Fig. 2.12.
Plastic section modulus Zp = (50 × 10 × 80) + (75 × 10 × 37.5) + (25 × 10 × 12.5)

+ (100 × 10 × 17.5)
= 8.875 × 104 mm3

Plastic moment Mp = Zp × fy
= 8.875 × 104 × 410
= 36.39 kNm

2.4 MOMENT CURVATURE RELATIONSHIP

For a simple bending problem, the following equation holds good as per clas-
sical mechanics:

M
I

¼ σ
y
¼ E

R
ð2:36Þ

The curvature is given by the following relationship:

� ¼ 1
R
¼ M

EI
ð2:37Þ

FIGURE 2.12 I-section with equal area axis.
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It is seen that the curvature is directly proportional to the moment. This pro-
portionality is true only until the elastic limit. Consider a rectangular section
as shown in Fig. 2.4. In the elastic state, y = h/2.

Thus,

E
R
¼ σ

y
¼ σ

h=2ð Þ ð2:38Þ

1
R
¼ 2σy

Eh
ð2:39Þ

Under the fully plastic state, the depth of the elastic core is given by ‘e,’ which
is equal to the depth of the rectangular section ‘h.’ The curvature under this
condition is given by the following relationship:

1
R
¼ 2σy

Ee
) e ¼ 2Rσy

E
ð2:40Þ

For partially plasticized section,

�y ¼ My

EI
ð2:41Þ

�p ¼ Mp

EI
ð2:42Þ

Thus,
�p

�y
¼ Mp

My
¼ S ð2:43Þ

We know that

M ¼ Mp 1� e2

3h2

� �
ð2:44Þ

Substituting the equation for the depth of elastic core, the above equation is
simplified to the following form:

M ¼ Mp 1� 4R2σ2y
3E2h2

" #
ð2:45Þ

At yield, we know the following:

1
R
¼ 2σy

Eh
) 2σy

E
¼ h

R

� �
y

ð2:46Þ
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By substituting the above equation in the moment equation, we get:

M
Mp

¼ 1� 1
3

h=R
� �

y

h=R
� �

2
64

3
75
2

ð2:47Þ

In the plastic design of structures, the following assumptions are valid:

• The yield strength is assumed to remain constant.
• The allowable stresses are taken only as a fraction of yield strength.

The load factor, which is the ratio of collapse load and working load, is given
by the following relationship:

Q ¼ Wp

Ww
¼ Mp

Mw
ð2:48Þ

We know that
Mp

Mw
¼ Zp

Ze
� σy
σall

¼ S
σy
σall

ð2:49Þ

Thus, the load factor is given as

Q ¼ S
σy
σall

ð2:50Þ

where S is the shape factor, σy is the yield stress, σall is the allowable stress and
the ratio of yield stress to allowable stress is termed as the factor of safety. The
load factor is the product of shape factor and the factor of safety. It shows that
the safety factor in plastic design is enhanced by the shape factor.

2.5 MECHANISM

If a body is subjected to any loading, it will offer resistance which is called
an internal reaction to the applied loads. This process of offering resistance
to the applied load is called load carrying capacity. If the body is unable to
offer resistance to the applied load, then it is referred to as a mechanism.
The load at which the body stops offering resistance to the external load is
called collapse load. A structural system will become a mechanism, only
when a sufficient number of plastic hinges are formed. If the degree of inde-
terminacy of the structural system is ‘n,’ then ‘n + 1’ plastic hinges are
required to form a mechanism. The plastic hinges will form at the following
locations of the structure:

• fixed supports,
• point of action of concentrated loads,
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• the section at which the bending moment is maximum,
• the section where the moment of inertia changes.

These plastic hinges have limited rotation capacity with resistance to rotation.
The collapse load for the plastic analysis of structures can be determined from
the following theorems:

• static theorem,
• kinematic theorem,
• uniqueness theorem.

2.6 STATIC THEOREM

The static theorem is also called ‘lower bound theorem.’ The statement of this
theorem is given below.

For a given frame and loading, if there exists any bending moment distribution
throughout the frame, which is both safe and statistically admissible under a set
of loads Q, then the value of load W is less than the collapse load.

W � Wc

Thus, the collapse load determined from this theorem will be lower than or
equal to the collapse load. The steps involved in the calculation of collapse
load by using this theorem are listed as follows:

1. Draw the bending moment diagram for the given structural system.
2. Identify the sections at which the bending moment is maximum.

Such sections are called critical sections.
3. Assume the formation of the plastic hinges in the critical sections. It

is to be noted that the (n + 1) plastic hinges are required for the for-
mation of mechanism, where ‘n’ is the degree of indeterminacy.

4. Calculate the collapse load.

This method is tedious in case of the analysis of statically indeterminate struc-
tures, as it requires a bending moment diagram for identifying the critical sec-
tions. It is also prone to errors and does not guarantee a true collapse load.

2.7 KINEMATIC THEOREM

The kinematic theorem is also called ‘upper bound theorem.’ The statement
of this theorem is given below:

For a given frame and loading, a mechanism is assumed, and value of col-
lapse load is computed based on the assumed mechanism. This computed
loads will be either equal to or greater than the collapse load.’

W � Wc
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Thus, the collapse load determined from this theorem will be greater than or
equal to the collapse load. The steps involved in the calculation of collapse
load by using this theorem are listed below.

Assume a certain collapse mechanism for the given structural system.
For a complete mechanism, the number of plastic hinges should be equal
than (n + 1).

Partial mechanism: N < n + 1
Complete mechanism: N = n + 1
Overcomplete mechanism: N > n + 1

For the assumed mechanism, find the collapse load using the principle of vir-
tual work. The principle of virtual work states that ‘the work done by the
external forces during the collapse mechanism is equal to the work absorbed
by the plastic hinges.’ Mathematically, it can be written as

External work done = internal work absorbed

Pδ ¼ Mpθ

The different types of mechanisms that can be assumed for the plastic analysis
of structures using the kinematic theorem are shown in Fig. 2.13. Sometimes,
it becomes difficult to assume the mechanism, and the inappropriate selection
of a mechanism may lead to the wrong estimate of collapse loads. Thus, this
method is iterative.

FIGURE 2.13 Collapse mechanisms.
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2.8 UNIQUENESS THEOREM

The statement of uniqueness theorem is as follows:
For a given frame and loading, at least one statically admissible bending

moment distribution can be determined, if this bending moment distribution
results in a sufficient number of plastic hinges to be formed to convert the frame
into a mechanism, then the corresponding load is the collapse load. Thus,

W ¼ Wc

As this theorem uses both the bending moment diagram and the assumption
of mechanism for the estimation of collapse load, it is also called combined
theorem. The theorem can be graphically expressed as shown in Fig. 2.14.

2.9 EXERCISES TO ESTIMATES COLLAPSE LOAD

2.9.1 FIXED BEAM WITH A CENTRAL POINT LOAD

Consider a fixed beam of length ‘l’ with a concentrated load ‘W’ acting at its
center. The bending moment diagram for the fixed beam is shown in Fig. 2.15.

Using static theorem,

2Mp ¼ Wl
4

Wc ¼ 8Mp

1

FIGURE 2.14 Plastic analysis theorems.
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The degree of indeterminacy of the fixed beam is 2. Thus, (n + 1) = 3 plastic
hinges should be formed for a complete mechanism to be developed. Thus,
plastic hinges are assumed to be developed at ends A and B, and the point of
action of the load as shown in Fig. 2.16 for the estimation of collapse load by
the kinematic theorem.

External work done ¼ Wδ

Internalwork ¼ Mpðθ þ 2θ þ θÞ ¼ 4Mpθ

By the principle of virtual work,

Wδ ¼ 4Mpθ

FIGURE 2.15 Fixed beam with a central concentrated load.

FIGURE 2.16 Fixed beam mechanism.
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Substituting, θ ¼ 2δ
l

Wc ¼ 8Mp

l

2.9.2 FIXED BEAM WITH UNIFORMLY DISTRIBUTED LOAD

Consider a fixed beam of length ‘l’ with a uniform distributed load ‘w’ acting
along the length of the member. The bending moment diagram for the fixed
beam is shown in Fig. 2.17.

From the bending moment diagram,

2Mp ¼ wl2

8

wc ¼ 16Mp

l2

The degree of indeterminacy of the fixed beam is 2. Thus, (n + 1) = 3 plastic
hinges should be formed for a complete mechanism to be developed. Thus,
plastic hinges are assumed to be developed at ends A and B, and the midpoint
of the length of the member is shown in Fig. 2.18 for the estimation of collapse
load by the kinematic theorem.

External work done ¼ 1
2 � l � δ
	 


w ¼ wlδ
2

Internalwork ¼ Mpðθ þ 2θ þ θÞ ¼ 4Mpθ

By the principle of virtual work,

wlδ
2

¼ 4Mpθ

FIGURE 2.17 Fixed beam with uniformly distributed load.
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Substituting θ ¼ 2δ
l

wc ¼ 16Mp

l2

2.9.3 SIMPLY SUPPORTED BEAM WITH ECCENTRIC LOAD

Consider a simply supported beam of length ‘l’ with an eccentric load ‘W’ at
a distance ‘a’ from the left end. The bending moment diagram for the fixed
beam is shown in Fig. 2.19.

The reactions at A and B are given as RA ¼ Wa
l

;RB ¼ Wb
l

FIGURE 2.18 Fixed beam mechanism under udl.

FIGURE 2.19 Simply supported beam with eccentric load.
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Mp ¼ Wab
l

Wc ¼ Mpl
ab

¼ Mp aþ bð Þ
ab

The degree of indeterminacy of the simply supported beam is 0. Thus, (n + 1) = 1
plastic hinge should be formed for a complete mechanism to be developed.
Thus, the plastic hinge is assumed to be developed at the point of action of
the load as shown in Fig. 2.20 for the estimation of collapse load by the kine-
matic theorem.

From the assumed mechanism, θ1 ¼ δ
a
) δ ¼ aθ1

θ2 ¼ δ
b
) δ ¼ bθ2

External work done ¼ Wδ

Internalwork ¼ Mpðθ1 þ θ2Þ ¼ Mp
δ
a
þ δ
b

� �
¼ Mpδ

aþ b
ab

� �
By the principle of virtual work,

Wδ ¼ Mpδ
aþ b
ab

� �

Wc ¼ Mp aþ bð Þ
ab

FIGURE 2.20 Simply supported beam mechanism.
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2.9.4 SIMPLY SUPPORTED BEAM WITH A CENTRAL POINT LOAD

Consider a simply supported beam of length ‘l’ with an eccentric load ‘W’
acting at the center of the beam. The bending moment diagram for the fixed
beam is shown in Fig. 2.21.

The reactions at A and B are given as RA ¼ W
2
;RB ¼ W

2

Mp ¼ Wl
4

Wc ¼ 4Mp

l

The degree of indeterminacy of the simply supported beam is 0. Thus, (n + 1) = 1
plastic hinge should be formed for a complete mechanism to be developed.
Thus, the plastic hinge is assumed to be developed at the point of action of
the load as shown in Fig. 2.22 for the estimation of collapse load by the kine-
matic theorem.

From the assumed mechanism, θ1 ¼ δ
l=2

¼ 2δ
l

External work done ¼ Wδ

Internalwork ¼ Mpð2θÞ
By the principle of virtual work,

Wδ ¼ Mp
4δ
l

Wc ¼ 4Mp

l

FIGURE 2.21 Simply supported beam with a central concentrated load.
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2.10 ADVANTAGES AND DISADVANTAGES OF PLASTIC ANALYSIS

2.10.1 ADVANTAGES

1. The plastic analysis enables the effective utilization of the entire cross section
by completely plasticizing it.

2. The plastic analysis increases the load carrying capacity of the structural
system.

3. Material strength is well utilized even beyond strain at yield.
4. The factor of safety is enhanced by the shape factor.

2.10.2 DISADVANTAGES

1. The member will be subjected to excessive deformation.
2. As this method demands the redistribution of moments, it can be effectively

applied to highly indeterminate structural systems.

2.11 COMPARISON OF ELASTIC AND PLASTIC ANALYSIS

FIGURE 2.22 Simply supported beam mechanism.

Elastic analysis Plastic analysis

1. Equilibrium condition
The structure under any load combination
should remain in static equilibriumP

Fx ¼ 0;
P

Fy ¼ 0;
P

Mz ¼ 0
2. Compatibility condition
Deformation of different fibers in a given cross
section should be compatible with each other.

3. Limit stress condition
The maximum stress in any section and fiber
should not exceed the yield stress

1. Mechanism condition
Ultimate load or collapse load is reached when
a mechanism is formed, after which it initiates
redistribution of moments.
2. Equilibrium condition
The structure should remain in equilibrium under
the applied loads, even after the formation of
mechanism.
3. Plastic moment condition
In any fiber in the cross section, the developed
stress is equal to the yield stress.
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EXERCISES

Example 2.3
Find the true collapse load of the propped cantilever beam with the uniformly
distributed load as shown in Fig. 2.23 using both static and kinematic theorem.

Solution:

Degree of indeterminacy = 1
Thus, the number of plastic hinges required to form a mechanism is 2. The
hinges are assumed to form at the fixed support and the point where the
bending moment is maximum.

(i) Static theorem
The bending moment diagram of the beam is shown in Fig. 2.24. Assume
a section CC at a distance ‘x’ from the right end, where the bending moment is
maximum.

FIGURE 2.24 Bending moment diagram.

FIGURE 2.23 Propped cantilever beam with uniformly distributed load.
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Bending moment ordinate at section CC = Mp þ x
l

� �
Mp ¼ Mp

l þ x
l

� �
Bending moment at section XX is given as

Mcc ¼ wl
2

xð Þ � wx2

2
¼ wx

2
l � xð Þ

Equating the above two equations,

Mp ¼ w
2

xl
l � x
l þ x

� �� �

For the bending moment to be maximum,

dMp

dx
¼ 0

By solving the above equation, x ¼ 0:414l.
Thus, the plastic moment is given as

Mp ¼ w
2

xl
l � x
l þ x

� �� �
¼ 0:086wl2

Thus,

wc ¼ 11:66Mp

l2
or Wc ¼ 11:66Mp

l
(ii) Kinematic theorem
The plastic hinges are assumed to be developed at the fixed support and at the
point where the bending moment is maximum as shown in Fig. 2.25 for the
estimation of collapse load by the kinematic theorem.

From the assumed mechanism, θ1 ¼ δ
0:586l

θ2 ¼ δ
0:414l

External work done = wc
1
2
lδ

� �
Internal work = Mpðθ1Þ þMpðθ1 þ θ2Þ ¼ 2Mpðθ1Þ þMpðθ2Þ
By substituting the values of θ1 and θ2,

Internalwork done ¼ 5:828Mp
δ
l

� �
By the principle of virtual work,

wc ¼ 11:66Mp

l2
or Wc ¼ 11:66Mp

l
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Example 2.4
Find the true collapse load of the fixed beam with the eccentric load as shown
in Fig. 2.26 using the kinematic theorem. Also, find the magnitude of collapse
load for a concentrated load of 30 kN acting at 2.0 m from the left end of the
fixed beam of 5.0 m length.

The degree of indeterminacy of the fixed beam is 2. Thus, (n + 1) = 3 plas-
tic hinges should be formed for a complete mechanism to be developed. Thus,
plastic hinges are assumed to be developed at ends A and B, and the point of
action of the load is shown in Fig. 2.27 for the estimation of collapse load by
the kinematic theorem.

External work done ¼ Wδ

Internalwork ¼ 2Mpðθ1 þ θ2Þ
By the principle of virtual work,

Wδ ¼ 2Mpðθ1 þ θ2Þ

FIGURE 2.25 Beam mechanism.

FIGURE 2.26 Fixed beam eccentric concentrated load.
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Substituting θ1 ¼ δ
a
; θ2 ¼ δ

b

Wδ ¼ 2Mp
δ aþ bð Þ

ab

� �

Wc ¼ 2Mpl
ab

For a concentrated load of 30 kN acting at 2.0 m from the left end,
W = 20 kN, a = 2 m, b = 3 m, l = 5 m.

Wc ¼ 2Mpl
ab

Mp ¼ Wcab
2l

¼ 18 kNm

Example 2.5
Determine the plastic moment for the fixed beam shown in Fig. 2.28.

The degree of indeterminacy of the fixed beam is 2. Thus, (n + 1) = 3 plas-
tic hinges should be formed for a complete mechanism to be developed. Thus,

FIGURE 2.27 Fixed beam mechanism.

FIGURE 2.28 Fixed beam example.
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plastic hinges are assumed to be developed at ends A, B and C as shown in
Fig. 2.29 for the estimation of collapse load by the kinematic theorem.

External work done ¼ 10� δð Þ þ 1
2 � δ� 3� 20
	 
 ¼ 40δ

Internalwork ¼ 2Mpðθ1 þ θ2Þ
By the principle of virtual work,

40δ ¼ 2Mpðθ1 þ θ2Þ

Substituting θ1 ¼ δ; θ2 ¼ δ
3

40δ ¼ 2Mpδ
3

� �

Mp ¼ 15 kNm

Example 2.6
Find the true collapse load of the portal frame as shown in Fig. 2.30 using
the kinematic theorem.

The degree of indeterminacy of the frame is 3. Thus, (n + 1) = 4 plastic
hinges should be formed for a complete mechanism to be developed. Thus,
plastic hinges are assumed to be developed at ends A, B, C, D and E.

(i) Beam mechanism

External work done ¼ 2Wδ

Internalwork ¼ 2Mpðθ1 þ θ2Þ
By the principle of virtual work,

FIGURE 2.29 Fixed beam mechanism.
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2Wδ ¼ 2Mpðθ1 þ θ2Þ

Substituting θ1 ¼ δ
a
; θ2 ¼ δ

b

2Wδ ¼ 2Mpδl
ab

� �

Wc ¼ Mpl
ab

Substituting a ¼ l
3
; b ¼ 2l

3

FIGURE 2.30 Frame example.

FIGURE 2.31 Beam mechanism.
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Wc ¼ 9Mp

2l

Refer to Fig. 2.31 for Beam mechanism.

(ii) Sway mechanism

External work done ¼ WΔ

Internalwork ¼ 2Mpα

By the principle of virtual work,

WΔ ¼ 2Mpα

Substituting α ¼ Δ
2l

WΔ ¼ 4MpΔ
2l

� �

Wc ¼ 2Mp

l

Refer to Fig. 2.32 for sway mechanism.

(iii) Combined mechanism

External work done ¼ 2WδþWΔ

Internalwork ¼ 2Mpðαþ θ1 þ 2θ2 þ 2αÞ ¼ 2Mpð3αþ θ1 þ 2θ2Þ

FIGURE 2.32 Sway mechanism.
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By the principle of virtual work,

WΔþ 2Wδ ¼ 2Mpð3αþ θ1 þ 2θ2Þ

Wlθ1 ¼ 3Mpθ1

Wc ¼ 3Mp

l
The true collapse load is the lowest of all the mechanisms. Thus,

Wc ¼ 2Mp

l

Refer to Fig. 2.33 for combined mechanism.

Example 2.7
Find the true collapse load of the portal frame as shown in Fig. 2.34 using
the kinematic theorem.

(i) Beam mechanism

External work done ¼ 2Wδ

Internalwork ¼ 4Mpθ

By the principle of virtual work,

2Wδ ¼ 4Mpθ

FIGURE 2.33 Combined mechanism.
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Substituting θ ¼ δ
l
;

2Wδ ¼ 4Mpδ
l

� �

Wc ¼ 2Mp

l

Refer to Fig. 2.35 for beam mechanism.

(ii) Sway mechanism

External work done = WΔ

Internal work = Mp 2αþ 2βð Þ

FIGURE 2.35 Beam mechanism.

FIGURE 2.34 Frame example.
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By the principle of virtual work,

WΔ ¼ 2Mp αþ βð Þ

Substituting α ¼ Δ
l
; β ¼ Δ

2l

WΔ ¼ 3MpΔ
l

� �

Wc ¼ 3Mp

l

Refer to Fig. 2.36 for sway mechanism.

(iii) Combined mechanism

External work done ¼ 2WδþWΔ

Internalwork ¼ 2Mpð4αþ 2βÞ
By the principle of virtual work,

WΔþ 2Wδ ¼ 2Mpð4αþ 2βÞ

3WΔ ¼ 5MpΔ
l

Wc ¼ 5Mp

3l

FIGURE 2.36 Sway mechanism.
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The true collapse load is the lowest of all the mechanisms. Thus,

Wc ¼ 5Mp

3l

Refer to Fig. 2.37 for combined mechanism.

Example 2.8
Find the true collapse load of the continuous beam shown in Fig. 2.38 using
the kinematic theorem. Also, find the minimum plastic section modulus of the
section. Take fy = 410 MPa.

(i) Beam mechanism 1

External work done ¼ Wδ ¼ 10δ

Internalwork ¼ 3Mpθ

By the principle of virtual work,

10δ ¼ 3Mpθ

Substituting θ ¼ δ
2
;

FIGURE 2.37 Combined mechanism.

FIGURE 2.38 Continuous beam example.
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10δ ¼ 3Mpδ
2

� �

Mp ¼ 6:667 kNm

Refer to Fig. 2.39 for beam mechanism 1.

(ii) Beam mechanism 2

External work done ¼ W
1
2
� δ� 4

� �
¼ 40δ

Internalwork ¼ 4Mpθ

By the principle of virtual work,

WΔ ¼ 2Mp αþ βð Þ

Substituting θ ¼ δ
2
;

40Δ ¼ 2MpΔ

Mp ¼ 20 kNm

Refer to Fig. 2.40 for beam mechanism 2.

FIGURE 2.40 Beam mechanism 2.

FIGURE 2.39 Beam mechanism 1.
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(iii) Beam mechanism 3

External work done ¼ Wδ ¼ 10δ

Internalwork ¼ Mpð2θ1 þ θ2Þ
By the principle of virtual work,

10δ ¼ Mpð2θ1 þ θ2Þ

10δ ¼ 7Mpδ
3

Mp ¼ 4:289 kNm

The highest value of the plastic moment should be considered for design.
Thus,

Mp ¼ 20 kNm

Thus, plastic section modulus Zp ¼ Mp

fy
¼ 4:878� 104 mm3

Refer to Fig. 2.41 for beam mechanism 3.

FIGURE 2.41 Beam mechanism 3.
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3 Blast, Fire, and
Impact-Resistant Design

3.1 INTRODUCTION

Blast, impact and fire resistant design of structures aim at reducing the risk
to people and facilities from the accidental events that occur in both land-
based and offshore structures (Amdahl & Eberg, 1993; Chandrasekaran
et al., 2006b; Chandrasekaran et al., 2015; Chandrasekaran et al., 2013a;
2007f). Investigations on the structural systems under a combination of
blast, impact and fire loads exhibit their sensitivity to the dynamic effects
caused by these loads (Burgan et al., 2003; Cho et al., 2015; Chandrase-
karan, Chandak and Anupam, 2006; Chandrasekaran et al., 2013a; 2013b).
In particular, offshore platforms are continuously subjected to lateral loads
in a hostile environment. Accidental loads arising during the erection of bulk
building modules, a ship-platform collision in case of offshore structures are
special types of loads, which gain much importance to the structural designer
(Cerik et al., 2015; Chandrasekaran & Nassery, 2017a, 2017b; Karroum et al.,
2007; Khedmati & Nazari, 2012; Kim et al., 2016). The study on the behavior
of deck plates of offshore structures and cargo ships under hydrocarbon fire
is also essential to avoid catastrophic failures (Chandrasekaran & Srivastava,
2018; Jin et al., 2005).

3.2 BLAST-RESISTANT DESIGN

Blast-resistant design involves the following steps:

• Quantification of blast overpressures that result from accidental
explosions.

• Establishment of design blast loads from the blast overpressure.
• Establishment of structural performance requirements.
• Structural design to withstand blast loads within the required per-

formance limits.

Industrial structures and offshore structures are more susceptible to accidental
explosions (Chen et al., 1985; Liu & Soares, 2016; Paik & Czujko, 2013;
Ufuah, 2012). Although such incidents are rare in the frequency of occurrence,
it may lead to severe consequences and thereby causing very high risk. It
results in both the financial and personal loss in addition to a detrimental
impact on the public and environment. Apart from several accidents occurred
in infrastructure industries, the two well-known accidents such as Piper Alpha
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(6 June 1988) and Deep-Water Horizon (20 April 2010) emphasizes the severe
impacts of accidents of offshore structures, caused by fire and explosion
(Morin et al., 2017; Oltedal, 2012). Thus, the threefold objective of a blast-resistant
design of structures is set as follows.

3.2.1 PERSONNEL SAFETY

The level of safety for the person inside the building should be enhanced by the
blast-resistant design. The past incidents show that the collapse of the building,
resulted from blasts is one of the major reasons for severe injuries. Therefore,
one of the main objectives is to reduce the probability that the building itself
becoming a hazard in an explosion.

3.2.2 CONTROLLED SHUTDOWN

In case of the process and manufacturing industries, an accidental event
occurring at one unit should not affect the continued operation and safety of
the other. It is to avoid therefore the loss of control of the process units that
are not involved directly in the event.

3.2.3 FINANCIAL CONSIDERATION

The facilities housing critical and expensive equipment should be protected to
avoid huge financial loss. Thus, the next objective of a blast-resistant design is
to prevent or minimize financial losses. The major considerations in the blast-
resistant design are carried out even in the planning stage itself. Crucial deci-
sions to their maintenance are made by following standard guidelines. For
example, in the case of offshore structures, the guidelines and recommended
the practice for the satisfactory design of offshore structures against blast
loading are described in API RP 2FB. The critical requirements of the blast-
resistant structure are highly influenced by the following factors:

• distance from the blast source,
• the criticality of the function carried out in the structure.

Expected occupancy

Industrial structures and other structures of strategic importance such as
nuclear power plants, coastal structures, offshore platforms and naval dock-
yards are generally designed to resist a certain level of blast loads. However, it
is not realistic to construct a blast-proof building as it is highly impossible to
provide an absolute level of blast protection. There is always a probability of
exceedance of design basis event or failure of a nonstructural element in the
structure. Thus, the blast-resistant design is recommended only for those struc-
tures that are expected to perform even under critical situations. Offshore
facilities are one of such critical structures where an accidental explosion may

90 Advanced Steel Design of Structures



lead to the partial (or) total collapse of the structure, resulting in loss of life
and severe environmental impact. It is important to note that a common prac-
tice to achieve blast-resistance or minimize the effect of blast on the circumfer-
ential equipment is to increase the distance between the equipment installations.
On an offshore platform, as the available space is very limited and expensive,
significant mitigation of blast effects by increasing the distance between the crit-
ical equipment is impractical. Alternatively, the following facilities need to be
designed explicitly to resist the blast effects:

1. control rooms,
2. living quarters,
3. escape routes,
4. evacuation facilities,
5. critical structural components,
6. safety-critical items such as fire water lines and their supporting

structures.

Offshore facilities commonly employ blast walls that are built integrally with
the rest of the structure. Alternatively, prefabricated, precast wall panels using
lightweight materials are also used to expedite the construction process. Com-
pared to that of the onshore petrochemical facility, offshore facilities are very
congested. Unfortunately, explosion source used to be within a confined source
and quite closer to the items that must survive the explosion. The blast-resistant
design goes through the following stages.

3.2.4 PRELIMINARY DESIGN

The preliminary design is based on the nominal overpressure and impulse.

3.2.5 DETAILED DESIGN

The detailed design is usually based on the numerical models such as compu-
tational fluid dynamics (CFD), which solve the equations describing gas flow,
turbulence and combustion processes.

A starting point for the blast-resistant design is therefore during the layout
of the critical equipment and arrangements of other plants and equipment. It
is highly important to decide that equipment needs to be protected against
blast loads. It is because their continuous operation will help mitigate the con-
sequences caused by blast on other service areas. The arrangement should be
made in such a way to provide the best inherent protection from blast loads.

3.3 BLAST LOADS

An explosion is a rapid chemical process producing transient air pressure
waves called blast waves. The peak overpressure and duration of the overpres-
sure may vary with distance from the source of explosion or the explosive
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device in case of a terrorist attack using TNT. In load calculations, it is very
important to recognize various scenarios that would have a severe outcome
and account for the same in the design. The blast pressure waves will be
reflected and refracted by the buildings. As blast waves are intrusive, all sides
of a building or structure can be subjected to overpressure. The peak overpres-
sure decreases as the pressure wave propagates ahead from the source of the
explosion. Reflection from the building generates multiple wavefronts, which
are capable of causing severe damage to the structure.

When a blast impinges directly on to the face of the structure, it is reflected.
As a result, the effective pressure applied to that face of the building gets magni-
fied. Blast loads are extremely intense in magnitude and sustain only for a very
short duration. However, the energy absorption capacity and dynamic character-
istics of the structure govern its response to an explosion. In general, a tall build-
ing, having a lower fundamental frequency takes a longer response time about
that of the duration of the load. Under such cases, it is important to understand
that steel and reinforced concrete structures are capable of absorbing a lot of
strain energy due to their ductility. Flexible components can absorb a great deal
of the energy delivered by a blast load through an elastic and plastic strain.
A high mass causes less energy to be imparted to the system. However, in case of
a larger explosion, the structure as a whole is affected by the blast wave.

Protected spaces are areas within the building that are hardened to protect
the occupants and equipment against the effects of external explosion; they are
named as protected space as they support a critical function even under crisis,
such as control rooms. In the design of protected spaces, their limiting blast
capacity must be quantified. Protected spaces must be enclosed on all sides by
walls and doors so that they should not become extensively hot during its
expected occupation. It should possess sufficient cooling capacity to remove the
heat loads of the space, to maintain the temperature and humidity for occu-
pancy. Construction of protected spaces with enhanced robustness is necessary.

3.4 CLASSIFICATION OF EXPLOSIONS

Explosions can be classified into four basic types:

1. vapor cloud explosions (VCE),
2. pressure vessel explosions (PVE),
3. condensed phase explosions (CPE),
4. dust explosions (DE).

3.4.1 VAPOUR CLOUD EXPLOSIONS

Four conditions are necessary for a vapor cloud explosion (VCE) to occur.
They are listed as follows:

Condition 1: There must be a release of flammable material at suitable con-
ditions of the pressure or temperature. The flammable material list includes
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liquefied gases under pressure, ordinary flammable liquids and gases. When
a flammable liquid spill, it vaporizes, and this dispersion is termed as a vapor
cloud.

Condition 2: Ignition must be sufficiently delayed for a vapor cloud to form
a maximum flammable cloud size; this usually takes about 60 s, so that the
ignition delay is not too long. If the ignition occurs instantly, a fire or fireball
will occur.

Condition 3: The fuel–air ratio of a sufficient amount of the vapor cloud
must be present within the flammable range—the more uniform the fuel–air
mixture and closer to the stoichiometric fuel–air ratio, the stronger the
explosion.

Condition 4: There must be a flame-acceleration mechanism to be present
for causing VCE. For example, congested areas within the flammable portion
of the vapor cloud are good examples.

The speed of the flame propagation governs overpressures produced by a VCE
through the cloud. Objects that are present in the pathway of the flame
enhance the turbulence of both the vapor and the flame. Formation of turbu-
lence further enhances the speed of the flame, which further enhances the
overpressures. Confinement of the space that limits flame explosion, such as
solid decks, also increases the speed of the flame propagation. It is interest-
ing to note that if the flame acceleration is controlled, one can avoid explo-
sion; it shall result only in the formation of a large fireball or flash fire.
Thus, the center of VCE is not necessarily where the flammable material is
released. It is the conjected area present within the vapor cloud. A better
design for explosion-resistance would be to plan more open areas without
congestion. Kindly note that workfloors with multiple areas of congestion
can cause multiple explosions as the flame shall propagate through each of
these congested areas.

3.4.2 PRESSURE VESSEL EXPLOSIONS

The pressure vessel explosions (PVEs) may occur at anyone (or their combin-
ation) of the following types:

• Deflagrations and detonations of pure gases, which are not mixed
with the oxidants. Example: acetylene.

• Combustion deflagrations and detonations in the enclosures, which
can occur in the presence of gaseous, liquid or dust particle fuels. If
an enclosure is too weak to sustain the pressure resulting from such
combustion, it will result in PVE.

• Runaway exothermic chemical reactions can cause an accelerated con-
dition if there is any delay in the process of removing the released
energy. If the pressure in the containment vessel exceeds the pressure
capabilities of the vessel, it will result in PVE.
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• An overpressure of the equipment with nonreactive gaseous contents
can also result in PVE, but they are termed as mechanical explosions.

• Physical vapor explosions occur when two streams of a mixture with
a widely different temperature occur suddenly. It will result in the
flashing of the relatively cooler liquid to generate vapor and thus
develops pressure. If this developed pressure exceeds the vessel cap-
acity, it may result in PVE.

• Boiling liquid expanding vapor explosions (BLEVEs) occurs when
a large amount of pressurized liquid is suddenly vented into the
atmosphere. Such cases usually occur due to the high pressure of the
vessel. BLEVE may cause a huge billowing, emitting radiant fireball.
It may be added with the build-up of pressure waves, in rare cases.

3.4.3 CONDENSED PHASE EXPLOSION

It will occur when the materials are in either a liquid or a solid phase.
Example: high explosives.

3.4.4 DUST EXPLOSIONS

It occurs mainly due to the presence of suspended combustible solid particles,
which are very fine in their molecular structure. Suspended fine solid particles
can explode in a fashion similar to that of the flammable gases. In case of
dust suspended in air, even a small concentration of flammable gas can con-
tribute to a severe explosion than that of the presence of the dust particles
alone. Such suspended dust particles are referred to as hybrid mixtures.

3.5 BLAST WAVE PARAMETERS

Quantum of energy, released into the atmosphere results in a pressure-
transient wave or a blast wave. Further, it is important to note that the blast
wave propagates outward in all directions from the source at a sonic or super-
sonic speed. Supersonic speed is defined as the rate of travel of an object
exceeding the speed of sound. For objects traveling in dry air at a temperature
of about 20°C, the supersonic speed is about 344 m/s, which is equivalent to
667 knots or about 1240 km/ho. The magnitude and shape of the blast wave
depend upon the nature of the energy released and the distance of the object
from the epicenter of the explosion. Blast waves are categorized into two:
shock wave (S-waves) and pressure waves (P-waves).

Shock waves are an outcome of a sudden, instantaneous rise in the pressure
to a peak, free-field overpressure above under an ambient atmospheric condi-
tion. This peak overpressure gradually reduces to the ambient pressure after
highly damped pressure oscillations. In the due process, a negative overpressure
is generated, which follows the positive phase of the blast wave (see Fig. 3.1).

Pressure waves are the consequence of gradual pressure rise to peak over-
pressure. Gradual decay of pressure intensity will follow it, also resulting in
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the formation of a negative wave phase, which is similar to that of a shock
wave (Fig. 3.2).

Shock waves that occur in the near and far fields result from the condensed
phase detonations or an extremely energetic VCE. Most of the vapor cloud defla-
grations result in high-pressure waves at the near field. These waves generally
propagate further as a shock wave to the far-field. In comparison to that of the
positive phase, the negative phase of a shock wave is weaker and of a lesser
impact. Generally, it is ignored in the blast-resistant design. The duration over
which the blast wave overpressure lasts is termed as the positive phase duration
(td). The area under the pressure–time curve is equivalent to the impulse of the
blast wave. Considering only the positive phase, the impulse is defined as follows:

Io ¼
ðtd
0

PðtÞdt ð3:1Þ

where P(t) is the overpressure function, and td is the duration of the positive
phase. The impulse function for different types of waves is given in Table 3.1.

FIGURE 3.2 Pressure wave.

FIGURE 3.1 Shock wave.
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where Pso is the peak overpressure, and C is a coefficient accounting for the
other factors that influence the peak overpressure; this value is assumed to
be in the range of 0.2–0.5. Various parameters that define the blast loading
are namely peak side-on positive overpressure (Pso); positive phase duration
(td); positive impulse (Io); peak side-on negative overpressure (Pso); negative
phase duration (td); and the corresponding negative impulse (Io). Also,
other secondary parameters that govern the input for the blast-resistant
design are peak reflected pressure (Pr), peak dynamic pressure (qo), shock
front velocity (U ) and blast wavelength (Lw). These secondary parameters
can be derived from the primary blast wave parameters, as discussed in the
following section.

3.5.1 PEAK REFLECTED PRESSURE

When a blast wave hits a plane surface, it is reflected. This reflection will influ-
ence the surface, inducing pressure of magnitude higher than that of the inci-
dent side-on value. The magnitude of the reflected overpressure is expressed as
an amplifying factor of that of the incident pressure and is given by the fol-
lowing relationship:

Pr ¼ CrPso ð3:2Þ

where Cr is the reflection coefficient. It depends upon the magnitude of peak
overpressure, angle of incidence to the reflecting surface and type of the blast
wave. For overpressures up to 138 kPa and 0° incident angle, Newmark’s
equation, given below is useful:

Cr ¼ Pr

Pso
ffi 2þ 0:0073Pso ð3:3Þ

Alternatively, the reflection coefficient can also be obtained from the TNO
green book. While the duration of reflected pressure depends on the dimen-
sions of the reflecting surface, the maximum duration cannot exceed the posi-
tive phase duration of the incident blast wave. This assumption excludes any
diffraction around the edges of the reflecting surface.

TABLE 3.1 Impulse functions
Sl. no. Wave Impulse, Io

1 Triangular wave 0:5Psotd
2 Half-sine wave 0:64Psotd
3 Exponentially decaying shock wave cPsotd
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3.5.2 PEAK DYNAMIC PRESSURE

Blast effect caused in buildings is primarily due to the air movement resulting from
the propagation of the blast wave in the atmosphere. Peak dynamic pressure
depends on the peak overpressure of the blast wave. For example, in a low over-
pressure range under the normal atmospheric conditions, peak dynamic pressure is
given by the following relationship:

qo ¼ 2:5 Psoð Þ2
7Po þ Pso

ffi 0:0032 Psoð Þ2 ð3:4Þ

where Po is the ambient atmospheric pressure. The following relationship gives
the dynamic pressure on a structure:

qn ¼ Cdqo ð3:5Þ

where Cd is the drag coefficient, which depends on the shape and orientation
of the obstructing surface. For example, in case of a rectangular building,
the drag coefficient is taken as 1.0 for the front walls and –0.4 for the side
and roof.

3.5.3 SHOCK FRONT VELOCITY

In the free field, blast wave resulting from an explosion travels at (or above)
the acoustic speed of the propagating medium. In a low-pressure range, under
normal atmospheric conditions, the shock wave front velocity can be approxi-
mated using the following relationship:

U ¼ 345 1þ 0:0083Psoð Þ0:5 ð3:6Þ

3.5.4 BLAST WAVELENGTH

Propagating blast wave at any instant of time generally extends over a radial
distance. It is because the shock wave front travels outwards from the explo-
sion. Therefore, the pressure is the largest on the front wall, which encounters
the shock wave. It subsequently trails off to ambient conditions over
a distance, termed as blast wavelength. In the low-pressure range, the blast
wavelength is approximated as follows:

Lw ¼ Utd ð3:7Þ

Blastwave profiles are generally linearized to simplify the blast-resistant design pro-
cedure. Further, a pressure wave is also simplified by using an equivalent shock
loading with the same peak overpressure and impulse. Figs. 3.3 and 3.4 show the
idealized shock wave and pressure wave, respectively, for design purposes. Equiva-
lent shock load can be obtained in Fig. 3.5.
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FIGURE 3.5 Idealized equivalent pressure load.

FIGURE 3.3 Idealized shock wave.

FIGURE 3.4 Idealized pressure wave.

98 Advanced Steel Design of Structures



3.6 DESIGN BLAST LOAD FOR BUILDINGS

To estimate the design blast load for buildings, a thorough understanding of the
blast wave–structure interaction is necessary. When a blast wave strikes the build-
ing, it induces either an overpressure of drag force on the building front. How-
ever, the interaction is quite complex. When a blast wave encounters a solid
surface, it will reflect from the surface and subsequently diffract around the build-
ing. The extent of reflection depends upon the geometry, shape and size of the
building (Ronalds & Dowling, 1988). During reflection, energy is exchanged
between the blast wave and the object. The incident blast wave is reflected from
the building, producing a region of further compression of air, which is dominant
around the structure. As a result, air also applies equal and opposite force to the
surface. Due to the change of momentum at the local level (member level), pres-
sure increases more than that of the incident pressure, causing reflected pressure
(Chandrasekaran et al., 2010b; Singh et al., 2011; Villavicencio & Soares, 2012).

For the sake of design, the resulting blast loading can be idealized as a shock
wave (Veritas, 2010b). For example, it is idealized as a blast wave traveling hori-
zontally from left to right. However, depending on the location of the potential
explosion hazards present in the vicinity of the building site, the blast could strike
the building from any direction. It can result in design loads on the front wall,
side wall, rooftop and the rear wall, as discussed in the following section.

3.6.1 FRONT WALL LOAD

Front walls, which encounter the blast wave, shall experience the reflected
overpressure, whose amplification is dependent on the following: angle of inci-
dence (α), rise time (tr) and side-on overpressure pulse (Pso). For design pur-
poses, a normal shock reflection is assumed for which the angle of incidence
and rise time are assumed to be zero. However, in some cases, oblique reflec-
tion may be more critical as it may result from the reflection of two adjacent
walls. The reflected overpressure decays to a stagnation pressure (Ps) in the
clearing time (tc) and is given by the following relationship:

Ps ¼ Pso þ Cdqo ð3:8Þ

tc ¼ 3S
U

5 td ð3:9Þ

where S is the clearing distance, which is generally lesser than the height of the
building. It is usually assumed as half of the width of the building. It is also
standard practice to assume that the duration of the reflected overpressure does
not exceed the free-field positive overpressure. In mathematical terms,

tc 5 td ð3:10Þ

The simplified equivalent triangle of the bilinear pressure–time curve is shown
in Fig. 3.6. The equivalent loading is computed by equating the impulse load
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shape under the same peak pressure, Pr. The impulse, Iw, under the bilinear
pressure–time curve is given as

Iw ¼ 0:5 Pr � Psð Þtc þ 0:5Pstd ð3:11Þ

Duration of the equivalent triangle is given as

te ¼ 2Iw
Pr

¼ td � tcð ÞPs

Pr
þ tc ð3:12Þ

3.6.2 SIDE WALL LOAD

Sidewalls of a building under blast also experience blast loading but of a lesser
magnitude. It is due to the lack of overpressure reflection and attenuation effect
of the blast wave. As a blast wave travels along the length of the structural
member, the peak side-on overpressure will not be applied uniformly. It varies
with both time and space. Fig. 3.7 shows the equivalent load factor for roof and
side wall load while Fig. 3.8 shows the roof and side wall load variations of
a building experiencing blast load. If the length of the side wall is equal to that of
the length of the blast wave as computed above, then the peak side-on overpres-
sure shall reach the far end of the wall at which it will return to the ambient con-
dition. An equivalent loaf coefficient, Ce, is used to account for this effect, which
depends on the characteristic length of the structural member, measured in the
direction of propagation of the blast wave (UFC: 3-340-02, 2008).

The following relationship gives effective side-on pressure on sidewalls:

Pa ¼ CePso þ Cdqo ð3:13Þ

FIGURE 3.6 Front wall load.
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FIGURE 3.7 Equivalent load factor for side wall and roof load. (Courtesy: UFC:
3-340-02, 2008.)

FIGURE 3.8 Roof and sidewall load.
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where Pa is the effective side-on pressure. The rise time for the sidewall is the
time taken by the blast wave to travel across the entire length of the element
under consideration and is given by the following relationship:

tr ¼ BL

U
ð3:14Þ

The overall duration is the sum of the rise time and the duration of the free-
field side-on overpressure, which is given as

to ¼ tr þ td ð3:15Þ

3.6.3 ROOF LOAD

Under blast conditions, a building with a flat roof will also experience the
effect of the blast. The roof will also experience a side-on overpressure com-
bined with that of the dynamic wind pressure, which is similar to that of the
side walls. Wind force on the roof generally acts in the direction opposite to
that of the overpressure. The roof load depends upon the following namely: (i)
ratio of the blast wavelength to that of the span of the roof element and (ii)
its orientation with respect to the incident blast wave.

3.6.4 REAR WALL LOAD

Building experiencing a blast load also influences the rear wall, in addition to
that of the front, top and side walls. However, there is a significant reduction
in the overall blast force on the rear wall due to the lag is space length and
time in comparison to that of the blast wave. In simple terms, blast load in
the rear walls lags by that of the front wall by a ratio, which is equal to the
ratio of the length of the building (BL) and blast wave period (U). The effect-
ive peak overpressure on the rear wall is similar to that of the side walls. Fig.
3.9 shows the rear wall load, useful for design purposes. According to TNO
Green book, time rise for the blast wave in the rear wall is given as follows:

FIGURE 3.9 Rear wall loading.
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The rise time of the positive phase ¼ 4S=U ð3:16Þ

Total duration ¼ td ð3:17Þ

tr ¼ BL

U
þ 4S

U
ð3:18Þ

to ¼ tr þ td ð3:19Þ

According to UFC 3-340-02, the following relationship holds good:

Positive phase rise time ¼ S=U ð3:20Þ

Total duration ¼ td ð3:21Þ

tr ¼ BL

U
þ 4S

U
ð3:22Þ

to ¼ tr þ td ð3:23Þ

3.6.5 FRAME LOADING

The complete building frame shall experience the blast load, which be the net
load that acts on the front and rear walls after accounting for the time and
phase lags. While the blast wave travels from the front side of the building to
the rear, the building frame will be subjected to a large, horizontal, unbal-
anced pressure on the front wall. It will be followed by a partial release of
blast load on the front wall, which is subsequently transferred to the rear
wall. Fig. 3.10 shows the net lateral load that acts on a building of rectangular
geometry.

FIGURE 3.10 Net lateral load on the rectangular building.
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3.6.6 NEGATIVE PRESSURE, LEAKAGE PRESSURE AND REBOUND LOAD

As seen in the earlier discussions, blast waves also induce negative pressure
during its propagation. Due to this negative phase, structural components
shall experience blast load effects in the opposite direction to that of the pri-
mary load. Further, overpressure may also cause rebound effects on the struc-
tural components, which will be relatively high due to large inertia. However,
it is conventional to ignore the effects caused by the negative pressure, but
rebound effects should be considered in the analysis to ensure satisfactory per-
formance of the structure. Blast loads are also capable of expanding within
the confined space of the structure by passing through the shaft holes and
openings. These are termed as leakage pressure loads. As a blast wave expands
through an opening, the pressure level drops due to the confined passage effect,
which results in a sudden adiabatic expansion within the confined volume of
the building. Let us illustrate the effects of blast load on a structural system of
rectangular geometry in the following section.

3.7 DESIGN EXAMPLE: COMPUTATION OF BLAST OVERPRESSURE
FOR A RECTANGULAR-SHAPED BUILDING

Question 1. Calculate the blast load on a living quarter of an offshore platform,
subject to the blast wave as shown in the figure. Assume that the residential unit
is confined to the shape and size as shown, without any cantilever projections
along its sides. Figures show the characteristic dimensions of the unit as 15 m ×
20 m × 6 m high. Blastwave is targeting the unit on a plane normal to the length
of the unit, as shown in the figure. Peak overpressure is taken as 40 kPa and con-
sidered to act for a duration of 0.05 s. Fig. 3.11 shows the building block con-
sidered for the analysis and the shock wave time history.

Step 1: Shock wave parameters

Vide Eq. (3.6), shock front velocity is computed as follows:

U ¼ 345 1þ 0:0083Psoð Þ0:5

U ¼ 345 1þ 0:0083� 40ð Þ0:5 ¼ 398:172 m=s

Vide Eq. (3.7), length of the pressure wave is given by:

Lw ¼ Utd ¼ 398:172� 0:05 ¼ 19:909 m

Vide Eq. (3.4), the peak dynamic wind pressure is given as

qo ¼ 0:0032 40ð Þ2 ¼ 5:12 kPa

Step 2: Front wall loads

Vide Eq. (3.3), the reflection coefficient is computed as
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Cr ¼ 2þ 0:0073 Psoð Þ ¼ 2þ 0:0073 40ð Þ ¼ 2:292

Vide Eq. (3.2), reflected overpressure is given as

Pr ¼ Cr � Pso ¼ 2:292� 40 ¼ 91:68 kPa

Vide Section 3.6 (a), clearing distance (S), is the minimum of the height of the
building and half the width of the building. In the present case, S will be the min-
imum of 6 m and (20/2); S is taken as 6 m in the current example problem.

Vide Eq. (3.9), the reflected overpressure clearing time is given as

tc ¼ 3S
U

¼ 3� 6
398:172

¼ 0:045s 5 td

Vide Section 3.5 (b), the drag coefficient (Cd) is assumed as unity; the stag-
nation pressure is given in Eq. (3.8):

Stagnation pressure, Ps ¼ Pso þ Cdqo

FIGURE 3.11 Building block and shock wave history.
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Ps ¼ Pso þ Cdqo ¼ 40þ ð1� 5:12Þ ¼ 45:12 kPa

Vide Eq. (3.11), the front wall impulse is given as

Iw ¼ 0:5 Pr � Psð Þtc þ 0:5Pstd

Iw ¼ 0:5 91:68� 45:12ð Þ � 0:045þ 0:5� 45:12� 0:05 ¼ 2:176 kPa:s

Vide Eq. (3.12), the effective duration of the blast load on the front wall is
given as

Effective duration, te ¼ 2Iw
Pr

¼ 2 x 2:176
91:68

¼ 0:047s. Fig. 3.12 shows the vari-

ation of the front wall load, which corresponds to the equivalent load in Fig. 3.6.

Step 3: Sidewall load
Vide Section 3.5 (b), drag coefficient, Cd is assumed as –0.4.
Assuming the thickness of the wall as 300 mm,
Equivalent load coefficient Ce can be obtained as shown in Fig. 3.7, for the

known ratio of wavelength by characteristic length, which is given as

Lw

L1
¼ 15

0:3
¼ 50:

From Fig. 3.7, for the ratio of 50, Ce is obtained as 1.0.
Vide Eq. (3.13), equivalent peak overpressure is given as
Pa ¼ CePso þ Cdqo= (1.0 × 40) + ((–0.4) × 5.12) = 37.952 kPa
Vide Eq. (3.14), rise time is given as

tr ¼ BL

U
¼ 0:3

38:172
¼ 0:0007 s

Duration td = 0.05 s. Fig. 3.13 shows the variation of side wall load.

FIGURE 3.12 Variation of front wall load.
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Step 4: Roof load
For the design of the roof, a section of 0.30 m wide and 2.4 m long is

considered.
BL = 2.40 m
Drag coefficient, Cd = – 0.4.

Equivalent load coefficient,
Lw

L1
¼ 15

2:4
¼ 6:25

From Fig. 3.7, and for the ratio of 6.25, we get Ce as 0.98.
Vide Eq. (3.13), equivalent peak overpressure is computed as
Pa ¼ CePso þ Cdqo= (0.98 × 40) + ((–0.4) × 5.12) = 37.152 kPa
Vide Eq. (3.14), rise time is given as

tr ¼ BL

U
¼ 2:4

398:172
¼ 0:006 s

Total positive phase duration = 0.006 + 0.05 = 0.056 s. Fig. 3.14 shows the
variation of roof load.

FIGURE 3.14 Variation of roof load.

FIGURE 3.13 Variation of side wall load.
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Step 5: Rear wall load
Drag coefficient, Cd = –0.4.
Equivalent load coefficient,

Lw

S
¼ 15

6
¼ 2:5

From Fig. 3.7, and for the ratio of 2.5, we get Ce as 0.75.
Equivalent peak overpressure, Pa ¼ CePso þ Cdqo = (0.75 × 40) + ((–0.4) ×

5.12) = 27.952 kPa
Time of arrival, ta ¼ BL

U
¼ 15

398:172
¼ 0:038s

Rise time, tr ¼ S
U

¼ 6
398:172

¼ 0:015s

Duration td = 0.05 s
Total positive phase duration = 0.015 + 0.038 = 0.053 s. Fig. 3.15 shows

the variation of rear wall load.

3.8 FIRE LOAD

Fire is rapid, exothermal oxidation of an ignition fuel. Fuel can be either in the
solid, liquid or gaseous states. The occurrence of fire release energy in the form of
exothermal reaction, while with time, released energy reaches its peak intensity.
Alternatively, fire can also result from an explosion, which is a rapid expansion of
gases caused by the pressure or shock waves. These waves propagate very fast,
and their rapidity results in adiabatic expansion. Explosion, resulting from the
fire can be either a mechanical or chemical process. It is evident that about 70%
of the accidents occurred in offshore facilities are due to hydrocarbon explosion
and fire, whose consequences are very serious (Donegan, 1991; Jin & Jang, 2015).
The major concern of the designers is to make offshore facilities as fire-resistant
(Paik and Czujko, 2103; Paik et al., 2013). If the platform is dealing with LNG,
then the potential risk due to fire and explosion is further severe as the physical
and chemical conditions of liquid natural gas are different from that of the liquid
hydrocarbon (Quiel & Garlock, 2010). The most common oversight that leads to
fire accidents are as follows (Manco et al., 2013):

• All heat transfer system should be thoroughly inspected for no leak or smoke.

FIGURE 3.15 Variation of rear wall load.
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• In case of smoke, one should not disconnect the smoldering insulation
as this will allow an excess of air inside and will result in auto-ignition.

• Do not let the fluid drop on any heat sources as this will ignite the fluid.
• If fluid leaks and gets trapped within a system, it can get oxidized,

which results in heat (exothermal).

By avoiding the above, one can avert fire accidents. However, still, the fire-resistant
design is imperative for structures that are susceptible to fire accidents (Chandrase-
karan & Srivastava, 2017; Soares et al., 1998; Soares & Teixeira, 2000).

3.9 CATEGORIZATION OF FIRE

Based on standard DNV regulations, fire can be categorized as follows:

No fire risk is the condition where the building or the engineering module has
no energy sources.

Low fire risk condition is the case that covers those building modules that
store nonflammable equipment.

Medium fire risk is the category which includes those building modules that
house electric power and major testing equipment. It also includes nonaccom-
modation modules.

High-risk fire includes building modules where the flammable liquids are
stored. It also includes the plant segments that have high-power electrical
machinery and accommodation modules.

The potential risk that arises in case of the offshore platforms are blowouts,
riser and process leak, fire and explosion, vessel collision, helicopter accidents,
dropped objects, structural failure due to the environmental loads and complete
capsizing of the platform. The best practices that can be employed to avoid such
failures are as follows:

• Fluid should be used above the flash point and fire point temperature
but not above the auto-ignition temperature (AIT).

• Fluid can be used up to their maximum bulk temperature. Bulk tem-
perature is much higher than that of the flash point temperature for
any liquid.

• Avoid designing confined spaces in the presence of ignition source as
it can result in a flash very easily.

• Through proper system design, one can ensure that there is no oxygen
or air content present at the heat source. The most common heat
sources in an industrial unit are electric heater, heat exchanger and
drilling controller.

• Fluid should be well contained within the system.
• Fluid containment should not have direct contact with any external

ignition source, directly or indirectly.
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Several complexities arise during the fire-resistant design of structures. The
fire-resistant design process is not complicated but cumbersome due to the
complexity involved in the layout of the process plant. As a common practice,
it is seen that most of the topside modules are laid in a congested manner. It
is done to ensure compactness in the process flowline, but it inherently intro-
duces a high risk of cross-fire due to lack of space between the facilities. Such
complex and congested layout of process plants and equipment increases the
proximity of spread of fire or blast waves from one unit to the adjacent. The
complication in the layout also arises from the congested network of pipelines,
electric mains and water mains. All of the above factors put together to make
the fire-resistant design more complex. The level of risk in such conditions is
high due to the following reasons:

• Facilities, equipment and even the process design are unique and have
to be protected.

• Recreating the facility or retrofitting the damaged platform is very
expensive and not worthy. Most of the fire accidents will result in
a high degree of catastrophe, both to human and equipment.

In modern practice, offshore platforms are designed to operate in an unmanned
manner. It is therefore obvious that they will not have any support of fire-fighting
on demand. An offshore platform has various complexities, which makes them
vulnerable to fire accidents:

• A congested layout.
• A close network of pipelines, electric cables and water mains.
• Working in a remote and harsh environment.
• Exploration and production of very high flammable mixture.
• Support systems in case of emergency.
• Very high capital investment.
• Very large process of commissioning one on another new facility.

Under the above complexities, it is important to note that an offshore plat-
form can never be designed to remain completely safe. However, by intelligent
design, one can improve the degree of safety.

3.10 CHARACTERISTICS OF FIRE

A few important characteristics of fire and explosion materials are the auto-
ignition temperature (AIT), flash point and fire point.

3.10.1 AUTO-IGNITION TEMPERATURE

Auto-ignition temperature (AIT), also known as the kindling point of the
material, is the lowest temperature above which the material may not require
any external source for combustion. The ignition can even take place at
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normal atmospheric conditions when AIT is reached. It is also the min-
imum temperature required to supply the activation energy that is needed
for combustion and therefore termed as self-ignition temperature. Table 3.2
lists AIT of different material in the atmosphere at 20.9% of oxygen
concentration.

3.10.2 FLASHPOINT

Flashpoint is the lowest temperature at which the liquid gives up enough
vapor to maintain a continuous flame. It is the temperature at which the
vapors are produced from the fluid, resulting in the ignition in the presence of
an ignition source. It is important to note that the fluid will not burn at this
temperature.

3.10.3 FIRE POINT

The fire point is the temperature at which the fluid will sustain fire if ignited
by an external ignition source. For most of the fuels, the fire point is lower
than that of its auto-ignition temperature.

3.11 CLASSIFICATION OF FIRE

Fire is triggered when leakage (or spill) of any flammable mixture occurs in
the presence of a potential ignition source. Fire can be classified as Pool fire,
Jet Fire, Fireball and Flashfire. The subclassification of fire includes Flares,
Fire on the sea surface and Running liquid fire. This subclassification can be
grouped to the main classification as (i) flares can be treated as a jet fire in
modeling and (ii) fire on the water surface and running liquid fire that can be
treated as a pool fire.

Pool Fire
It is a turbulent diffusion fire, which burns above the pool that vaporizes
hydrocarbon, which has very less momentum. Release of liquid fuel forms
a pool on the surface. It vaporizes and causes pool fire by ignition. Probability
of occurrence of pool fire in an offshore platform is very high due to the

TABLE 3.2 Auto-ignition temperature
for different materials
Sl. no. Material AIT °C

1 Gasolene 247–280

2 Diesel 210

3 Butane 405

4 Methane 580
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continuous handling of hydrocarbons. Liquid fuel, released accidentally during
the overfilling of storage tanks may also cause pool fire. It may also occur due
to the rupture of pipelines, and cracks in the storage tanks caused by the cor-
rosion of metal. The pool diameter is equal to that of the diameter of the
bund, which is constructed to contain the spread of pool fire and is given by
the following relationship:

Dp ¼
ffiffiffiffiffiffi
4A
π

r
ð3:24Þ

where A is the area of the bund in m2 and Dp is the diameter of the pool. The
following relationship gives pool fire length:

L ¼ 42 Dp
Burning Rate

ρair
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81 Dp

p
" #0:61

ð3:25Þ

Jet Fire
Jet fire is classified by the turbulent diffusion of flame resulting from the com-
bustion of fuel, which is continuously released. It has a significant momentum
to propagate in a downwind direction. It can affect offshore installations very
seriously, even if they are located far away from the potential source of the
fire. Jet fire releases gases while propagates forward, which may be either in
the horizontal or vertical direction. Among the two, horizontal jet fire is more
catastrophic as it is capable of causing extensive damage on the down-wind
side. It may result in the following consequences: structural failure, storage
vessel failure and (or) pipe works failure. The heat flux released during a jet
fire is about 200–400 kW/m2, which is dependent on the type of fuel released.
One of the potential sources of a jet fire is pressurized gas pipelines. In case of
a leak, the initial gas release rate is given as

Qo ¼ CDApo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MV
RTo

2
rþ 1

� � rþ1ð Þ r�1ð Þ
s

if po4pa
2

rþ 1

� � r�1
rð Þ

ð3:26Þ

where CD is the discharge coefficient, A is the area in m2, po is the operational
pressure of the gas, M is the molecular weight of gas in g/mol, V is the rate of
specific heat, R is the universal gas constant (=8314 J/kg mol k), To is the
operational temperature in Kelvin, and pa is the absolute pressure. The flame
length of a jet fire is given by the Chamberlain equation:

m ¼ 11:14 Qoð Þ0:447 ð3:27Þ

where Qo is the initial release rate in kg/s. Jet fire length and the correspond-
ing time frame are estimated based on the following relationship:
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Qt ¼ Qoe

Qo

MG

� �
t

ð3:28Þ

where
MG ¼ PM

0:08314
πr2L ð3:29Þ

where MG is the mass of the gas in kg, P is the operating pressure of the gas in
pa, M is the molecular weight of gas in gm/mol, r is the diameter of the pipe
in m, L is the length of the pipe in m and t is the time of release is seconds.

Fireball
It is rapid turbulent combustion of any fuel. Usually, the outcome is in the
form of a rising and expanding, radiant ball of fire. When a fireball attacks
a vessel or a tank containing pressure liquefied gas, the pressure inside the
vessel increases and leads to the catastrophic failure of the vessel or the tank.
It may lead to the loss of the complete inventory present in the tank. Under
BLEVE release, the released material is flammable which may also ignite,
which may cause an explosion and thermal radiation hazards. Duration of
the heat pulse in BLEVE is about 10–20 s, causing high-potential damage. The
maximum emissive power that results from BLEVE are 270–333 kW/m2 in the
Up/downwind and 278–413 kW/m2 in the crosswind.

Flash Fire
It is the transient fire resulting from the ignition of a gas or vapor cloud.
Flashfire is attributed as a special process as this results after a substantial
delay between the release of flammable materials and the subsequent ignition.
It initially forms a vapor cloud over a larger area, and then expand radially.
Subsequently, the cloud explodes because of ignition. It is more catastrophic
and causes damage to a large area. Flashfire is characterized by a wall of
flame. Similar to fireballs, flash fire can also ignite and remain as a continuous
flame. It can also be caused by a delayed ignition and remain for a longer
time. The instantaneous effect causes thermal radiation, and the flash fire gen-
erates ‘knock-on’ events such as Pool fire, Jet fire and BLEVE. It is important
to note that the severity of the flash fire is extremely high.

3.12 FIRE PROTECTION SYSTEMS IN THE DESIGN

Offshore platforms are generally designed to be self-reliant even in the case of fire
due to the following reasons: (i) there will be no fire rescue facility available in the
near vicinity of offshore platforms and (ii) fire accidents cause significant conse-
quences. Therefore, one of the main fire-protection measures that are generally
followed is flame arrestors. It is a passive device that prevents the propagation of
gas flames through pipelines. Other common measures are the construction of
fire-resistance barriers, fire-insulation, water shower, foams and water spray lines.
Source of fire in an offshore platform is the inflammable gases that are produced
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by the production units. Preventing sparks will, therefore, be the highest priority.
By design, fire protection can be achieved by an appropriate fire-detection system
and layout of the fire extinguishing system. They should be automatic and
designed with the highest degree of reliability.

Fire-fighting equipment needs to be simple in design and easy to operate so
that the personnel on board can readily use them. They should be free from
any high-end technique that makes their operation difficult. They should be
maintained periodically to check their availability on demand. Fire drills
should be conducted at periodic intervals to train the personnel on board
about the effective use of fire-fighting equipment. Fire-protection system
design should be integrated into the geometric design of the platform, making
the fire protection a part of the platform layout itself. All potential hotspots
in the platform layout should be enveloped into the fire protection layout to
make the platform fire-protected. A few common types of fire protection sys-
tems are discussed in the following section.

Foam Systems
These systems are highly suitable for hydrocarbon fire. Foam systems contain
air-filled bubbles that are formed from the aqueous solutions. Their density is
lower than that of the flammable liquid, making it easy operational. Common
types are low expansion systems, which are highly suitable for storage tanks,
helideck and loading terminals and (ii) high-expansion systems that are suit-
able for LPG spills.

High-Pressure Water Mist
Potable water is used for fire-protection systems as other quality may result in
corrosion of the fire mains. In this system, potable water is sprayed at high
pressure and is well suited for Platform Support Vessels.

3.13 STEEL AT HIGH TEMPERATURE

Steel is one of the most common and popular construction materials used in
the industrial structures and offshore platforms. The behavior of steel at high
temperature is different from that of the room temperature, making steel
design at an elevated temperature different. A few of the material characteris-
tics are modulus of elasticity, stiffness and yield strength of structural steel
decreases with the increase in temperature, whereas the material ductility
increases showing an indication of strength development. Effective yield
strength reduces after 400oC in case of mild carbon steel at 2% strain. The
decrease in the proportional limit and modulus of elasticity is seen after
100oC as shown in Fig. 3.16. The other major material properties to be con-
sidered in the structural response under fire load are thermal conductivity,
specific heat, elastic constants, specific weight, thermal expansion and plasti-
city. Also, variations of thermal conductivity, thermal strain and thermal
expansion are shown in Figs. 3.17–3.19. It is important to define the thermal
and mechanical properties under high temperature to evaluate the structural
response under fire.
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FIGURE 3.16 Material characteristics of carbon steel at high temperature.
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FIGURE 3.17 Thermal conductivity of carbon steel.
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3.14 EXAMPLE CASE STUDY: BEHAVIOR OF AN OFFSHORE DECK
PLATE UNDER HYDROCARBON FIRE

A steel deck of an offshore platform is considered for the analysis. Details and
location identifications of the platform are masked for strategic reasons. One
of the segments of the deck plate of size 1.375 × 1.25 m and 3 mm thick is
modeled in Ansys to estimate the structural behavior of the stiffened steel
deck plate. An uncoupled thermal and structural analysis is carried out. Size
and shape of the plate are shown in Fig. 3.20.

The top face of the middle bay is exposed to fire as shown in Fig. 3.21,
considering its proximity to the drilling operations. Though the pate stiffeners
are not directly exposed to fire, they will also receive the heat that is
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FIGURE 3.18 Specific heat of carbon steel.
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FIGURE 3.19 Thermal strain of carbon steel.
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transferred from the deck plate. The mid-bay is subjected to the hydrocarbon
fire as shown in Fig. 3.22. Numerical analysis is carried out using Ansys tran-
sient thermal analysis solver for 3600 s. A larger duration of the simulation is
carried out to ensure that the heat from the top face of the plate is transferred
to the stiffeners due to convection. The temperature distribution is shown in
Fig. 3.23. Increase in temperature induces thermal stresses in the material
which may lead to a structural failure. In this example study, plasticity is cal-
culated using Von-Mises yield criteria. Generally, in the fire-resistant design of
structures, the design is always associated with the duration to which the
structure can resist fire without exceeding the undergoing maximum permis-
sible deformation. Hence, the temperature is found to be more about 400°C at

FIGURE 3.20 Stiffened steel plate of offshore deck.

FIGURE 3.21 Middle bay under fire.
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which nearly 13% of the total area of the plate is deformed more than the
permissible limit. Thermal stresses induced in the plate due to hydrocarbon
fire is evaluated using structural analysis in Ansys. The thermal stresses are
found to be increased beyond the yield stress at 1300 s while the maximum
displacement of 0.80 mm is observed at 1800 s as shown in Fig. 3.24.
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FIGURE 3.22 Time–temperature curves for different fire conditions.

FIGURE 3.23 Temperature distribution in the stiffened plate.

FIGURE 3.24 Maximum deformation in the plate.
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3.15 DESIGN FOR FIRE

The fire resistant design of structures can be carried out using the following
methods as per API-RP-2A: zone method, linear elastic method and elastic-
plastic method. The following section explains them briefly.

3.15.1 ZONE METHOD

In this method, the maximum allowable temperature is assigned to a steel
member without any reference to the stress level in the member, before the
fire. The basic assumption behind this method is that the member utilization
ratio, which is calculated from the basic allowable stressed will remain
unaltered even under the fire load condition if the allowable stress is increased
to yield. However, yield stress itself is reduced by a factor of 0.6. This assump-
tion is valid when the nonlinear stress–strain characteristics of the steel may
be linearized such that the yield strength reduction factor is matching with
that of the reduction in the modulus of elasticity. Under this mapping condi-
tion, the governing design condition will remain unaffected. However, linear-
ization of the stress–strain characteristics at higher strain level is necessary for
the use of the maximum allowable stress of steel at elevated temperature,
which corresponds to a higher strain level. Zone method may not be applic-
able with the unmatched reduction in both yield strength and Young’s modu-
lus as the governing design condition may be affected.

3.15.2 LINEAR ELASTIC METHOD

In this method, the maximum allowable temperature is assigned to the steel
member under design, based on the stress level in the member before the fire.
For example, member utilization ratio remains below 1.0 with the increase in
the temperature. For members that do not undergo buckling failure, allowable
stress should be such that the extreme fibers on the cross section are at yield.
The yield stressed should also correspond to the average core temperature of
the member. The linear elastic method may not be applicable with an
unmatched reduction in both yield strength and Young’s modulus as the gov-
erning design condition may be affected.

3.15.3 ELASTIC–PLASTIC METHOD

In the elastic–plastic method, the maximum allowable temperature is
assigned to a steel member based on the stress level in the member before
the fire. The member utilization ratio is increased beyond 1.0 with the
increase in the temperature. A nonlinear structural analysis is performed to
investigate the behavior of the structure and verify whether the structure will
undergo collapse, but still meet the serviceability criteria. By appropriate
selection of the representative value of strain, linearization of the stress–
strain relationship at elevated temperature is achieved regardless of the
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design method. The commonly used value of strain is 0.2, which is beneficial
with the matched reduction in yield strength and Young’s modulus. However,
it limits the allowable temperature of the steel to 400°C, which is
a disadvantage. Selection of higher value of strain will result in a higher
maximum allowable temperature, but will also result in an unmatched reduc-
tion in yield strength and Young’s modulus.

3.16 IMPACT LOADS DUE TO SHIP–PLATFORM COLLISION

The risk of ship–platform collision had increased with the increase in the
number of oil production and exploration platforms (Storheim & Amdahl,
2014; Ufuah & Tashok, 2013). A typical tanker collision shall induce a force
of about 200 MN on to the obstructing member and can result in a severe
local consequence. The ship–platform collision is a dynamic process, which
depends upon the type of collision, energy absorption, dissipation and con-
tact time of the collision. Also, the collision zone also affects the structural
response significantly. For a typical analysis of a structural member under
impact loads, the collision zone is considered on any one side of the plat-
form where a ship could impact during an accident situation, under normal
conditions. The vertical height of the collision zone is normally assessed for
analysis by considering the type of ship, vessel draft, wave height and tidal
elevation.

Existing standard regulations are useful to estimate the impact of vessels on
offshore platforms. According to NORSOK guidelines for production platforms,
a supply vessel of capacity 5000 ton, traveling at a speed of about 2.0 m/s (or
lesser) should be considered for the design check during impact analysis. It is
important to note that such collision loads are capable of causing significant
damage to the encountered members, but will not lead to a progressive collapse
of the whole structure. As a comparison, it can be seen that even a Norwegian
Maritime Directorate regulation, in combination with DNV standards also sug-
gests the same. Design guidelines of both the international regulations suggest
minimum collision energy of magnitude 4 MJ to be considered for the design
under vessel impact. Both the kinetic energy of the vessel and energy absorbed
by the platform during collision influences the structural response. The ship col-
lision load is calculated based on the kinetic energy, which is governed by the
mass and the speed of travel of the vessel just before impact. Depending upon
the collision conditions, a part of the kinetic energy will be dissipated as strain
energy while the balance will act on the member. Of course, such collision mech-
anisms are expected to cause damage to both the member receiving the impact
and vessel causing the impact. The strain energy dissipation during collision is
estimated from the force–deformation relationships of the ship and the plat-
forms, where the deformations shall comply with the ductility and the stability
requirements. Nonlinear dynamic finite element analysis is essential to study the
structural behavior during impact.

Based on the strain energy distribution, the following principles of design
are applicable: strength design, ductility design and shared-energy design.
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Strength Design
According to these design criteria, the platform is considered to be very
strong to resist the impact force that arises during the collision with a minor
deformation. The deformation is confined to the ship and the ship allowed to
dissipate the major part of the strain energy.

Ductility Design
In this design procedure, strain energy is confined to the platform, which
undergoes the maximum deformation by absorbing the major part of the
strain energy.

Shared-Energy Design
Under this procedure, it is assumed that both the platform and the ship absorb
the collision energy. While in most of the cases, ductility design and shared-energy
design are used, strength or ductility design is more favorable in computational
perspective. Fig. 3.25 shows the energy dissipation and design principles.

3.16.1 KINETIC ENERGY

According to API-RP-2A, the kinetic energy of the vessel can be calculated
from the following:

E ¼ 1
2
amv2 ð3:30Þ

where E is the kinetic energy of the vessel, a is the added mass factor (1.4 for
broadside collision, 1.1 for bow/stern collision), m is the mass of the vessel
and v is the velocity of the vessel at impact. For the design of platforms in
mild environments, impact against the ships with the following minimum con-
siderations should be used:

FIGURE 3.25 Energy dissipation and design principles.
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Mass of the vessel = 1000 metric tons
Impact velocity = 0.5 m/s

It is also recommended that for deep water and remote locations, the mass
and velocity of the vessel during impact should be increased appropriately.
However, it can be reduced in case of shallow waters that have access to small
vessels only. According to DNV-RP-C204, the collision energy which is to be
dissipated as the strain energy depends upon the type of installation.

(i) Complaint Platforms

Strain energy

Es ¼ 1
2

ms þ asð Þv2s
1� vi

vs

� �2

1þms þ as
mi þ ai

� � ð3:31Þ

(ii) Fixed Platforms

Strain energy

Es ¼ 1
2

ms þ asð Þv2s ð3:32Þ

where ms is the mass, as is the added mass, vs is the impact velocity of the
ship, while mi is the mass, ai is the added mass, vi is the velocity of the plat-
form, respectively. It is important to note that in the current example study,
the platform is assumed to remain compliant and the duration of the impact
is small compared to the fundamental period of vibration of the platform.

3.17 ENERGY ABSORPTION

During impact, the offshore platform will absorb energy from the following:

i. Localized plastic deformation of the tubular wall (in case of fixed
jacket platforms).

ii. Elastic or plastic bending of the member.
iii. Elastic or plastic elongation of the member.
iv. Fendering devise.
v. Global deformation of the platform.
vi. Ship deformation.

Resistance to ship collision is influenced by the interaction between dent in
the member and bending deformation of the member. In the case of jacket
structures, which are rigidly fixed to the sea bed on pile foundations, energy
absorption mainly occurs mainly through the localized dent of the tubular
member also, elastic or the plastic bending of the member also absorbs
energy. For assessing the damage of the platform during impact, it is assumed

122 Advanced Steel Design of Structures



that the platform retains sufficient residual strength after impact to withstand
the environment under normal operating conditions for at least 1 year. Based
on research studies, the following relationship between force and dent depth is
developed:

Pd ¼ 15Mp
D
t

� �0:5 X
R

� �0:5

ð3:33Þ

Mp ¼ Fyt2

4
ð3:34Þ

where Pd is the denting force, Mp is the plastic moment of the tubular
member. Fy is the yield strength of the material, D, R are the diameter and
radius of the tube, respectively, t is the tube thickness, X is the dent depth.

Alternatively, the following relationship is also useful (Ellinois):

Pd ¼ 40Fyt2
X
D

� �0:5

ð3:35Þ

The energy used in creating the dent is given as

Ed ¼
ðx
0

Pddx ¼ 14:14Mp
X1:5

t0:5

� �
ð3:36Þ

Ed ¼ 3:54Fy tXð Þ1:5 ð3:37Þ

Substituting X = D/B for solving for various D/t ratios, we get:

Ed ¼ 3:54Fy
tD
B

� �1:5

ð3:38Þ

where B = brace diameter/dent depth.

FIGURE 3.26 Dissipation of strain energy in ship and platform.
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The dent formation in the members should be reduced to increase the postim-
pact strength of the member. It can be achieved by carefully selecting the
D/t ratios of the members of the jacket legs. The load–deformation relationship
can represent the structural response of the ship and platform. The area under
the load–deformation curve gives the strain energy dissipated by the platform or
ship. Fig. 3.26 shows the dissipation of strain energy in the ship and offshore
platform.

3.18 AN EXAMPLE PROBLEM ON SHIP COLLISION

A tubular member of diameter 600 mm and 20 mm thickness of the jacket leg
platform is subjected to a broadside collision by 1100 tons supply vessel with
0.5 m/s velocity. Calculate the denting force and the energy used in creating
a dent of 20 mm. Take the yield strength of the material as 410 MPa.

Mp ¼ Fyt2

4
¼ 410� 202

4
¼ 4:10� 104 Nmm=mm

Denting force Pd ¼ 15Mp
D
t

� �0:5 X
R

� �0:5

where D = 600 mm, t = 20 mm, X = 20 mm, R = 300 mm

Pd ¼ 15Mp
D
t

� �0:5 X
R

� �0:5

¼ 869:74 kN

Energy used in creating the dent, Ed ¼ 3:54Fy tXð Þ1:5

Ed ¼ 3:54Fy tXð Þ1:5 ¼ 11:61 kNm

3.19 IMPACT ANALYSIS OF BUOYANT LEGS OF OFFSHORE
TRICERATOPS

Triceratops is the new-generation offshore compliant platforms with three buoyant
legs connected to the deck by ball joints. These buoyant legs are usually designed
as orthogonally stiffened cylindrical shell members (Do et al., 2018). The impact
analysis of a stiffened cylindrical shell of diameter 15.0 m and length 174.24 m is
carried using Ansys, the explicit analysis solver. Freeboard of the buoyant leg is
taken as 20.24 m. The cylindrical shell is designed with 70 numbers of flat bar
stringers and ring stiffeners at 3.0 m c/c apart. The thickness of the shell is 40 mm
made up of AH36 marine steel of yield strength 433 MPa. The Young’s modulus
of the steel is 206,000 MPa. The true stress–strain curve for AH36 steel consider-
ing the yield plateau is shown in Fig. 3.27, which is used in the numerical analysis
as they represent the state of the material more accurately. The same data are
given as the input for defining the material plasticity in ANSYS.

The cylindrical shell and the stiffeners are modeled as shell elements as
shown in Fig. 3.28. The rectangular box-shaped indenter, resembling a stem of
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the ship of 10.0 m length, 5.0 m breadth and 2.0 m depth, is modeled using
solid elements. Further, it is assumed as perfectly rigid without undergoing
any deformation. Thus, the energy dissipation is confined to the buoyant leg
only as per the ductility design principles (Feng et al., 2017)—the shell meshes
with four-node quadrilateral shell elements. The indenter is restrained from
moving only in the direction of impact; all other degrees are restrained. The
initial collision velocity is 1.0 m/s, and the distance between the centers of the
indenter to the Mean Sea Level is 6.0 m, as shown in Fig. 3.28.

FIGURE 3.27 True stress–strain curve of AH36 marine steel.

FIGURE 3.28 Cylindrical shell and indenter model.
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(i) Damage profile
The collision zone is at 9.0 m below the top end of the buoyant leg. The indenter
velocity decreases with the increase in the impact duration as shown in Fig. 3.29.
Correspondingly, the indenter displacement increases as seen in Fig. 3.30. The
impact causes a local dent in the buoyant leg at collision zone, causing flattening
of both the cylindrical shell and the ring stiffener (Gruben et al., 2016).
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FIGURE 3.29 Indenter velocity.
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FIGURE 3.30 Indenter displacement.
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The ring stiffeners prevent further propagation of damage to the adjacent
bays and thus confining the deformation to be within the bays of collision
zone as seen from Fig. 3.31. The ring stiffener at the impact location under-
goes maximum deformation, whereas the deformation in the adjacent ring

FIGURE 3.31 Deformation of the buoyant leg.

FIGURE 3.32 Deformation of ring stiffener at the collision zone.
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stiffeners is only about 35% of that of the maximum deformation. Thus, ring
stiffeners play a major role in confining the plastic strain within the bays of
the collision zone. The deformation of the ring stiffener at the collision zone is
shown in Fig. 3.32. The stringers between the ring stiffeners collapsed as
a beam at the impact location, and local tripping is also observed in the
stringers close to the ring stiffener.
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FIGURE 3.33 Load versus nondimensional displacement curve.
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FIGURE 3.34 Energy absorbed by buoyant leg.
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(ii) Load–deformation characteristics
The impact force developed during the collision is about 2.19 MN, and it
causes a shell deformation of 0.21 m at the collision zone. During the colli-
sion, the buoyant leg absorbs maximum energy of 0.39 MJ. The load–deform-
ation curve is shown in Fig. 3.33. Flattening of the curve is attributed to the
torsional buckling of the stiffeners. Energy absorbed by the buoyant leg with
the increase in impact duration is shown in Fig. 3.34.

3.20 FUNCTIONALLY GRADED MATERIAL

Although steel is favorite construction material for industrial structures and
offshore platforms, strength degradation and decrystallization of steel at high
temperatures poses a challenge of exploring alternate material. Composites
are chosen as alternatives, but mostly for nonstructural components. A recent
set of studies have explored the suitability of using functionally graded material
(FGM) for high-temperature and high-pressure conditions. A typical application
will be marine risers. Materials with a change in their porosity, composition and
microstructure along its volume are termed as an FGM. They are intended to
perform specific functions, which enable superiority within a set of chosen prop-
erties (Hari, 2018).

Marine risers are under a continuous threat of corrosive environment in the
presence of hydrogen sulfide gas, chlorides and carbon-di-oxide. This section
presents the results of a recent innovative study carried out to assess the suit-
ability of FGM in the marine environment. Marine risers are conduits used to
transport oil and gas from the reservoir to the topside of the platform. The
catenary shape is a commonly used riser configuration for the field develop-
ments in ultra-deep water (Chandrasekaran, 2017, 2015; Chandrasekaran &
Madhuri, 2015). During the production process, risers are subjected to the
corrosive environment due to the presence of hydrogen sulfide gases, chlorides
and CO2. Riser material is preferred to be a corrosion-resistant alloy of
duplex stainless steel, which is functionally graded with carbon manganese
steel and nickel as buffer layers along the inner portion of the riser; titanium
Grade 2 is graded functionally along the external surface of the riser.

While the design of marine risers could be challenging due to increase in
the H2S content and a significant reduction in fatigue strength at sensitive
zones such as weld on thick forged ends, counter-bored riser pipe and clad-
ding are used at the critical locations (Chandrasekaran & Madhuri, 2015;
Chandrasekaran & Thomas, 2016a). Alternatively, composite materials are
found to be an alternate, but delamination poses a threat to their use under
the combination of thermal and mechanical loads of extreme nature. FGM is
designed to overcome the damages posed by delamination as they possess no
distinct material interfaces. Under high temperature and pressure, thermal
stresses occur at the bonding interface of the metals and ceramics due to the
difference in their coefficients of thermal expansion. It leads to a crack forma-
tion and results in delamination at the interface.
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FGMs are used to create thermal barriers, anti-oxidation coatings and
cemented-carbide cutting tools. Thermoelectric materials are fabricated using
functionally graded materials by grading their carrier concentration (Kawasaki
& Watanabe, 1987). Functionally graded materials have a continuous variation
or a step-wise grading of materials, which is application specific. In FGM, the
composition and microstructure are changed along the structure to generate
a property gradient with the combined materials. Pores play a significant role
in the mechanical ingredients of the functionally graded materials. Properties
such as shock resistance, insulation can be improved with an increase in pore
distribution, varying from the interior to the outer surface.

Functional grading combines the advantages of the grouped materials. For
example, Duplex stainless steel has high corrosion-resistance to hydrogen sulfide
gases, chlorides, CO2 and acidic environment. Also, it exhibits higher resistance
to stress corrosion cracking, which is induced by chlorides (Chandrasekaran &
Jain, 2016b). Further, titanium shows a high corrosion resistance under
marine conditions (Chandrasekaran & Srivastava, 2017). The yield strength
and the tangent modulus of these individual materials are used to arrive at
a functionally graded combination; a bilinear strain-hardening approach is
commonly used. Manufacturing of FGMs has been a challenge, but alternate
manufacturing techniques such as sintering, centrifugal forming and substi-
tutional reactions made this process plausible.

Titanium ASTM Grade 2 (E = 105 GPa)
SC/IITM Pure Nickel (E = 190 GPa)

Carbon Manganese Steel (E = 210 GPa)
Pure Nickel (E = 190 GPa)
Duplex Stainless Steel (E = 200 GPa)

FIGURE 3.35 Section of the functionally graded riser.

TABLE 3.3 Functionally graded marine riser details
Layer Material Thickness (mm)

1 Duplex stainless steel (22 Cr) 2209 3

2 Pure nickel buffer layer 2

3 Carbon manganese steel ER70S6 8.47

4 Pure nickel buffer layer 2

5 ASTM Grade 2 titanium 2

Total thickness 17.48
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FIGURE 3.36 Stress–strain curve of FGM.
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Functionally graded with 22Cr Duplex Stainless Steel and ASTM Grade 2
Titanium at the internal and external surface, respectively, are examined for
riser application. A buffer layer of Nickel is used to facilitate the manufactur-
ing process to maintain the desired thickness of the member. A typical section
of the FGM, being examined for marine riser application is shown in Fig.
3.35, while Table 3.3 shows the details of materials.

3.20.1 MATERIAL CHARACTERISTICS OF FGM

A bilinear, strain-hardening approach is used along with the yield strength
and tangent modulus of the individual materials to obtain the stress–strain
curve of FGM. Fig. 3.36 shows the stress–strain curve obtained for the FGM,
used in the present study. Yield strength of 450.4 MPa and Young’s modulus
of 174.506 GPa is obtained from the stress–strain curve. Stress–strain curves
of the individual materials used for grading are shown in Fig. 3.37. Stress–
strain curves of the individual materials are taken from the literature: Pure
Nickel (Borkar et al., 2017); ASTM Titanium Grade 2 (Marchenko, 2016)
and carbon manganese steel (Zhang, 2015), Duplex Stainless Steel (Tavares,
2015). Table 3.4 shows the structural properties of the individual materials
used for grading. The table clearly shows a comparable value of the yield
strength of FGM, in addition to making it corrosion-resistant.

TABLE 3.4 Structural properties of individual materials used for grading
Material Modulus of elasticity Poisson’s ratio

Carbon manganese steel 210 GPa 0.30

Pure nickel 190 GPa 0.315

Duplex stainless steel 200 GPa 0.30

Titanium ASTM Grade 2 105 GPa 0.37

Functionally graded combination 174.506 GPa 0.2987
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4 Stability of Structural
Systems

4.1 CONDITIONS OF STABILITY

As seen above, stability is affected significantly under compressive forces. Further,
geometric stability is more important than material stability as the former may
challenge the functional requirements of the structural member. Therefore, stabil-
ity refers to a stable state of equilibrium and is defined as the ability of any struc-
tural system to remain (or continue to remain) in its geometric form, which is
capable of performing the intended function even if the geometric position is dis-
turbed by external forces. By this definition, compliant offshore structures are
said to be stable as they can perform their intended function at the disturbed geo-
metric position. For example, a TLP is said to be in a disturbing position under
the combined effect of offset and setdown. As long as this change in geometric
position does not affect its load-disbursing capacity, TLP is said to be in a stable
condition. It is therefore not necessary that structures should remain (or continue
to remain) in their original geometric form to classify them as stable. They may
continue to remain stable even under the deformed geometric position, if they
continue to perform their intended function, successfully.

The three criteria of checking stability are (i) Euler’s static criterion,
(ii) Lyapunov’s dynamic criterion and (iii) potential energy stability criterion.
Euler’s static criterion is applicable under the nontrivial equilibrium state. It evalu-
ates the stability of a structural system by examining the optimum geometric con-
figuration of the system other than the original (initially straight) configuration at
which the structural system can still disburse the applied load (Pcr). Under the
given boundary conditions and initially perfect straight geometry, structures are
examined. Euler’s criterion evaluates whether the structure is capable of carrying
the load (maybe in lesser magnitude, which is Pcr where P > Pcr) instead of
remaining is a state where it is unable to carry any load at all. It is interesting to
note that the load carrying capacity of the structural member is reduced from P to
Pcr, but the important fact is that the structural member is capable of carrying at
least Pcr even at a changed geometric form, which is quite weak from that of the
initial form. This value of load with lesser in magnitude in comparison to that of
the originally intended load (P) is termed as critical load or buckling load. It can
be easily seen from the standard literature that Pcr is easily computed from the
boundary conditions, cross-sectional properties of the member and slenderness
ratio. However, instability occurs when two or more adjacent equilibrium positions
correspond to different mode shapes.

For assessing the stability of offshore compliant structures, it is reasonably
simple to disagree application of the Euler’s criterion as the boundary conditions
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of the member do not permit examining Euler’s criterion of stability. They are
either completely floating under hydrodynamic stability or compliant, and hence
stability is dependent on the high-magnitude pretension of tethers. For example,
in the case of TLPs, high pretension imposed on tethers ensures stability and
recentering of the platform under the action of lateral loads. Functional working
of the platform is not lost even under the deformed position of the platform
under wave loads. Note that this condition is true even though the offset values
are quite large (about 10% of that of the initial pretension of tethers) causing
large deformation. Lyapunov’s condition examines the stability of the structural
system under dynamic excitations. If a member is subjected to a continuously
varying disturbing force, then it is necessary to examine whether the condition of
equilibrium under the dynamic forces is satisfied. As explained in the literature
(Srinivasan Chandrasekaran, 2015a, 2015b, 2015c, Chandrasekaran &
Lognath, 2016, 2017a), stability can be influenced by both varying amplitudes
of the exciting force and its period of excitation. While the former can influ-
ence the load carrying capacity of the member, which is the strength-
dependent criterion, the latter can result in unconditional response at the
near-resonance state of vibration. Hence, Lyapunov’s assessment of stability is
focused on the dynamic response behavior of the structural system instead of
purely assessing its load carrying capacity, as in the case of Euler’s criterion.

Lyapunov’s condition is more significant for structures that are designed to
perform their intended function under varying external forces. The most challen-
ging part in the context of stability is that the structure shall also be assuming
a different geometric position with time. Structural systems such as ships, off-
shore complaint platforms and floating production platforms fall under this cat-
egory of stability check. Stability calculations of ships focus on estimating the
center of gravity, the center of buoyancy, metacenter of vessels and their inter-
action. The saving part of such systems is that they are designed to remain hydro-
statically stable at any instant of time. In case of structures that are permitted to
undergo large displacements, as in the case of TLPs, then the geometric design
ensures proper recentering, which means that the structural system continuously
tries to regain its original geometric position with the help of dedicated members
present within the system; in case of TLP, it is tethers. A potential energy stability
criterion applies to structural systems for which the potential energy of the
system ceases to be the minimum, which is more relevant to conservative systems.

4.2 BUCKLING AND INSTABILITY

The loss of structural stability is termed as instability, which can be assessed
based on (i) material properties, (ii) geometric configuration, and (iii) nature
and magnitude of loads acting on the structure. Assessment based on material
strength highlights where the applied load exceeds the accepted strength level of
the material, classifying the structure as unstable. Assessment based on the geo-
metric configuration explores the functional success of the member even under
the deformed (displaced) position while that based on the nature and magnitude
of the loads assesses dynamic instability. In general terms, loss of stability is
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expressed by a load–deformation relationship. Fig. 4.1 shows an unstable situ-
ation; even a small disturbance, the ball can rollover causing instability.

A significant change in the geometric configuration of a structure or any struc-
tural component under compression, resulting in loss of ability to resist the
encountered loads is termed as instability. It is important as this can lead to
a catastrophic failure, as the load carrying capacity of an unstable structural
system is close to zero; hence, it should be properly accounted for in the design.
Instability is a strength-related limit state. Structural systems can become unstable
upon application of excessive loads. Beyond the threshold limits, stresses devel-
oped in the member can magnify the deflections, causing failure. Any structural
system, whose deformation exceeds the permissible limits, is termed as unstable.
Therefore, the stability of any structural system depends upon its ability to with-
stand the encountered load without undergoing excessive deformation. It is
important to note that a structure, which is found to be stable for a load applied
at one section may become unstable under the same magnitude and nature of the
load, but applied at a different section. Stability can be simply illustrated in Fig.
4.2. The ball remains in equilibrium in all the three cases, as the specific locations,
as shown. However, slight disturbance imposed on the ball can change its behav-
ior differently in the three cases. As seen in case (a), the ball can return to its ori-
ginal position upon removal of any disturbing external force and therefore
assumes a stable position. It corresponds to a position in the material stress–
strain curve, within elastic limit. In case (b), the ball is considered as neutrally
stable, as the ball can continue to move under the influence of disturbing external
forces. This state corresponds to a point on the ultimate strength region of the
stress–strain curve of the material. However, in case (c), the ball will not be able
to return to its original position even under a small disturbance caused by an
external force. It is a classical state of instability. It is important to note that loss
of stability, arising either from a change in geometry or change in the structural
configuration adds a new set of additional loads to the structural system. It may
lead to the further classification of instability as flexural buckling, torsional buck-
ling, flexural–torsional buckling and lateral–torsional buckling (Gambhir, 2004).

Flexural buckling (FB) can occur in any compression member, which is under-
going deflection that arises from bending. Two factors that influence flexural buck-
ling are large slenderness ratio and lesser radius of gyration. Torsional buckling

FIGURE 4.1 Unstable condition.
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(TB) can occur in slender compression members that are double symmetric in
shape and arrangement (Fig. 4.3). As seen in the figure, the longitudinal axis of
the members is turned (bent laterally) causing the torsional buckling. It is com-
monly seen in built-up sections due to design inadequacy in terms of sectional
properties along the length of the member. If the loads in any structural system
are set to act through the shear center of the section, then no twisting or torsion
of the member occurs. As the shear center is located on the axis of symmetry,
cross sections that have two axes of symmetry will have a shear center located at
the intersection of both the axes of symmetry. For sections with one axis of sym-
metry, say, for example, a channel section, the shear center can be located from
the standard procedure (Srinivasan Chandrasekaran, 2015). While the center of
gravity (or the mass center) is the point about which moments generated from the
mass of the elements will be zero, the eccentricity of the center of gravity concern-
ing the shear center will result in a couple and causes twisting of the section,
referred as torsional buckling. Distortional buckling is a unique mode of buckling
where the flange of the section rotates at the intersection of the flange and web of
the section. It is also referred to as local-torsional buckling. It occurs mainly due
to adequate stiffening of the web in comparison to that of the flange.

On the other hand, compression members with one axis of symmetry undergo
flexural–torsional buckling (FTB). FTB is a combination of bending and twisting

(a) Stable

(b) Neutrally stable

(c) Unstable

FIGURE 4.2 Stability illustrations: (a) stable; (b) neutrally stable; (c) unstable.
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of a member under compressive loads. This type of buckling is commonly seen in
members of open cross sections subjected to compressive loads. A few examples
of open sections are channel sections, tee sections and angle sections. The main
reason, which is common with these open sections, is the lower torsional stiffness.
It is important to note that circular cross sections do not experience such mode
of buckling. Fig. 4.4 shows a schematic view of a cantilever beam undergoing
flexural–torsional buckling.

Lateral–torsional buckling (LTB) occurs in open sections as well. Consider
a simply supported beam under central concentrated load, causing bending.
While the top fiber experiences compression, bottom fiber experiences tension.

p2 p1

FIGURE 4.4 Cantilever under flexural torsional buckling.
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FIGURE 4.3 Torsional buckiling of slender compression member.

Stability of Structural Systems 137



Considering a long-span condition of the beam, if the compression flange is
not laterally supported, it experiences both large and lateral deflection. Hence,
the beam will twist in addition to a large lateral deflection, whose combination
is termed as lateral–torsional buckling. Even the width of the compression
flange (bf) significantly influences the nature of the buckling mode. Sections
with wide compression flange will undergo twisting in torsion, but narrow-
flange sections experience lateral buckling due to their reduced bending stiffness.
Box sections (with a square side), even being hollow, shall not experience lat-
eral–torsional buckling due to their high torsional rigidity. Fig. 4.5 shows
a schematic view of an I-section undergoing lateral–torsional buckling. The flex-
ural strength of the member, undergoing lateral torsional buckling, will be
modified using a modification factor, as given below:

Modification factor ¼ 12:5 Mmax

2:5 Mmax þ 3 MA þ 4 MB þ 3MC½ � ð4:1Þ

where Mmax is the maximum moment in the unbraced segment of the
member, MA, MB and MC are maximum values of the moments at the quar-
ter, mid and 3/4th points of the unbraced segment of the member. The modifi-
cation factor allows the use of non-uniform moment diagrams at the end of
the beam segments that are braced.

If a compression member is loaded suddenly and then released, it can sus-
tain a higher load than its static buckling load. Let us consider a long, unsup-
ported column used as a drop hammer. The duration of impact load
(compression) at one end is the time required for a stress wave to travel along
the length of the column and to return. It is seen that the maximum buckling
occurs near the impact end as the wavelength is shorter than the length of the
member; however, the stress will be much higher than that of the buckling
stress of any statically loaded column. It is referred to as dynamic buckling.

Stability analysis evaluates the modes of failure in terms of the structural
stability; each mode will yield a corresponding load under which instability

x
y

z

FIGURE 4.5 Lateral–torsional buckling of I-section.
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occurs (or initiated). These loads are termed as critical loads. It is important
to note that the structural system remains at rest before instability occurs and
also remains at rest immediately after when the failure is initiated by buckling.
Four classical methods namely (i) equilibrium state approach, (ii) work
approach, (iii) energy principle and (iv) dynamic approach are useful in solv-
ing the buckling problems. However, in case of the dynamic instability, loss of
stability is just a transition from the state of rest to the state of motion.

4.3 EULER CRITICAL LOAD

Consider an ideal column, as shown in Fig. 4.6. The column is assumed to be
initially straight and compressed by a concentric load, P as shown in the figure.

The column is pinned at both the supports and uniformly slender. Further, it
is assumed to be laterally restrained in position at both the supports. The column
section is assumed to be of negligible weight and perfectly elastic. Stresses devel-
oped by the axial forces are assumed to be within the proportional limit of the
column material. If the applied force, P, is lesser than the critical value, then the
column will continue to remain straight and undergoes only axial compression.
Under this state, the column is said to be in stable equilibrium. Under such condi-
tion, if a lateral load is applied at any point, say, for example, at the mid-height
of the column, it will result in lateral deflection. However, importantly, the
column will return to its original position in terms of geometry and shape and
size in terms of its cross section.

However, upon a continuous (in a steady rate) increase of the axial load, P, the
straight form of equilibrium tends to become gradually unstable. Under this con-
dition, even the lateral of a very small magnitude can cause lateral deflection,

FIGURE 4.6 Euler column.
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which will not disappear upon the removal of the lateral load; note that this was
not the case when P is lesser than the axial capacity of the member, as discussed
earlier. Based on the two sets of explanations, one can define a critical load. The
critical load is the axial load, which is necessary to maintain (or continue to
maintain) the member in its initial-straight position (Timoshenko and Gere,
1961). This critical load can be computed based on the elastic curve equation of
a beam (Livesley and Chandler, 1956).

d2y
d2x

¼ M
EI

ð4:2Þ

where M is bending moment, I is the moment of inertia and E is the modulus
of elasticity. Fig. 4.7 shows the free-body diagram of the column member
under the applied load.

With reference to the figure, the equilibrium of the free-body diagram is
written as follows:

EI
d2y
d2x

¼ M ¼ � Py ð4:3Þ

EI
d2y
d2x

þ Py ¼ 0 ð4:4Þ

y ¼ A sin
αx
L

h i
þ B cos

αx
L

h i
ð4:5Þ

where α ¼ L
ffiffiffiffi
P
EI

q
For the boundary condition at x = 0; y = 0, B = 0
Hence, Eq. (4.5) becomes

y ¼ A sin
αx
L

h i
ð4:6Þ

FIGURE 4.7 Free-body diagram of the column member.
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Further, at x = L, y = 0; applying this boundary condition, Eq. (4.6) becomes
as follows:

A sin αð Þ ¼ 0 ð4:7Þ
which means that either A = 0 or sin (α) = 0. If A = 0, there will no lateral
deflection. Therefore, setting sin (α) = 0

α ¼ nπ for n ¼ 0; 1; 2; 3;… ð4:8Þ

Substituting Eq. (4.8), we get:

nπ ¼ L

ffiffiffiffiffiffi
P
EI

r
ð4:9Þ

Squaring,

n2π2 ¼ L2 P
EI

ð4:10Þ

P ¼ n2π2EI
L2 for n ¼ 1; 2; 3; 4;… ð4:11Þ

n = 0 is meaningless as this will cause no axial load (P = 0)
In Eq. (4.11), P is called a Euler critical load.

PE ¼ n2π2EI
L2 for n ¼ 1; 2; 3; 4;… ð4:12Þ

4.4 STANDARD BEAM ELEMENT, NEGLECTING AXIAL
DEFORMATION

A beam element, shown in Fig. 4.14, is one of the basic elements to be used
in the stability analysis. A few sign conventions are required to be followed
before deriving the stiffness matrix of the standard beam element.

1. The end moment, joint rotation and joint moments, which are anti-
clockwise in nature, are considered to be positive.

2. Upward force (or displacement) of the joint is considered a positive value.
3. Force or axial displacement toward the right of the joint is also con-

sidered as positive.
4. Upward end shear at ends of the beam is positive.
5. Right direction force at ends of the beam is positive.

Consider a fixed beam undergoing deformation due to bending, neglecting the
axial deformation. The standard fixed beam is shown in Fig 4.8. End nodes of
the beam are designated as j and k ends while the length of the member is
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designated as Li; subscript ‘i’ refers to the member index. The beam has
a constant EI over its entire length. The axes (xm, ym) are the local axes of the
member. It is very important to note the axis system. Axis system is such that it
has an origin at the j th end; xm is directed toward a kth end. ym is counterclock-
wise 90° to the xm axis. Therefore, (xm, ym) plane defines the plane of bending the
beam element.

Neglecting the axial deformation, one should identify both the translational
and rotational displacements at each end of the beam, as shown in Fig. 4.9.
Suitable subscripts are used for denoting the rotational and translational dis-
placements, as marked in the figure. The displacements at the jth end and kth
end are θp; δr

	 

and θq; δs

	 

, respectively. All these displacements happen in

xm, ym plane and there is no out of plane bending.
By classical definition, the stiffness coefficient, kij is the force in the ith degree

of freedom by imposing unit displacement (either translational or rotational) in
the jth degree of freedom by keeping all other degrees-of-freedom restrained. As
seen in the above figure, there are four degrees of freedom (two rotations and two
translations). One should give unit displacement (or rotation) in each degree of
freedom to find the forces (or moments) in the respective degrees of freedom by
keeping the remaining degrees-of-freedom restrained. Imposing unit displacement
represents δr = 1 or δs= 1 and that of unit rotation implies θp = 1 or θq = 1.

Let us apply unit rotation at the jth end, keeping all other degrees-of-freedom
restrained as shown in Fig. 4.10. It will invoke the members with the end forces,
kipp; kiqp; k

i
rp; kisp as seen in the figure. kipp is the force in pth degree of freedom by

FIGURE 4.8 Standard beam element.

FIGURE 4.9 Rotational and translational moments in the standard beam.
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giving unit displacement in pth degree of freedom; superscript ‘i’ refers to the ith
member. Similarly, kiqp is the force in qth degree of freedom by giving unit displace-
ment in pth degree of freedom in the ith member. The second subscript in all the
notations is common, which is ‘p’, indicating that the unit displacement (in this
case, it is unit rotation since p is a rotational degree of freedom) is applied at pth
degree. The stiffness coefficients derived column-wise correspond to the first
column of the stiffness matrix. Similarly, applying unit rotation at the kth end of
the ith member, as shown in Fig. 4.11, develops the stiffness coeffi-
cients (kipq; kiqq; k

i
rq; kisq).

The stiffness coefficients are obtained by applying unit displacements at the jth
end and kth end, as shown in Figs. 4.12 and 4.13, respectively, which yields the
stiffness coefficients at the jth end as (kipr; kiqr; k

i
rr; kisr) and at kth end as

(kips; kiqs; k
i
rs; kiss), respectively. As shown in the figures, a tangent can be drawn

FIGURE 4.11 Unit rotation at the jth end of standard beam.

FIGURE 4.12 Unit displacement at the jth end of standard beam.

FIGURE 4.10 Unit rotation at the jth end of standard beam.
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by connecting the deflected position of the beam at which the unit rotation is
applied and the initial position of the beam at the other end. It can be easily
inferred that the beam has undergone a rotation of (1/Li), where Li is the length
of the ith beam element. The rotation at the ends of the beam is equal to (1/Li).

The corresponding end reactions (moment, shear) for the ith beam element are
required to be estimated under the arbitrary end displacements θp; δr

	 

and

θq; δs
	 


at the jth and kth ends of the beam. They are estimated by maintaining
the equilibrium of the restrained member. The governing equations are as follows:

mi
p ¼ kippθp þ kipqθq þ kiprδr þ kipsδs ð4:13Þ

mi
q ¼ kiqpθp þ kiqqθq þ kiqrδr þ kiqsδs ð4:14Þ

pir ¼ kirpθp þ kirqθq þ kirrδr þ kirsδs ð4:15Þ

pis ¼ kispθp þ kisqθq þ kisrδr þ kissδs ð4:16Þ

It can be seen from the above equation that the first subscript corresponds to
the end at which the unit rotation (or displacement) is applied. The above set
of equations gives the end moments and end shear forces for arbitrary dis-
placements ðθp; θq; δr; δsÞ; which are unity at respective degrees of freedom.
These equations can be generalized as follows:

mif g ¼ k½ �i δif g ð4:17Þ

mif g ¼
mp

mq
pr
ps

8><
>:

9>=
>; ð4:18Þ

δif g ¼
θp
θq
δr
δs

8><
>:

9>=
>; ð4:19Þ

FIGURE 4.13 Unit displacement at the kth end of standard beam.
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k½ �i ¼
kpp kpq kpr kps
kqp kqq kqr kqs
krp krq krr krs
ksp ksq ksr kss

2
664

3
775 ð4:20Þ

Fig. 4.14 shows the forces at both the ends of the standard beam member
under unit rotation applied at the jth end of the member.

In the standard fixed beam element with unit rotation at the jth end, moments
developed at the ends to control the applied unit rotation are (kipp; kiqp), respect-
ively. It results in the development of an anticlockwise moment (kipp þ kiqp), which
should be counteracted by a coupled shear. The shear forces at the ends of the

beam are determined as
kippþkiqp

Li

h i
. At the jth and kth end of the beam, magni-

tude of the shear will be the same, but it will be in the opposite direction at
the jth end of the member. It can be seen that the second subscript in the stiff-
ness coefficients indicates the end at which the unit rotation is applied and the
first subscript indicates the forces in the respective degrees of freedom. With ref-
erence to the above figure, it is clear that one need to evaluate only a set of rota-
tional coefficients in Eq. (4.20). These rotational coefficients are
(kipp; kipq; k

i
qp; kiqq). Knowing the rotational coefficients, end shear can be

expressed as follows:

kirp ¼
kipp þ kiqp

Li
ð4:21Þ

kisp ¼ � kipp þ kiqp
Li

ð4:22Þ

The negative sign in Eq. (4.22) is because of the direction of kisp is opposite to
that of the end shear developed by the restraining moments as shown in the
Fig. 4.14. For the unit rotation applied at the kth end, end shear, in terms of
the rotational coefficients is given as

FIGURE 4.14 Rotation coefficients of standard beam.
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kirq ¼
kipq þ kiqq

Li
ð4:23Þ

kisq ¼ � kipq þ kiqq
Li

ð4:24Þ

By applying unit displacement at the jth end of the beam element, the stiffness
coefficients can be expressed as

kipr ¼
kipp þ kipq

Li
ð4:25Þ

kiqr ¼ � kiqp þ kiqq
Li

ð4:26Þ

kirr ¼
kipr þ kiqr

Li
¼ kipp þ kipq

Lið Þ2
" #

þ kiqp þ kiqq
Lið Þ2

" #
ð4:27aÞ

kirr ¼
kipp þ kipq þ kiqp þ kiqq

Lið Þ2 ð4:27bÞ

kisr ¼ � kipp þ kipq þ kiqp þ kiqq
Lið Þ2 ð4:28Þ

BY giving unit displacement at the kth end of the beam element, the stiffness
coefficients are expressed as

kips ¼ � kipp þ kipq
Li

ð4:29Þ

kiqs ¼ � kiqp þ kiqq
Li

ð4:30Þ

kirs ¼ � kips þ kiqs
Li

¼ � kipp þ kipq þ kiqp þ kiqq
Lið Þ2 ð4:31Þ

kiss ¼
kipp þ kipq þ kiqp þ kiqq

Lið Þ2 ð4:32Þ

It can be seen from the above expression that out of 16 coefficients of the stiffness
matrix given in Eq. (4.20), one needs to evaluate only the four rotational
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coefficients (kipp; kipq; k
i
qp; kiqq). Remaining coefficients can be expressed as

a function of these rotational coefficients. The complete stiffness matrix is
given as

½k� ¼

kpp kpq
kppþkpq

L � kppþkpq
L

� �
kqp kqq

kqpþkqq
L � kqpþkqq

L

� �
kppþkpq

L
kpqþkqq

L
kppþkpqþkqpþkqq

L2
kppþkpqþkqpþkqq

L2

� kppþkpq
L

� �
� kpqþkqq

L

� �
� kppþkpqþkqpþkqq

L2

� �
� kppþkpqþkqpþkqq

L2

� �

2
6666664

3
7777775

ð4:33Þ

4.4.1 ROTATIONAL COEFFICIENTS

Consider a simply supported beam as shown in Figs. 4.15 and 4.16. Unit rotation
is applied at the (j, k) ends of the beam to obtain the flexibility coefficients,

respectively. The flexibility coefficients δijj; δ
i
kj

� �
define rotations at end j and k,

respectively, of the ith member, caused due to unit moment applied at the jth end

(refer Fig. 4.21). Similarly, the flexibility coefficients δijk; δ
i
kk

� �
define rotations at

jth and kth ends of the ith member due to unit moment applied at kth end.
Let us now consider a beam fixed at the kth end, imposed by unit rotation at

the jth end (Fig. 4.17) and unit rotation at the kth end as shown in Fig. 4.18.

The stiffness coefficients kipp; k
i
qp

� �
define end moments required at jth and kth

ends to maintain equilibrium when the jth end is subjected to unit rotation while

the kth end is restrained. Similarly, the stiffness coefficients kipq; k
i
qq

� �
define

FIGURE 4.15 Unit rotation at the jth end of the simply supported beam.

FIGURE 4.16 Unit rotation at the kth end of the simply supported beam.
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end moments required at the jth and the kth ends to maintain equilibrium, when
the kth end is subjected to unit rotation and the jth end, is restrained.

Thus,

δjj δjk
δkj δkk

� �
kpp kpq
kqp kqq

� �
¼ 1 0

0 1

� �
ð4:34Þ

Expanding the above equation, we get:

kippδ
i
jj þ kiqpδ

i
jk ¼ 1 ð4:35aÞ

kippδ
i
kj þ kiqpδ

i
kk ¼ 1 ð4:35bÞ

kipqδ
i
jj þ kiqqδ

i
jk ¼ 1 ð4:35cÞ

kipqδ
i
kj þ kiqqδ

i
kk ¼ 1 ð4:35dÞ

Let us denote the flexibility matrix as [Dr] and stiffness matrix as [kr]. The subscript
r refers to the rotational degrees of freedom. To estimate the flexibility matrix for
the beam element, assume the simply supported beam with the unit moment at the
jth end as shown in Fig. 4.19. The anticlockwise moment is balanced by the clock-
wise couple created by the forces. The bending moment diagram is also shown in
the figure with tension at top and compression at the bottom.

Let us replace the loading diagram with a conjugate beam as shown in Fig.
4.20. Taking moment about A,

FIGURE 4.17 Unit rotation at the jth end of fixed beam.

FIGURE 4.18 Unit rotation at the kth end of fixed beam.
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VB ¼ 1
2
Li

1
EI

� �� �
1
3
Li

� �
1
Li

¼ Li

6EI
downwardð Þ ð4:36aÞ

VA ¼ 1
2
Li

1
EI

� �� �
� Li

6EI
¼ Li

3EI
upwardð Þ ð4:36bÞ

The same procedure is followed for the other case to derive the following
flexibility matrix.

Dr ¼
L
3EI � L

6EI

� L
6EI

L
3EI

" #
ð4:37Þ

FIGURE 4.20 Conjugate beam.

FIGURE 4.19 Simply supported beam with the unit moment at the jth end.
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kr ¼ Dr½ ��1 ¼ 12 EIð Þ2
L2

L
3EI

L
6EI

L
6EI

L
3EI

" #
¼

4EI
L

2EI
L

2EI
L

4EI
L

" #
ð4:38Þ

Thus, from the above four rotational coefficients, the whole stiffness matrix
can be derived as

Ki ¼

4EI
l

2EI
l

6EI
l2 � 6EI

l2

2EI
l

4EI
l

6EI
l2 � 6EI

l2

6EI
l2

6EI
l2

12EI
l3 � 12EI

l3

� 6EI
l2 � 6EI

l2 � 12EI
l3

12EI
l3

2
666664

3
777775 ð4:39Þ

4.5 STABILITY FUNCTIONS

Consider a beam element, both ends fixed, as shown in Fig. 4.21. It is import-
ant to note that the beam element is subjected to axial compressive load, Pa,
as shown in the figure.

4.5.1 ROTATION FUNCTIONS UNDER AXIAL COMPRESSIVE LOAD

To obtain the stiffness coefficients, let us now apply unit rotation at the jth end of
the member. Fig. 4.22 shows the rotations and shear developed at both the ends
of the member due to the unit rotation applied at the jth end of the member.

FIGURE 4.22 Unit rotation at the jth end of fixed beam.

FIGURE 4.21 Fixed beam under axial compressive load.
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From the above figure and based on the expressions derived in Section 4.7,
the following expressions can be written as

kpp þ kqp
	 


Li
¼ krp ¼ �ksp ð4:40Þ

A free-body diagram, under the influence of the applied unit rotation and the
axial compressive load, is shown in Fig. 4.23.

With reference to figure, and applying the differential equation as given in
Eq. (4.2), we get:

EI
d2y
d2x

¼ M ð4:41Þ

¼ �Pa yð Þ � kpp þ krp xð Þ ð4:42Þ

Substituting Eq. (4.40) into Eq. (4.42), we get:

EI
d2y
d2x

¼ �Pa yð Þ � kpp þ
kpp þ kqp
	 


Li
xð Þ ð4:43Þ

In the above equation, let us express the axial load (Pa as a function of Euler
load (PE), as follows:

Pa ¼ ’i PE ð4:44Þ

Substituting Eq. (4.12) in the above equation, we get:

Pa ¼ π2’i EI
L2 for n ¼ 1 ð4:45Þ

It is important to note that buckling is happening in the plane where unit
rotation is applied. Therefore, Eq. (4.43) is modified as

EI
d2y
d2x

¼ �π2’i EI
L2
i a

yð Þ � kpp þ
kpp þ kqp
	 


Li
xð Þ ð4:46Þ

FIGURE 4.23 Free-body diagram under axial load and unit rotation at the jth end.
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Dividing by (EI) and rearranging the terms, we get:

d2y
d2x

þ π2’i

L2
i

yð Þ ¼ 1
EI

kpp þ kqp
	 
 x

Li
� kpp
	 
� �

ð4:47Þ

The general solution of Eq. (4.47) is given as

y ¼ A sin
αix
Li

� �
þ B cos

αix
Li

� �
þ L2

i

α2i EI
kpp þ kqp
	 
 x

Li
� kpp
	 
� �

ð4:48Þ

αi ¼ π
ffiffiffiffiffi
’i

p ð4:49Þ

Applying the boundary conditions: y = 0 at x = 0, we get:

B ¼ L2
i

α2i EI
kpp ð4:50Þ

Substituting another boundary condition y = 0 at x = L in Eq. (4.48),
we get:

0 ¼ A sin αið Þ þ B cos αið Þ þ L2
i

α2i EI
kqp ð4:51aÞ

� L2
i

α2i EI

� �
kqp
	 
 ¼ A sin αið Þ þ B cos αið Þ ð4:51bÞ

� L2
i

α2i EI

� �
kqp
	 
� L2

i

α2i EI

� �
kpp
	 


cos αið Þ ¼ A sin αið Þ ð4:51cÞ

� L2
i

α2i EI

� �
kqp
	 
þ kpp

	 

cos αið Þ

sin αið Þ
� �

¼ A ð4:51dÞ

� L2
i

α2i EI

� �
kqp cosec αið Þ þ kpp cot αið Þ
 � ¼ A ð4:51eÞ

Substituting Eq. (4.51e) and Eq. (4.50) into Eq. (4.48), we get:

α2i EI
L2
i

y ¼� kpp cot αið Þ þ kqp cosec αið Þ
 �
sin

αix
Li

� �
þ kpp cos

αix
Li

� �

þ kpp þ kqp
	 
 x

Li
� kpp

ð4:52Þ
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Differentiating once, we get:

α2i EI
L2
i

dy
dx

¼� αi
Li

kpp cot αið Þ þ kqp cosec αið Þ
 �
cos

αix
Li

� �

� αi
Li

kpp sin
αix
Li

� �
þ kpp þ kqp
	 
 1

Li

ð4:53Þ

α2i EI
Li

dy
dx

¼ kpp 1� αi sin
αix
Li

� �
� αi cot αið Þ cos αix

Li

� �� �

þ kqp 1� αi cosec αið Þ cos
αix
Li

� �� � ð4:54Þ

Note: at x = 0, slope (dy/dx) is equal to ɵp, which is equal to unity in the
present case Applying the boundary condition (at x = L, dy/dx = 0), we get:

0 ¼ kpp 1� αisin αið Þ � αi cot αið Þ cos αið Þ½ �
þ kqp 1� αi cosec αið Þ cos αið Þ½ � ð4:55Þ

0 ¼ kpp � kpp αi sin αið Þ þ cos αið Þ2
sin αið Þ

" #
þ kqp � kqp αi cot αið Þ ð4:56Þ

The above equation is simplified to obtain the stiffness coefficient as

kqp ¼ αi � sin αið Þ
sin αið Þ � αicos αið Þ
� �

kpp ð4:57aÞ

Similarly, at x = 0, the slope is unity, which implies the following relationship:

kpp ¼ αi sin αið Þ � αicos αið Þð Þ
2 1� cos αið Þð Þ � αisin αið Þ
� �

EI
Li

ð4:57bÞ

By expressing the stiffness coefficients as a function of rotation functions (ri
and ci), we get the following set of equations:

ri ¼ αi sin αið Þ � αicos αið Þð Þ
2 1� cos αið Þð Þ � αi sin αið Þ ð4:58aÞ

ci ¼ αi � sin αið Þ
sin αið Þ � αicos αið Þ ð4:58bÞ

The above equations are termed as rotation functions for compressive axial
load case.
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4.5.2 ROTATION FUNCTIONS UNDER ZERO AXIAL LOAD (SPECIAL CASE)

For a special case of zero axial loads, for which (αiÞ becomes zero, one need
to apply L’Hospital rule to obtain the limit of the quotient. L’Hospital rule is
briefly explained for the benefit of the readers:

Suppose f(x) and g(x) are differentiable functions and g’(x) ≠ 0 on an open
interval I, which contains (a) {except at a}, then the following conditions apply:

Suppose, limx!a f xð Þ ¼ 0; limx!a g xð Þ ¼ 0 (or) limx!a f xð Þ ¼ 	∞;

limx!a g xð Þ ¼ 	∞ then, it may reduce to a form (0/0) or ∞=∞ð Þ. In such

cases, the following equations hold good:

limx!0
f xð Þ
g xð Þ ¼ limx!a

f 0 xð Þ
g0 xð Þ if the limit of RHS exists. For example,

lim
x!0

ex � 1
x2 þ x

¼ lim
x!0

d
dx

ex � 1ð Þ
d
dx

x2 þ x
	 
 ¼ lim

x!0

ex

2xþ 1ð Þ ¼ 1

L’Hospital rule uses derivatives to evaluate the limits involving indeterminate
forms. It states that for indeterminate functions (or forms), where the unity
tends to a form (0/0) or ∞=∞ð Þ, the limit of that form is equal to the limit of
the derivatives. L’Hospital rule may be applied as many times until the func-
tion does not reduce the form (0/0) or ∞=∞ð Þ.

Now, let us consider Eqs. (4.58a–4.58b). As (αi) approaches zero, both
f αið Þ
g αið Þ
h i

approaches zero. Then, one can apply the L’Hospital rule as explained

earlier, which will yield the following results:

ri @ ’i¼0 ¼ 4 ð4:59aÞ

ci @ ’i¼0 ¼ 0:5 ð4:59bÞ

Hence, at zero axial loads, the stiffness coefficients reduce to the conventional
carryover factors of the beam.

Substituting Eq. (4.58a–4.58b) into Eq. (4.57a, 4.57b), we get:

kpp ¼ ri
EI
Li

ð4:60aÞ

kqp ¼ ci kpp ð4:60bÞ

krp ¼ kpp þ kqp
Li

¼ ri
EI
L2
i

1þ cið Þ ð4:60cÞ

ksp ¼ �krp ð4:60dÞ

By applying unit rotation at the kth end (refer to Fig. 4.24), another set of
stiffness coefficients can be derived as follows.
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kpq ¼ ci ri
EI
Li

ð4:61aÞ

kqq ¼ ri
EI
Li

ð4:61bÞ

4.5.3 ROTATION FUNCTIONS UNDER AXIAL TENSILE LOAD

If the beam member is subjected to axial tensile load, then (’i) becomes nega-
tive. In that case, the following condition holds good:

βi ¼ π
ffiffiffiffiffiffiffiffiffi�’i

p ¼ i π
ffiffiffiffiffi
’i

p ¼ iαi ð4:62Þ

Further,

sin βið Þ ¼ eiβi � e�iβi

2i
ð4:63aÞ

cos βið Þ ¼ eiβi þ e�iβi

2
ð4:63bÞ

Substituting Eq. (4.62) into Eq. (4.63), we get:

sin βið Þ ¼ ei
2 αi � e�i2 αi

2i
¼ e�αi � e αi

2i
ð4:64aÞ

cos βið Þ ¼ ei
2 αi þ e�i2 αi

2
¼ e�αi þ e αi

2
ð4:64bÞ

Rotation constants at the jth end can be obtained by substituting Eq. (4.64a–
4.64b) into Eq. (4.58), along with Eq. (4.62), as given below:

ri ¼
iαi

e�αi � eαi

2i

� �
� iαi

e�αi þ eαi

2

� �� �

2 1� e�αi þ eαi

2

� �
� iαi

e�αi � eαi

2i

� � ð4:65aÞ

ci ¼
iαi � e�αi � eαi

2i

� �
e�αi � eαi

2i
� iαi

e�αi þ eαi

2

� � ð4:65bÞ

FIGURE 4.24 Unit rotation at the kth end under axial load.
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The above equations can be further simplified as follows:

ri ¼
αi

e�αi � eαi

2

� �
þ αi

e�αi þ eαi

2

� �� �

2 1� e�αi þ eαi

2

� �
� αi

e�αi � eαi

2

� � ð4:66aÞ

ci ¼
αiþ

e�αi � eαi

2

� �

� e�αi � eαi

2

� �
� αi

e�αi þ eαi

2

� � ð4:66bÞ

Using the following hyperbolic functions as given below:

sinh αi ¼ eαi � eαi

2
ð4:67aÞ

cosh αi ¼ eαi þ eαi

2
ð4:67bÞ

By considering the absolute values of ’i, Eq. (4.66) will reduce to the follow-
ing form:

ri ¼ αi αi cosh αi � sinh αið Þ
2 1� cosh αið Þ þ αi sinh αi

ð4:68aÞ

ci ¼ αi � sinh αi
sinh αi � αi cosh αi

ð4:68bÞ

Rotation constants of the member, under compressive and tensile axial loads,
as derived above are plotted for a wide range of values of ’. Table 4.1 also
gives these values at closer intervals, which are useful in calculating the critical
buckling load. Examples, dealing with the estimate of critical buckling load,
are presented in Section 4.11.

4.5.4 TRANSLATION FUNCTION UNDER AXIAL COMPRESSIVE LOAD

Fig. 4.25 shows unit translation at the jth end of the beam under axial com-
pressive load.

By taking moments of all forces about the kth end of the member, we get:

Pa 1ð Þ � kpr þ krr Lið Þ � kqr ¼ 0 ð4:69Þ

krr ¼
Pa 1ð Þ � kpr þ kqr

	 

Li

ð4:70Þ
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ksr ¼ �krr ð4:71Þ

With reference to the Fig. 4.25, the following expressions can be written. Due
to the end rotations, we get the end moments as

kpr ¼ ri
EI
Li

� �
1
Li

� �
þ ri ci

EI
Li

� �
1
Li

� �
ð4:72aÞ

kqr ¼ ri ci
EI
Li

� �
1
Li

� �
þ ri

EI
Li

� �
1
Li

� �
ð4:72bÞ

kqr ¼ kpr ¼ ri 1þ cið Þ EI
L2
i

� �
ð4:72cÞ

Substituting Eq. (4.72) into Eq. (4.70), we get the expressions for end
shear as

krr ¼ �ksr ¼ 2 ri 1þ cið Þ EI
L3
i

� �
� Pa

Li
ð4:73Þ

For zero axial load, the equation for the end shear reduces to the following
form:

krr ¼ �ksr ¼ 2 ri 1þ cið Þ EI
L3
i

� �
ð4:74Þ

Hence, to make a general form, both in the presence and absence of axial
load, the following function holds good to express end shear:

FIGURE 4.25 Unit translation at the jth end of the fixed beam under axial load.
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krr ¼ �ksr ¼ ti 2 ri 1þ cið Þ EI
L3
i

� �� �
ð4:75Þ

where ti is known as the translation function. To obtain the translation func-
tion, let us now equate the axial load function as discussed below.

We know the following relationship (Eq. 4.45):

Pa ¼ π2’i EI
L2
i

for n ¼ 1

Now equating (4.75) and (4.73), we get:

ti 2 ri 1þ cið Þ EI
L3
i

� �� �
¼ 2 ri 1þ cið Þ EI

L3
i

� �
� Pa

Li
ð4:76Þ

ti ¼ 1� Pa

2 ri 1þ cið Þ
� �

L2
i

EI

� �� �
ð4:77Þ

Substituting for Pa, we get:

ti ¼ 1� π2’i

2 ri 1þ cið Þ ð4:78Þ

Similarly, by inducing unit rotation at the kth end of the beam, other coeffi-
cients (kps, kqs, krs, kss) will be generated as

kps ¼ krs ¼ �ri 1þ cið Þ EI
L2
i

� �
ð4:79aÞ

krs ¼ �kss ¼ �2 ti ri 1þ cið Þ EI
L3
i

� �
ð4:79bÞ

By neglecting the axial deformation, member stiffness matrix of a fixed
beam under axial load (either compressive or tensile) is given by the follow-
ing form:

Ki½ � ¼ EI

ri
Li

ciri
Li

ri 1þcið Þ
L2
i

� ri 1þcið Þ
L2
i

ciri
Li

ri
Li

ri 1þcið Þ
L2
i

� ri 1þcið Þ
L2
i

ri 1þcið Þ
L2
i

ri 1þcið Þ
L2
i

2tiri 1þcið Þ
L3
i

� 2tiri 1þcið Þ
L3
i

� ri 1þcið Þ
L2
i

� ri 1þcið Þ
L2
i

� 2tiri 1þcið Þ
L3
i

2tiri 1þcið Þ
L3
i

2
666666664

3
777777775

ð4:80Þ

158 Advanced Steel Design of Structures



4.6 LATERAL LOAD FUNCTIONS UNDER UNIFORMLY
DISTRIBUTED LOAD

In this section, we shall derive the lateral load’s functions for the fixed beam
loaded under uniformly distributed load, in the presence of the axial load. Con-
sider a fixed beam, loaded as shown in Fig. 4.26. Here, Mp does not refer to
the plastic moment of resistance but indicates moment at the jth end under the
rotation of ɵp. Alternatively, Mp also refers to the fixed end moment (FeMp).

Consider the free-body diagram, as shown in Fig. 4.27.
Under the fixed beam subjected to uniformly distributed load, end rotation

and shear are developed as shown in the above figures. Following equation
holds good:

EI
d2y
dx2

¼ M ðfor x5aLiÞ ð4:81Þ

¼ � Mp � Pa �yð Þ � Pr xð Þ þ �wð Þ x
2

2

� �
ð4:82Þ

FIGURE 4.27 Free-body diagram (x < aLi).

FIGURE 4.26 Fixed beam under uniformly distributed load and axial compressive load.
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The general solution to Eq. (4.82) is given as

y¼Asin
αix
Li

� �
þBcos

αix
Li

� �
� L2

i

α2i EI
Mpþw

L2
i

α2i

� �
�wx

2
2Pr

w
þx

� �� �
ð4:83Þ

Differentiating once, we get:

dy
dx

¼ αi
Li

A cos
αix
Li

� �
� αi
Li

B sin
αix
Li

� �
þ L2

i

α2i EI
Pr þ wxð Þ ð4:84Þ

Applying the boundary conditions:
@ x ¼ 0;

y ¼ 0
dy
dx ¼ 0

�
ð4:85Þ

B ¼ L2
i

α2i EI
Mp þ w

L2
i

α2i

� �� �
ð4:86aÞ

A ¼ � L3
i

α3i EI
Pr

� �
ð4:86bÞ

Substituting Eq. (4.86) into Eq. (4.83), we get:

α2i EI
L2
i

� �
y ¼� Li

αi
Pr

� �
sin

αix
Li

� �
þ Mp þ w

L2
i

α2i

� �� �
cos

αix
Li

� �

�Mp � w
L2
i

α2i

� �
þ wx

2
2Pr

w
þ x

� �
for 0 � x � aLi

ð4:87aÞ

Substituting Eq. (4.86) into Eq. (4.84), we get:

α2i EI
L2
i

� �
dy
dx

¼� αi
Li

� �
Pr cos

αix
Li

� �
� αi
Li

Mp þ w
L2
i

α2i

� �� �
sin

αix
Li

� �
þ Pr þ wxð Þ for 0 � x � aLi

ð4:87bÞ

For the position of the uniformly distributed load (x > aLi), Eq. (4.82–4.83)
reduces to the following form (refer Fig. 4.28):

EI
d2y
dx2

¼ M ¼ � Mp � Pa �yð Þ � Pr xð Þ þ �waLið Þ x� aLi

2

� �� �
ð4:88Þ

The general solution to Eq. (4.88) is given as

y ¼ A sin
αix
Li

� �
þ B cos

αix
Li

� �
� L2

i

α2i EI
Mp þ wa2L2

i

2
� Pr þ waLið Þx

� �
ð4:89Þ
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Differentiating once, we get the following form:

dy
dx

¼ αi
Li

A cos
αix
Li

� �
� αi
Li

B sin
αix
Li

� �
þ L2

i

α2i EI
Pr þ waLið Þ ð4:90Þ

Applying the boundary conditions:

@ x ¼ Li;
y ¼ 0
dy
dx ¼ 0

�
ð4:91Þ

A ¼ L2
i

α2i EI
Mp þ wa2L2

i

2

� �
sin αið Þ � Li Pr þ w aLið Þ sin αið Þ þ cos αið Þ

αi

� �� �
ð4:92aÞ

B ¼ L2
i

α2i EI
Mp þ wa2L2

i

2

� �
cos αið Þ � Li Pr þ waLið Þ cos αið Þ � sin αið Þ

αi

� �� �
ð4:92bÞ

Substituting the above constants in Eq. (4.89, 4.90), we get:

α2i EI
L2
i
y¼ Mpþwα2L2

i

2

� �
sin αið Þ�Li PrþwaLið Þ sin αið Þþcos αið Þ

αi

� �� �
sin

αix
Li

� �

þ Mpþwα2L2
i

2

� �
cos αið Þ�Li PrþwaLið Þ cos αið Þ�sin αið Þ

αi

� �� �
cos

αix
Li

� �

� Mpþwα2L2
i

2
� PrþwaLið Þx

� �
for aLi�x�Li

ð4:93aÞ

FIGURE 4.28 Free-body diagram (x > aLi).
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α2i EI
L2
i

dy
dx

¼ αi
Li

Mpþwα2L2
i

2

� �
sin αið Þ�Li PrþwaLið Þ sin αið Þþcos αið Þ

αi

� �� �
cos

αix
Li

� �

� αi
Li

Mpþwα2L2
i

2

� �
cos αið Þ�Li PrþwaLið Þ cos αið Þ�sin αið Þ

αi

� �� �
sin

αix
Li

� �
þ PrþwaLið Þ for aLi�x�Li

ð4:93bÞ
Now, for equating the displacement function (y) of both the segment lengths,

one needs to equate Eq. (4.87a) and Eq. (4.93a). For equating the slope function
(dy/dx) of both the segment lengths, one needs to equate Eq. (4.87b) and Eq.
(4.93b). Equating as above and simplifying, we get the following:

Pr ¼ waLi
a
2
� 1

� �
þMp þMq

Li
ð4:94aÞ

Mp ¼� wL2
i

a2
2 1� cos αið Þð Þ þ sin aαið Þ

αi
� a

� �
sin αið Þ
αi

� cos αið Þ
� �

2 1� cos αið Þð Þ � αi sin αið Þ

2
4

3
5

8<
:

þ
1�cos aαið Þ

αi
1�cos αið Þ

αi
� sin αið Þ

h i
2 1� cos αið Þð Þ � αi sin αið Þ

2
4

3
5
9=
;

ð4:94bÞ

Mq ¼ wL2
i

a 1� a
2

	 

1� cos αið Þð Þ þ sin aαið Þ

αi
� a

� �
sin αið Þ
αi

� cos αið Þ
� �

2 1� cos αið Þð Þ � αi sin αið Þ

2
4

3
5

8<
:

þ
1�cos αið Þ

αi
1�cos aαið Þ

αi
� sin aαið Þ

h i
2 1� cos αið Þð Þ � αi sin αið Þ

2
4

3
5
9=
;

ð4:94cÞ

For the case of zero axial loads, one should apply L’Hospital rule to Eqs. (4.94),
to obtain the following results:

Mp ¼ �wa2L2
i

1
2
� 2
3
aþ 1

4
a2

� �
ð4:95aÞ

Mq ¼ wa2L2
i

1
3
� 1
4
a

� �
ð4:95bÞ

For the uniformly distributed load applied to the complete span of the beam,
end moments shall take the following form:

Mp ¼ �Mq ¼ wL2
i

α2i
1� αi sin αið Þ

2 1� cos αið Þð Þ
� �

ð4:96Þ
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Alternatively, they can also be expressed as

Mp ¼ �Mq ¼ mi
wL2

i

α2i
ð4:97aÞ

mi ¼ 12
α2i

1� αi sin αið Þ
2 1� cos αið Þð Þ

� �
ð4:97bÞ

where mi is termed as load function, which is to be multiplied to the end
moments of a fixed beam under uniformly distributed load acting over the
entire length of the member to account for the effect of the axial load. In
the absence of axial compressive load ’i ¼ 0ð Þ, L’Hospital rule is applied
to Eq. (4.96). This reduces to the following form, which is a standard
expression for a fixed beam under uniformly distributed load acting upon
its entire length.

Mp
	 


@ ’i¼0 ¼ � Mq
	 


@ ’i¼0 ¼ �wL2
i

12
ð4:98Þ

4.7 FIXED BEAM UNDER TENSILE AXIAL LOAD

Under tensile axial loads, the load function and end moments will take
a different form. For a special case where (’i) is negative, Eq. (4.94b, 4.94c)
will reduce to the following form. For details, refer to Section 4.8.3.

Mq ¼ wL2
i

a2
2 1� cosh αið Þð Þ þ sinh aαið Þ

αi
� a

� �
sinh αið Þ

αi
� cosh αið Þ

� �
2 1� cosh αið Þð Þ � αi sinh αið Þ

2
4

3
5

8<
:

�
1�cosh aαið Þ

αi
1�cosh αið Þ

αi
� sinh aαið Þ

h i
2 1� cosh αið Þð Þ � αi sinh αið Þ

2
4

3
5
9=
;

ð4:99aÞ

Mq ¼ wL2
i

a 1� a
2

	 

1� cosh αið Þð Þ þ sinh aαið Þ

αi
� a

� �
sinh αið Þ

αi
� cosh αið Þ

� �
2 1� cosh αið Þð Þ � αi sinh αið Þ

2
4

3
5

8<
:

�
1�cosh αið Þ

αi
1�cosh aαið Þ

αi
� sinh aαið Þ

h i
2 1� cosh αið Þð Þ � αi sinh αið Þ

2
4

3
5
9=
;

ð4:99bÞ
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For the uniformly distributed load applied to the complete span of the beam and
in the presence of tensile axial load, end moments shall take the following form:

Mp ¼ �Mq ¼ wL2
i

α2i
1þ αi sinh αið Þ

2 1� cosh αið Þð Þ
� �

ð4:100Þ

Alternatively, they can also be expressed as

Mp ¼ �Mq ¼ mi
wL2

i

α2i
ð4:101aÞ

mi ¼ � 12
α2i

1� αi sinh αið Þ
2 1� cosh αið Þð Þ

� �
ð4:101bÞ

4.8 LATERAL LOAD FUNCTIONS FOR CONCENTRATED LOAD

In this section, we shall derive the lateral load’s functions for the fixed beam
loaded under concentrated load, in the presence of the axial load. Consider
a fixed beam, loaded as shown in Fig. 4.29.

Consider the free-body diagram, where (x < aLi), as shown in Fig. 4.30.
Under the fixed beam subjected to concentrated load, end rotations and shear

are developed as shown in the above figures. Following equation holds good:

EI
d2y
dx2

¼ M ðfor x5aLiÞ ð4:102Þ

¼ � Mp � Pa �yð Þ � Pr xð Þ
 � ð4:103Þ

The general solution to Eq. (4.103) is given as

y ¼ A sin
αix
Li

� �
þ B cos

αix
Li

� �
� L2

i

α2i EI
Mp � Pr xð Þ
 � ð4:104Þ

FIGURE 4.29 Fixed beam under concentrated load and axial compressive load.
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Differentiating once, we get:

dy
dx

¼ αi
Li

A cos
αix
Li

� �
� αi
Li

B sin
αix
Li

� �
þ L2

i

α2i EI
Prð Þ ð4:105Þ

Applying the boundary conditions:

@ x ¼ 0;
y ¼ 0
dy
dx ¼ 0

�
ð4:106Þ

B ¼ L2
i

α2i EI
Mp

 � ð4:107aÞ

A ¼ � L3
i

α3i EI
Pr

� �
ð4:107bÞ

Substituting Eq. (4.107) into Eq. (4.104), we get:

α2i EI
L2
i

� �
y¼� Li

αi
Pr

� �
sin

αix
Li

� �
þMpcos

αix
Li

� �
� Mp �Pr xð Þ
 �

for 0� x� aLi

ð4:108aÞ

Substituting Eq. (4.107) into Eq. (4.105), we get:

α2i EI
L2
i

� �
dy
dx

¼� αi
Li

� �
Pr cos

αix
Li

� �
� αi
Li

Mp

 �

sin
αix
Li

� �
þPr for 0� x� aLi

ð4:108bÞ

FIGURE 4.30 Free-body diagram (x < aLi).
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For the position of the concentrated load (x > aLi), Eq. (4.102) reduces to the
following form (refer Fig. 4.31):

EI
d2y
dx2

¼ M ¼ � Mp � Pa �yð Þ � Pr xð Þ þ �Wð Þ x� aLið Þ
 � ð4:109Þ

The general solution to Eq. (4.109) is given as

y ¼ A sin
αix
Li

� �
þ B cos

αix
Li

� �
� L2

i

α2i EI
Mp þWaLi � Pr þWð Þ x
 � ð4:110aÞ

Differentiating once, we get the following form:

dy
dx

¼ αi
Li

A cos
αix
Li

� �
� αi
Li

B sin
αix
Li

� �
þ L2

i

α2i EI
Pr þWð Þ ð4:110bÞ

Equating the expressions for deflection and slope for two segments (aLi) and
(1 - a)Li, we can evaluate the constants. Now, equating Eq. (4.108a) and Eq.
(4.110a) for the deflection, and Eq. (4.108b) and Eq. (4.110b) for the slope,
respectively, we get the following:

A ¼ � L3
i

α3i EI
Pr þWcos aαið Þ½ � ð4:111aÞ

B ¼ L2
i

α2i EI
Mp þ LiW

αI
sin aαið Þ

� �
ð4:111bÞ

Substituting the above constants in Eqs. (4.110a and 4.110b), we get:

α2i EI
L2
i

y ¼� Li

αi
Pr þWcos aαið Þ½ � sin αix

Li

� �
þ Mp þ LiW

αI
sin aαið Þ

� �
cos

αix
Li

� �
� Mp þWaLi � Pr þWð Þ x
 �

for aLi � x � Li

ð4:112aÞ

α2i EI
L2
i

dy
dx

¼� Pr þWcos aαið Þ½ � cos αix
Li

� �
� αi
Li

Mp þLiW
αI

sin aαið Þ
� �

sin
αix
Li

� �
þ Pr þW½ � for aLi � x� Li

ð4:112bÞ

Applying the following boundary conditions:

@ x ¼ L;
y ¼ 0
dy
dx ¼ 0

�
ð4:113Þ
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Eliminating Pr from Eq. (4.112a) and Eq. (4.112b) after applying the above
boundary conditions, end moment assumes the following form:

Mp ¼�W Li

a 1� cos αið Þð Þ½ � � 1� cos aαið Þð Þ sin αix
Li

� �h i
� cos αið Þ

2 1� cos αið Þð Þ � αi sin αið Þ

8<
:

9=
;

8<
:

þ
1�cos αið Þ

αi
� sin αið Þ

h i
sin aαið Þ

2 1� cos αið Þð Þ � αi sin αið Þ

8<
:

9=
;
9=
;

ð4:114Þ

For the case of zero axial loads, one can estimate the end moment by applying
L’Hospital rule.

Mp ¼ WaLi a2 � 1
	 
 ð4:115Þ

Under tensile axial loads, which is a special case where (’i) is negative, Eq.
(4.115) will reduce to the following form:

Mp ¼�WLi

a ð1� cos h αið Þ � ð1� coh aαið Þ sinh αið Þ
αi

� cosh αið Þ
� �

2 1� cosh αið Þð Þ þ αi sinh αið Þ

2
4

3
5

8<
:

þ
1�cosh αið Þ

αi
þ sinh αið Þ

� �
sinh aαið Þ

2 1� cosh αið Þð Þ þ αi sin h αið Þ

2
4

3
5
9=
;

ð4:116Þ

FIGURE 4.31 Free-body diagram (x > aLi).
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4.9 EXERCISE PROBLEMS ON STABILITY ANALYSIS
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MATLAB® program (without axial load)
%% This MATLAB® code is for analysis of structures without considering

axial load
% Re-type the following code in MATLAB® new script and run the file to get the

output.
%% Input
clc;
clear;
n = 3; % number of members
I = [1 1 1]*8.333e-6; %Moment of inertia in m4
E = [1 1 1]*2.1e11; % Young's modulus
L = [6 4 6]; % length in m
uu = 3; % Number of unrestrained degrees of freedom
ur = 6; % Number of restrained degrees of freedom
uul = [1 2 3]; % global labels of unrestained dof
url = [4 5 6 7 8 9]; % global labels of restained dof
l1 = [1 4 3 6]; % Global labels for member 1
l2 = [1 2 5 8]; % Global labels for member 2
l3 = [2 7 3 9]; % Global labels for member 3
l= [l1; l2; l3];
dof = uu+ur;
Ktotal = zeros (dof);
fem1= [-30 30 -20 -20]; % Local Fixed end moments of member 1
fem2= [53.333 -53.333 280 280]; % Local Fixed end moments of member 2
fem3= [30 -30 20 20]; % Local Fixed end moments of member 3

%% rotation coefficients for each member
rc1 = 4.*E.*I./L;
rc2 = 2.*E.*I./L;

%% stiffness matrix 4 by 4 (axial deformation neglected)
for i = 1:n

Knew = zeros (dof);
k1 = [rc1(i); rc2(i); (rc1(i)+rc2(i))/L(i); (-(rc1(i)+rc2(i))/L(i))];
k2 = [rc2(i); rc1(i); (rc1(i)+rc2(i))/L(i); (-(rc1(i)+rc2(i))/L(i))];
k3 = [(rc1(i)+rc2(i))/L(i); (rc1(i)+rc2(i))/L(i); (2*(rc1(i)+rc2(i))/

(L(i)^2)); (-2*(rc1(i)+rc2(i))/(L(i)^2))];
k4 = -k3;
K = [k1 k2 k3 k4];
fprintf ('Member Number =');
disp (i);
fprintf ('Local Stiffness matrix of member, [K] = \n');
disp (K);
for p = 1:4

for q = 1:4
Knew((l(i,p)),(l(i,q))) =K(p,q);

end
end
Ktotal = Ktotal + Knew;
if i == 1

Kg1=K;
elseif i == 2

Kg2 = K;
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else
Kg3=K;

end
end
fprintf ('Stiffness Matrix of complete structure, [Ktotal] = \n');
disp (Ktotal);
Kunr = zeros(uu);
for x=1:uu

for y=1:uu
Kunr(x,y)= Ktotal(x,y);

end
end
fprintf ('Unrestrained Stiffness sub-matix, [Kuu] = \n');
disp (Kunr);
KuuInv= inv(Kunr);
fprintf ('Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] = \n');
disp (KuuInv);

%% Creation of joint load vector
jl= [-23.333; 23.333; 0; -30; -280; 20; 30; -280; -20];

% values given in kN or kNm
jlu = jl(1:uu,1); % load vector in unrestrained dof
delu = KuuInv*jlu;
fprintf ('Joint Load vector, [Jl] = \n');
disp (jl');
fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu');
delr = zeros (ur,1);
del = [delu; delr];
deli= zeros (4,1);
for i = 1:n

for p = 1:4
deli(p,1) = del((l(i,p)),1) ;

end
if i == 1

delbar1 = deli;
mbar1= (Kg1 * delbar1)+fem1';
fprintf ('Member Number =');
disp (i);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar1');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar1');

elseif i == 2
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fem2';
fprintf ('Member Number =');
disp (i);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar2');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar2');

else
delbar3 = deli;
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mbar3= (Kg3 * delbar3)+fem3';
fprintf ('Member Number =');
disp (i);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar3');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar3');

end
end
%% check
mbar = [mbar1'; mbar2'; mbar3'];
jf = zeros(dof,1);
for a=1:n

for b=1:4 % size of k matrix
d = l(a,b);
jfnew = zeros(dof,1);
jfnew(d,1)=mbar(a,b);
jf=jf+jfnew;

end
end
fprintf ('Joint forces = \n');
disp (jf');

Output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.1666 0.5833 0.2917 -0.2917
0.5833 1.1666 0.2917 -0.2917
0.2917 0.2917 0.0972 -0.0972

-0.2917 -0.2917 -0.0972 0.0972
Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7499 0.8750 0.6562 -0.6562
0.8750 1.7499 0.6562 -0.6562
0.6562 0.6562 0.3281 -0.3281

-0.6562 -0.6562 -0.3281 0.3281
Member Number = 3
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.1666 0.5833 0.2917 -0.2917
0.5833 1.1666 0.2917 -0.2917
0.2917 0.2917 0.0972 -0.0972

-0.2917 -0.2917 -0.0972 0.0972
Stiffness Matrix of complete structure, [Ktotal] =

1.0e+06 *
2.9166 0.8750 0.2917 0.5833 0.6562 -0.2917 0 -0.6562 0
0.8750 2.9166 0.2917 0 0.6562 0 0.5833 -0.6562 -0.2917
0.2917 0.2917 0.1944 0.2917 0 -0.0972 0.2917 0 -0.0972
0.5833 0 0.2917 1.1666 0 -0.2917 0 0 0
0.6562 0.6562 0 0 0.3281 0 0 -0.3281 0

-0.2917 0 -0.0972 -0.2917 0 0.0972 0 0 0
0 0.5833 0.2917 0 0 0 1.1666 0 -0.2917
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-0.6562 -0.6562 0 0 -0.3281 0 0 0.3281 0
0 -0.2917 -0.0972 0 0 0 -0.2917 0 0.0972

Unrestrained Stiffness sub-matix, [Kuu] =
1.0e+06 *
2.9166 0.8750 0.2917
0.8750 2.9166 0.2917
0.2917 0.2917 0.1944

Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =
1.0e-05 *
0.0416 -0.0073 -0.0514

-0.0073 0.0416 -0.0514
-0.0514 -0.0514 0.6686

Joint Load vector, [Jl] =
-23.3330 23.3330 0 -30.0000 -280.0000 20.0000 30.0000 -280.0000 -20.0000
Unrestrained displacements, [DelU] =

1.0e-04 *
-0.1143 0.1143 -0.0000

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e-04 *
-0.1143 0 -0.0000 0

Global End moment matrix [MBar] =
-43.3331 23.3334 -23.3333 -16.6667

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e-04 *
-0.1143 0.1143 0 0

Global End moment matrix [MBar] =
43.3331 -43.3331 280.0000 280.0000
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Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e-04 *
0.1143 0 -0.0000 0

Global End moment matrix [MBar] =
43.3331 -23.3334 23.3333 16.6667

Joint forces =
0 -0.0000 0 23.3334 280.0000 -16.6667 -23.3334 280.0000 16.6667

>>

MATLAB® Program (with axial load)
%% This MATLAB® code is for stability analysis of structures, which includes

teh effect of axial load on the end moments and shear
% Re-type the following code in MATLAB® new script and run the file to get the

output.
%% Input
clc;
clear;
n = 3; % number of members
I = [1 1 1]*8.333e-6; %Moment of inertia in m4
E = [1 1 1]*2.1e11; % Young's modulus in N/m^2
L = [6 4 6]; % length in m
uu = 3; % Number of unrestrained degrees of freedom
ur = 6; % Number of restrained degrees of freedom
uul = [1 2 3]; % global labels of unrestrained dof
url = [4 5 6 7 8 9]; % global labels of restrained dof
l1 = [1 4 3 6]; % Global labels for member 1
l2 = [1 2 5 8]; % Global labels for member 2
l3 = [2 7 3 9]; % Global labels for member 3
l= [l1; l2; l3];
dof = uu+ur;
Ktotal = zeros (dof);
fem1= [-30 30 -20 -20]; % Local Fixed end moments of member 1
fem2= [53.333 -53.333 280 280]; % Local Fixed end moments of member 2
fem3= [30 -30 20 20]; % Local Fixed end moments of member 3
pa = [280 23.333 280]*1000; %Axial load in N
load = [1 1 1]; % 0-zero load, 1-compression, 2-tension

%% Load and angle calculation
pe = pi*pi.*E.*I./(L.*L); % Euler's load in N
phi = pa./pe;
alrad = pi.*sqrt(phi);
al = radtodeg (alrad);
r = zeros(1,n);
c = zeros(1,n);
t = zeros(1,n);
for i = 1:n

if load(i)==1
% rotation coefficients only for compression loads
r(i) = (alrad(i).*((sind(al(i))-(alrad(i).*cosd(al(i))))))./((2.*

(1-cosd(al(i))))-(alrad(i).*(sind(al(i))))); % rotation function
c(i) = (alrad(i)-sind(al(i)))./(sind(al(i))-(alrad(i).*cosd(al(i))));

% rotation function
t(i) = 1-((pi*pi*phi(i))./(2.*r(i).*(1+c(i))));
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% Translation function
elseif load(i)==2

% rotation coefficients only for tension loads
r(i)= (alrad(i)*((alrad(i)*cosh(alrad(i)))-sinh(alrad(i))))/((2*

(1-cosh(alrad(i))))+(alrad(i)*sinh(alrad(i))));
c(i) = (alrad(i)-sinh(alrad(i)))/(sinh(alrad(i))-(alrad(i)*

cosh(alrad(i))));
t(i) = 1-((pi*pi*(-phi(i)))./(2.*r(i).*(1+c(i))));

else
r(i) = 4;
c(i) = 0.5;
t(i) = 1;

end
end

%% rotation coefficients for each member
rc1 = r.*E.*I./L;
rc2 = c.*E.*I.*r./L;

%% stiffness matrix 4 by 4 (axial deformation neglected)
for i = 1:n

Knew = zeros (dof);
k1 = [rc1(i); rc2(i); (rc1(i)+rc2(i))/L(i); (-(rc1(i)+rc2(i))/

L(i))];
k2 = [rc2(i); rc1(i); (rc1(i)+rc2(i))/L(i); (-(rc1(i)+rc2(i))/

L(i))];
k3 = [(rc1(i)+rc2(i))/L(i); (rc1(i)+rc2(i))/L(i); (2*t(i)*(rc1(i)

+rc2(i))/(L(i)^2)); (-2*t(i)*(rc1(i)+rc2(i))/(L(i)^2))];
k4 = -k3;
K = [k1 k2 k3 k4];
fprintf ('Member Number =');
disp (i);
fprintf ('Local Stiffness matrix of member, [K] = \n');
disp (K);
for p = 1:4

for q = 1:4
Knew((l(i,p)),(l(i,q))) =K(p,q);

end
end
Ktotal = Ktotal + Knew;
if i == 1

Kg1=K;
elseif i == 2

Kg2 = K;
else

Kg3=K;
end

end
fprintf ('Stiffness Matrix of complete structure, [Ktotal] = \n');
disp (Ktotal);
Kunr = zeros(uu);
for x=1:uu

for y=1:uu
Kunr(x,y)= Ktotal(x,y);
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end
end
fprintf ('Unrestrained Stiffness sub-matix, [Kuu] = \n');
disp (Kunr);
KuuInv= inv(Kunr);
fprintf ('Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =

\n');
disp (KuuInv);

%% Creation of joint load vector
jl= [-23.333; 23.333; 0; -30; -280; 20; 30; -280; -20]; % values given in kN or

kNm
jlu = jl(1:uu,1); % load vector in unrestrained dof
delu = KuuInv*jlu;
fprintf ('Joint Load vector, [Jl] = \n');
disp (jl');
fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu');
delr = zeros (ur,1);
del = [delu; delr];
deli= zeros (4,1);
for i = 1:n

for p = 1:4
deli(p,1) = del((l(i,p)),1) ;

end
if i == 1

delbar1 = deli;
mbar1= (Kg1 * delbar1)+fem1';
fprintf ('Member Number =');
disp (i);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar1');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar1');

elseif i == 2
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fem2';
fprintf ('Member Number =');
disp (i);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar2');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar2');

else
delbar3 = deli;
mbar3= (Kg3 * delbar3)+fem3';
fprintf ('Member Number =');
disp (i);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar3');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar3');

end
end
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%% check
mbar = [mbar1'; mbar2'; mbar3'];
jf = zeros(dof,1);
for a=1:n

for b=1:4 % size of k matrix
d = l(a,b);
jfnew = zeros(dof,1);
jfnew(d,1)=mbar(a,b);
jf=jf+jfnew;

end
end
fprintf ('Joint forces = \n');
disp (jf');

Output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.0e+05 *
9.2333 6.5121 2.6242 -2.6242
6.5121 9.2333 2.6242 -2.6242
2.6242 2.6242 0.4081 -0.4081

-2.6242 -2.6242 -0.4081 0.4081
Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7375 0.8781 0.6539 -0.6539
0.8781 1.7375 0.6539 -0.6539
0.6539 0.6539 0.3211 -0.3211

-0.6539 -0.6539 -0.3211 0.3211
Member Number = 3
Local Stiffness matrix of member, [K] =

1.0e+05 *
9.2333 6.5121 2.6242 -2.6242
6.5121 9.2333 2.6242 -2.6242
2.6242 2.6242 0.4081 -0.4081

-2.6242 -2.6242 -0.4081 0.4081
Stiffness Matrix of complete structure, [Ktotal] =

1.0e+06 *
2.6608 0.8781 0.2624 0.6512 0.6539 -0.2624 0 -0.6539 0
0.8781 2.6608 0.2624 0 0.6539 0 0.6512 -0.6539 -0.2624
0.2624 0.2624 0.0816 0.2624 0 -0.0408 0.2624 0 -0.0408
0.6512 0 0.2624 0.9233 0 -0.2624 0 0 0
0.6539 0.6539 0 0 0.3211 0 0 -0.3211 0

-0.2624 0 -0.0408 -0.2624 0 0.0408 0 0 0
0 0.6512 0.2624 0 0 0 0.9233 0 -0.2624

-0.6539 -0.6539 0 0 -0.3211 0 0 0.3211 0
0 -0.2624 -0.0408 0 0 0 -0.2624 0 0.0408

Unrestrained Stiffness sub-matix, [Kuu] =
1.0e+06 *
2.6608 0.8781 0.2624
0.8781 2.6608 0.2624
0.2624 0.2624 0.0816

Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =
1.0e-04 *
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0.0055 -0.0001 -0.0174
-0.0001 0.0055 -0.0174
-0.0174 -0.0174 0.2342

Joint Load vector, [Jl] =
-23.3330 23.3330 0 -30.0000 -280.0000 20.0000 30.0000 -280.0000 -20.0000
Unrestrained displacements, [DelU] =

1.0e-04 *
-0.1309 0.1309 0

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e-04 *
-0.1309 0 0 0

Global End moment matrix [MBar] =
-42.0852 21.4765 -23.4348 -16.5652

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e-04 *
-0.1309 0.1309 0 0

Global End moment matrix [MBar] =
42.0852 -42.0852 280.0000 280.0000

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e-04 *
0.1309 0 0 0

Global End moment matrix [MBar] =
42.0852 -21.4765 23.4348 16.5652

Joint forces =
0.0000 -0.0000 0 21.4765 280.0000 -16.5652 -
21.4765 280.0000 16.5652
>>
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Example 2

MATLAB® program input (without axial load)
n = 3; % number of members
I = [1 1 1]*8.333e-6; %Moment of inertis in m4
E = [1 1 1]*2.1e11; % Young's modulus in N/m^2
L = [3 4 6]; % length in m
uu = 3; % Number of unrestrained degrees of freedom
ur = 6; % Number of restrained degrees of freedom
uul = [1 2 3]; % global labels of unrestained dof
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url = [4 5 6 7 8 9]; % global labels of restained dof
l1 = [1 2 4 5]; % Global labels for member 1
l2 = [2 3 5 6]; % Global labels for member 2
l3 = [2 7 9 8]; % Global labels for member 3
fem1= [3.75 -3.75 5 5]; % Local Fixed end moments of member 1
fem2= [26.667 -26.667 40 40]; % Local Fixed end moments of member 2
fem3= [-22.5 22.5 -15 -15]; % Local Fixed end moments of member 3
jl= [-3.75; -0.417; 26.667; -5; -45; -40; -22.5; 15; 15]; % values given in kN

or kNm

Output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.0e+06 *
2.3332 1.1666 1.1666 -1.1666
1.1666 2.3332 1.1666 -1.1666
1.1666 1.1666 0.7777 -0.7777

-1.1666 -1.1666 -0.7777 0.7777
Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7499 0.8750 0.6562 -0.6562
0.8750 1.7499 0.6562 -0.6562
0.6562 0.6562 0.3281 -0.3281

-0.6562 -0.6562 -0.3281 0.3281
Member Number = 3
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.1666 0.5833 0.2917 -0.2917
0.5833 1.1666 0.2917 -0.2917
0.2917 0.2917 0.0972 -0.0972

-0.2917 -0.2917 -0.0972 0.0972
Stiffness Matrix of complete structure, [Ktotal] =

1.0e+06 *
2.3332 1.1666 0 1.1666 -1.1666 0 0 0 0
1.1666 5.2498 0.8750 1.1666 -0.5104 -0.6562 0.5833 -0.2917 0.2917

0 0.8750 1.7499 0 0.6562 -0.6562 0 0 0
1.1666 1.1666 0 0.7777 -0.7777 0 0 0 0

-1.1666 -0.5104 0.6562 -0.7777 1.1059 -0.3281 0 0 0
0 -0.6562 -0.6562 0 -0.3281 0.3281 0 0 0
0 0.5833 0 0 0 0 1.1666 -0.2917 0.2917
0 -0.2917 0 0 0 0 -0.2917 0.0972 -0.0972
0 0.2917 0 0 0 0 0.2917 -0.0972 0.0972

Unrestrained Stiffness sub-matix, [Kuu] =
2333240 1166620 0
1166620 5249790 874965

0 874965 1749930
Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =

1.0e-06 *
0.4877 -0.1182 0.0591

-0.1182 0.2365 -0.1182
0.0591 -0.1182 0.6306

Joint Load vector, [Jl] =
-3.7500 -0.4170 26.6670 -5.0000 -45.0000 -40.0000 -22.5000 15.0000 15.0000
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Unrestrained displacements, [DelU] =
1.0e-04 *
-0.0020 -0.0281 0.1664

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.0203 -0.2808 0 0

Global End moment matrix [MBar] =
0 -10.5390 1.4870 8.5130

Member Number = 2
Global displacement matrix [DeltaBar] =
1.0e-04 *
-0.0281 0.1664 0 0

Global End moment matrix [MBar] =
36.3150 0 49.0787 30.9213

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.2808 0 0 0

Global End moment matrix [MBar] =
-25.7760 20.8620 -15.8190 -14.1810

Joint forces =
0 -0.0000 0 1.4870 57.5917 30.9213 20.8620 -14.1810 -15.8190

>>
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MATLAB® Program additional input (with axial load)
pa = [15 15 45]*1000; %Axial load in N
load = [2 1 1]; % 1-compression, 2-tension

Output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.0e+06 *
2.3392 1.1651 1.1681 -1.1681
1.1651 2.3392 1.1681 -1.1681
1.1681 1.1681 0.7837 -0.7837

-1.1681 -1.1681 -0.7837 0.7837
Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7419 0.8770 0.6547 -0.6547
0.8770 1.7419 0.6547 -0.6547
0.6547 0.6547 0.3236 -0.3236

-0.6547 -0.6547 -0.3236 0.3236
Member Number = 3
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.1302 0.5926 0.2871 -0.2871
0.5926 1.1302 0.2871 -0.2871
0.2871 0.2871 0.0882 -0.0882

-0.2871 -0.2871 -0.0882 0.0882
Stiffness Matrix of complete structure, [Ktotal] =

1.0e+06 *
2.3392 1.1651 0 1.1681 -1.1681 0 0 0 0
1.1651 5.2113 0.8770 1.1681 -0.5134 -0.6547 0.5926 -0.2871 0.2871

0 0.8770 1.7419 0 0.6547 -0.6547 0 0 0
1.1681 1.1681 0 0.7837 -0.7837 0 0 0 0

-1.1681 -0.5134 0.6547 -0.7837 1.1074 -0.3236 0 0 0
0 -0.6547 -0.6547 0 -0.3236 0.3236 0 0 0
0 0.5926 0 0 0 0 1.1302 -0.2871 0.2871
0 -0.2871 0 0 0 0 -0.2871 0.0882 -0.0882
0 0.2871 0 0 0 0 0.2871 -0.0882 0.0882

Unrestrained Stiffness sub-matix, [Kuu] =
1.0e+06 *
2.3392 1.1651 0
1.1651 5.2113 0.8770

0 0.8770 1.7419
Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =

1.0e-06 *
0.4867 -0.1189 0.0599

-0.1189 0.2387 -0.1202
0.0599 -0.1202 0.6346

Joint Load vector, [Jl] =
-3.7500 -0.4170 26.6670 -5.0000 -45.0000 -40.0000 -22.5000 15.0000 15.0000
Unrestrained displacements, [DelU] =

1.0e-04 *
-0.0018 -0.0286 0.1675
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Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.0179 -0.2858 0 0

Global End moment matrix [MBar] =
0.0000 -10.6453 1.4516 8.5484

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e-04 *
-0.0286 0.1675 0 0

Global End moment matrix [MBar] =
36.3757 0 49.0939 30.9061

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.2858 0 0 0

Global End moment matrix [MBar] =
-25.7304 20.8062 -15.8207 -14.1793

Joint forces =
0.0000 0.0000 0 1.4516 57.6423 30.9061 20.8062 -14.1793 -15.8207
>>
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Example 3
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MATLAB® program input (without axial load)
n = 3; % number of members
I = [1 1 1]*8.333e-6; %Moment of inertis in m4
E = [1 1 1]*2.1e11; % Young's modulus in N/m^2
L = [6 4 4]; % length in m
uu = 3; % Number of unrestrained degrees of freedom
ur = 6; % Number of restrained degrees of freedom
uul = [1 2 3]; % global labels of unrestained dof
url = [4 5 6 7 8 9]; % global labels of restained dof
l1 = [1 4 3 5]; % Global labels for member 1
l2 = [1 2 6 9]; % Global labels for member 2
l3 = [2 7 3 8]; % Global labels for member 3
l= [l1; l2; l3];
dof = uu+ur;
Ktotal = zeros (dof);
fem1= [-30 30 -20 -20]; % Local Fixed end moments of member 1
fem2= [26.667 -26.667 40 40]; % Local Fixed end moments of member 2
fem3= [20 -20 20 20]; % Local Fixed end moments of member 3
jl= [3.333; 6.667; 0; -30; 20; -40; 20; -20; -40]; % values given in kN or

kNm

Output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.1666 0.5833 0.2917 -0.2917
0.5833 1.1666 0.2917 -0.2917
0.2917 0.2917 0.0972 -0.0972

-0.2917 -0.2917 -0.0972 0.0972
Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7499 0.8750 0.6562 -0.6562
0.8750 1.7499 0.6562 -0.6562
0.6562 0.6562 0.3281 -0.3281

-0.6562 -0.6562 -0.3281 0.3281
Member Number = 3
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7499 0.8750 0.6562 -0.6562
0.8750 1.7499 0.6562 -0.6562
0.6562 0.6562 0.3281 -0.3281

-0.6562 -0.6562 -0.3281 0.3281
Stiffness Matrix of complete structure, [Ktotal] =

1.0e+06 *
2.9166 0.8750 0.2917 0.5833 -0.2917 0.6562 0 0 -0.6562
0.8750 3.4999 0.6562 0 0 0.6562 0.8750 -0.6562 -0.6562
0.2917 0.6562 0.4253 0.2917 -0.0972 0 0.6562 -0.3281 0
0.5833 0 0.2917 1.1666 -0.2917 0 0 0 0

-0.2917 0 -0.0972 -0.2917 0.0972 0 0 0 0
0.6562 0.6562 0 0 0 0.3281 0 0 -0.3281

0 0.8750 0.6562 0 0 0 1.7499 -0.6562 0
0 -0.6562 -0.3281 0 0 0 -0.6562 0.3281 0

-0.6562 -0.6562 0 0 0 -0.3281 0 0 0.3281
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Unrestrained Stiffness sub-matix, [Kuu] =
1.0e+06 *
2.9166 0.8750 0.2917
0.8750 3.4999 0.6562
0.2917 0.6562 0.4253

Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =
1.0e-05 *
0.0378 -0.0065 -0.0160

-0.0065 0.0413 -0.0593
-0.0160 -0.0593 0.3375

Joint Load vector, [Jl] =
3.3330 6.6670 0 -30.0000 20.0000 -40.0000 20.0000 -20.0000 -40.0000

Unrestrained displacements, [DelU] =
1.0e-05 *
0.0830 0.2539 -0.4486

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.0830 0 -0.4486 0

Global End moment matrix [MBar] =
-30.3402 29.1758 -20.1941 -19.8059

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.0830 0.2539 0 0

Global End moment matrix [MBar] =
30.3402 -21.4987 42.2104 37.7896

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.2539 0 -0.4486 0
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Global End moment matrix [MBar] =
21.4987 -20.7224 20.1941 19.8059

Joint forces =
0.0000 0 0.0000 29.1758 -19.8059 42.2104 -20.7224 19.8059 37.7896

>>

MATLAB® Program additional input (with axial load)
pa = [40 20 40]*1000; %Axial load in N
load = [1 1 1]; % 1-compression, 2-tension

Output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.1343 0.5915 0.2876 -0.2876
0.5915 1.1343 0.2876 -0.2876
0.2876 0.2876 0.0892 -0.0892

-0.2876 -0.2876 -0.0892 0.0892
Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7392 0.8776 0.6542 -0.6542
0.8776 1.7392 0.6542 -0.6542
0.6542 0.6542 0.3221 -0.3221

-0.6542 -0.6542 -0.3221 0.3221
Member Number = 3
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7285 0.8804 0.6522 -0.6522
0.8804 1.7285 0.6522 -0.6522
0.6522 0.6522 0.3161 -0.3161

-0.6522 -0.6522 -0.3161 0.3161
Stiffness Matrix of complete structure, [Ktotal] =

1.0e+06 *
2.8735 0.8776 0.2876 0.5915 -0.2876 0.6542 0 0 -0.6542
0.8776 3.4677 0.6522 0 0 0.6542 0.8804 -0.6522 -0.6542
0.2876 0.6522 0.4053 0.2876 -0.0892 0 0.6522 -0.3161 0
0.5915 0 0.2876 1.1343 -0.2876 0 0 0 0

-0.2876 0 -0.0892 -0.2876 0.0892 0 0 0 0
0.6542 0.6542 0 0 0 0.3221 0 0 -0.3221

0 0.8804 0.6522 0 0 0 1.7285 -0.6522 0
0 -0.6522 -0.3161 0 0 0 -0.6522 0.3161 0

-0.6542 -0.6542 0 0 0 -0.3221 0 0 0.3221
Unrestrained Stiffness sub-matix, [Kuu] =

1.0e+06 *
2.8735 0.8776 0.2876
0.8776 3.4677 0.6522
0.2876 0.6522 0.4053

Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =
1.0e-05 *
0.0385 -0.0066 -0.0167

-0.0066 0.0425 -0.0637
-0.0167 -0.0637 0.3610
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Joint Load vector, [Jl] =
3.3330 6.6670 0 -30.0000 20.0000 -40.0000 20.0000 -20.0000 -40.0000

Unrestrained displacements, [DelU] =
1.0e-05 *
0.0843 0.2612 -0.4802

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.0843 0 -0.4802 0

Global End moment matrix [MBar] =
-30.4254 29.1173 -20.1860 -19.8140

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.0843 0.2612 0 0

Global End moment matrix [MBar] =
30.4254 -21.3838 42.2604 37.7396

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.2612 0 -0.4802 0

Global End moment matrix [MBar] =
21.3838 -20.8319 20.1860 19.8140

Joint forces =
0 -0.0000 0 29.1173 -19.8140 42.2604 -20.8319 19.8140 37.7396

>>
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Example 4

MATLAB® program input (without axial load)
n = 5; % number of members
I = [2 3 2 1 1]*8.333e-6; %Moment of inertis in m4
E = [1 1 1 1 1]*2.1e11; % Young's modulus
L = [3 4 3 4 4]; % length in m
uu = 4; % Number of unrestrained degrees of freedom
ur = 9; % Number of restrained degrees of freedom
uul = [1 2 3 4]; % global labels of unrestained dof
url = [5 6 7 8 9 10 11 12 13]; % global labels of restained dof
l1 = [1 2 5 7]; % Global labels for member 1
l2 = [2 3 7 8]; % Global labels for member 2
l3 = [3 4 8 13]; % Global labels for member 3
l4 = [2 9 6 10]; % Global labels for member 4
l5 = [3 11 6 12]; % Global labels for member 5
l= [l1; l2; l3; l4; l5];
dof = uu+ur;
Ktotal = zeros (dof);
fem1= [15 -15 30 30]; % Local Fixed end moments of member 1
fem2= [0 0 0 0]; % Local Fixed end moments of member 2
fem3= [15 -15 30 30]; % Local Fixed end moments of member 3
fem4= [0 0 0 0]; % Local Fixed end moments of member 4
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fem5= [0 0 0 0]; % Local Fixed end moments of member 5
jlu = [-15; 15; -15; 15]; % load vector in unrestrained dof

Output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.0e+06 *
4.6665 2.3332 2.3332 -2.3332
2.3332 4.6665 2.3332 -2.3332
2.3332 2.3332 1.5555 -1.5555

-2.3332 -2.3332 -1.5555 1.5555
Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e+06 *
5.2498 2.6249 1.9687 -1.9687
2.6249 5.2498 1.9687 -1.9687
1.9687 1.9687 0.9843 -0.9843

-1.9687 -1.9687 -0.9843 0.9843
Member Number = 3
Local Stiffness matrix of member, [K] =

1.0e+06 *
4.6665 2.3332 2.3332 -2.3332
2.3332 4.6665 2.3332 -2.3332
2.3332 2.3332 1.5555 -1.5555

-2.3332 -2.3332 -1.5555 1.5555
Member Number = 4
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7499 0.8750 0.6562 -0.6562
0.8750 1.7499 0.6562 -0.6562
0.6562 0.6562 0.3281 -0.3281

-0.6562 -0.6562 -0.3281 0.3281
Member Number = 5
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7499 0.8750 0.6562 -0.6562
0.8750 1.7499 0.6562 -0.6562
0.6562 0.6562 0.3281 -0.3281

-0.6562 -0.6562 -0.3281 0.3281
Stiffness Matrix of complete structure, [Ktotal] =

1.0e+07 *
Columns 1 through 9
0.4666 0.2333 0 0 0.2333 0 -0.2333 0 0
0.2333 1.1666 0.2625 0 0.2333 0.0656 -0.0365 -0.1969 0.0875

0 0.2625 1.1666 0.2333 0 0.0656 0.1969 0.0365 0
0 0 0.2333 0.4666 0 0 0 0.2333 0

0.2333 0.2333 0 0 0.1555 0 -0.1555 0 0
0 0.0656 0.0656 0 0 0.0656 0 0 0.0656

-0.2333 -0.0365 0.1969 0 -0.1555 0 0.2540 -0.0984 0
0 -0.1969 0.0365 0.2333 0 0 -0.0984 0.2540 0
0 0.0875 0 0 0 0.0656 0 0 0.1750
0 -0.0656 0 0 0 -0.0328 0 0 -0.0656
0 0 0.0875 0 0 0.0656 0 0 0
0 0 -0.0656 0 0 -0.0328 0 0 0
0 0 -0.2333 -0.2333 0 0 0 -0.1555 0
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Columns 10 through 13
0 0 0 0

-0.0656 0 0 0
0 0.0875 -0.0656 -0.2333
0 0 0 -0.2333
0 0 0 0

-0.0328 0.0656 -0.0328 0
0 0 0 0
0 0 0 -0.1555

-0.0656 0 0 0
0.0328 0 0 0

0 0.1750 -0.0656 0
0 -0.0656 0.0328 0
0 0 0 0.1555

Unrestrained Stiffness sub-matix, [Kuu] =
4666480 2333240 0 0
2333240 11666200 2624895 0

0 2624895 11666200 2333240
0 0 2333240 4666480

Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =
1.0e-06 *
0.2397 -0.0508 0.0127 -0.0063

-0.0508 0.1016 -0.0254 0.0127
0.0127 -0.0254 0.1016 -0.0508

-0.0063 0.0127 -0.0508 0.2397
Unrestrained Joint Load vector, [Jl] =

-15 15 -15 15
Unrestrained displacements, [DelU] =

1.0e-05 *
-0.4643 0.2857 -0.2857 0.4643

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.4643 0.2857 0 0

Global End moment matrix [MBar] =
0.0000 -12.5000 25.8333 34.1667

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.2857 -0.2857 0 0

Global End moment matrix [MBar] =
7.5000 -7.5000 -0.0000 0.0000

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.2857 0.4643 0 0

Global End moment matrix [MBar] =
12.5000 0 34.1667 25.8333

Member Number = 4
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.2857 0 0 0

Global End moment matrix [MBar] =
5.0000 2.5000 1.8750 -1.8750
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Member Number = 5
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.2857 0 0 0

Global End moment matrix [MBar] =
-5.0000 -2.5000 -1.8750 1.8750

Joint forces =
Columns 1 through 9
0.0000 -0.0000 -0.0000 0 25.8333 -0.0000 34.1667 34.1667 2.5000
Columns 10 through 13
-1.8750 -2.5000 1.8750 25.8333

>>

MATLAB® program input (with axial load)
pa = [1.875 1.875 1.875 34.1667 34.1667]*1000; %Axial load in N
load = [2 1 2 1 1]; % 0-zero load, 1-compression, 2-tension

Output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.0e+06 *
4.6672 2.3331 2.3334 -2.3334
2.3331 4.6672 2.3334 -2.3334
2.3334 2.3334 1.5562 -1.5562

-2.3334 -2.3334 -1.5562 1.5562
Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e+06 *
5.2488 2.6251 1.9685 -1.9685
2.6251 5.2488 1.9685 -1.9685
1.9685 1.9685 0.9838 -0.9838

-1.9685 -1.9685 -0.9838 0.9838
Member Number = 3
Local Stiffness matrix of member, [K] =

1.0e+06 *
4.6672 2.3331 2.3334 -2.3334
2.3331 4.6672 2.3334 -2.3334
2.3334 2.3334 1.5562 -1.5562

-2.3334 -2.3334 -1.5562 1.5562
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Member Number = 4
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7316 0.8796 0.6528 -0.6528
0.8796 1.7316 0.6528 -0.6528
0.6528 0.6528 0.3179 -0.3179

-0.6528 -0.6528 -0.3179 0.3179
Member Number = 5
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7316 0.8796 0.6528 -0.6528
0.8796 1.7316 0.6528 -0.6528
0.6528 0.6528 0.3179 -0.3179

-0.6528 -0.6528 -0.3179 0.3179
Stiffness Matrix of complete structure, [Ktotal] =

1.0e+07 *
Columns 1 through 9
0.4667 0.2333 0 0 0.2333 0 -0.2333 0 0
0.2333 1.1648 0.2625 0 0.2333 0.0653 -0.0365 -0.1968 0.0880

0 0.2625 1.1648 0.2333 0 0.0653 0.1968 0.0365 0
0 0 0.2333 0.4667 0 0 0 0.2333 0

0.2333 0.2333 0 0 0.1556 0 -0.1556 0 0
0 0.0653 0.0653 0 0 0.0636 0 0 0.0653

-0.2333 -0.0365 0.1968 0 -0.1556 0 0.2540 -0.0984 0
0 -0.1968 0.0365 0.2333 0 0 -0.0984 0.2540 0
0 0.0880 0 0 0 0.0653 0 0 0.1732
0 -0.0653 0 0 0 -0.0318 0 0 -0.0653
0 0 0.0880 0 0 0.0653 0 0 0
0 0 -0.0653 0 0 -0.0318 0 0 0
0 0 -0.2333 -0.2333 0 0 0 -0.1556 0

Columns 10 through 13
0 0 0 0

-0.0653 0 0 0
0 0.0880 -0.0653 -0.2333
0 0 0 -0.2333
0 0 0 0

-0.0318 0.0653 -0.0318 0
0 0 0 0
0 0 0 -0.1556

-0.0653 0 0 0
0.0318 0 0 0

0 0.1732 -0.0653 0
0 -0.0653 0.0318 0
0 0 0 0.1556

Unrestrained Stiffness sub-matix, [Kuu] =
1.0e+07 *
0.4667 0.2333 0 0
0.2333 1.1648 0.2625 0

0 0.2625 1.1648 0.2333
0 0 0.2333 0.4667

Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =
1.0e-06 *
0.2397 -0.0509 0.0127 -0.0064

-0.0509 0.1018 -0.0255 0.0127
0.0127 -0.0255 0.1018 -0.0509
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-0.0064 0.0127 -0.0509 0.2397
Unrestrained Joint Load vector, [Jl] =

-15 15 -15 15
Unrestrained displacements, [DelU] =

1.0e-05 *
-0.4645 0.2864 -0.2864 0.4645

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.4645 0.2864 0 0

Global End moment matrix [MBar] =
0 -12.4723 25.8426 34.1574

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.2864 -0.2864 0 0

Global End moment matrix [MBar] =
7.5134 -7.5134 0 0

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.2864 0.4645 0 0

Global End moment matrix [MBar] =
12.4723 0.0000 34.1574 25.8426

Member Number = 4
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.2864 0 0 0

Global End moment matrix [MBar] =
4.9589 2.5188 1.8694 -1.8694

Member Number = 5
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.2864 0 0 0

Global End moment matrix [MBar] =
-4.9589 -2.5188 -1.8694 1.8694

Joint forces =
Columns 1 through 9
0 -0.0000 0.0000 0.0000 25.8426 0 34.1574 34.1574 2.5188

Columns 10 through 13
-1.8694 -2.5188 1.8694 25.8426

>>
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Example 5
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MATLAB® program input (without axial load)
n = 6; % number of members
I = [1 1 2 1 1 2]*8.333e-6; %Moment of inertis in m4
E = [1 1 1 1 1 1]*2.1e11; % Young's modulus
L = [3 4 3 4 4 5]; % length in m
uu = 6; % Number of unrestrained degrees of freedom
ur = 6; % Number of restrained degrees of freedom
uul = [1 2 3 4 5 6]; % global labels of unrestained dof
url = [7 8 9 10 11 12]; % global labels of restained dof
l1 = [4 7 6 9]; % Global labels for member 1
l2 = [1 4 3 6]; % Global labels for member 2
l3 = [1 2 8 12]; % Global labels for member 3
l4 = [2 5 3 6]; % Global labels for member 4
l5 = [5 10 6 11]; % Global labels for member 5
l6 = [4 5 8 12]; % Global labels for member 5
l= [l1; l2; l3; l4; l5; l6];
dof = uu+ur;
Ktotal = zeros (dof);
fem1= [-15 15 -10 -10]; % Local Fixed end moments of member 1
fem2= [-15 15 -10 -10]; % Local Fixed end moments of member 2
fem3= [0 0 100 100]; % Local Fixed end moments of member 3
fem4= [15 -15 10 10]; % Local Fixed end moments of member 4
fem5= [15 -15 10 10]; % Local Fixed end moments of member 5
fem6= [0 0 0 0]; % Local Fixed end moments of member 5
jlu = [15; -15; 0; 0; 0; 0]; % load vector in unrestrained dof

Output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.0e+06 *
2.3332 1.1666 1.1666 -1.1666
1.1666 2.3332 1.1666 -1.1666
1.1666 1.1666 0.7777 -0.7777

-1.1666 -1.1666 -0.7777 0.7777
Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7499 0.8750 0.6562 -0.6562
0.8750 1.7499 0.6562 -0.6562
0.6562 0.6562 0.3281 -0.3281

-0.6562 -0.6562 -0.3281 0.3281
Member Number = 3
Local Stiffness matrix of member, [K] =

1.0e+06 *
4.6665 2.3332 2.3332 -2.3332
2.3332 4.6665 2.3332 -2.3332
2.3332 2.3332 1.5555 -1.5555

-2.3332 -2.3332 -1.5555 1.5555
Member Number = 4
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7499 0.8750 0.6562 -0.6562
0.8750 1.7499 0.6562 -0.6562
0.6562 0.6562 0.3281 -0.3281

-0.6562 -0.6562 -0.3281 0.3281
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Member Number = 5
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.7499 0.8750 0.6562 -0.6562
0.8750 1.7499 0.6562 -0.6562
0.6562 0.6562 0.3281 -0.3281

-0.6562 -0.6562 -0.3281 0.3281
Member Number = 6
Local Stiffness matrix of member, [K] =

1.0e+06 *
2.7999 1.3999 0.8400 -0.8400
1.3999 2.7999 0.8400 -0.8400
0.8400 0.8400 0.3360 -0.3360

-0.8400 -0.8400 -0.3360 0.3360
Stiffness Matrix of complete structure, [Ktotal] =

1.0e+06 *
Columns 1 through 9
6.4164 2.3332 0.6562 0.8750 0 -0.6562 0 2.3332 0
2.3332 6.4164 0.6562 0 0.8750 -0.6562 0 2.3332 0
0.6562 0.6562 0.6562 0.6562 0.6562 -0.6562 0 0 0
0.8750 0 0.6562 6.8831 1.3999 0.5104 1.1666 0.8400 -1.1666

0 0.8750 0.6562 1.3999 6.2997 0 0 0.8400 0
-0.6562 -0.6562 -0.6562 0.5104 0 1.7621 1.1666 0 -0.7777

0 0 0 1.1666 0 1.1666 2.3332 0 -1.1666
2.3332 2.3332 0 0.8400 0.8400 0 0 1.8915 0

0 0 0 -1.1666 0 -0.7777 -1.1666 0 0.7777
0 0 0 0 0.8750 0.6562 0 0 0
0 0 0 0 -0.6562 -0.3281 0 0 0

-2.3332 -2.3332 0 -0.8400 -0.8400 0 0 -1.8915 0
Columns 10 through 12

0 0 -2.3332
0 0 -2.3332
0 0 0
0 0 -0.8400

0.8750 -0.6562 -0.8400
0.6562 -0.3281 0

0 0 0
0 0 -1.8915
0 0 0

1.7499 -0.6562 0
-0.6562 0.3281 0

0 0 1.8915
Unrestrained Stiffness sub-matix, [Kuu] =

1.0e+06 *
6.4164 2.3332 0.6562 0.8750 0 -0.6562
2.3332 6.4164 0.6562 0 0.8750 -0.6562
0.6562 0.6562 0.6562 0.6562 0.6562 -0.6562
0.8750 0 0.6562 6.8831 1.3999 0.5104

0 0.8750 0.6562 1.3999 6.2997 0
-0.6562 -0.6562 -0.6562 0.5104 0 1.7621

Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =
1.0e-05 *
0.0195 -0.0060 -0.0144 -0.0017 0.0027 0.0002

-0.0060 0.0195 -0.0168 0.0028 -0.0016 -0.0021
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-0.0144 -0.0168 0.4105 -0.0424 -0.0310 0.1535
-0.0017 0.0028 -0.0424 0.0205 -0.0005 -0.0213
0.0027 -0.0016 -0.0310 -0.0005 0.0194 -0.0110
0.0002 -0.0021 0.1535 -0.0213 -0.0110 0.1194

Unrestrained Joint Load vector, [Jl] =
15 -15 0 0 0 0

Unrestrained displacements, [DelU] =
1.0e-05 *
0.3814 -0.3816 0.0366 -0.0675 0.0642 0.0331

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e-06 *
-0.6748 0 0.3310 0

Global End moment matrix [MBar] =
-16.1882 14.5990 -10.5298 -9.4702

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.3814 -0.0675 0.0366 0.0331

Global End moment matrix [MBar] =
-8.8938 17.1790 -7.9287 -12.0713

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.3814 -0.3816 0 0

Global End moment matrix [MBar] =
8.8938 -8.9073 99.9955 100.0045

Member Number = 4
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.3816 0.0642 0.0366 0.0331

Global End moment matrix [MBar] =
8.9073 -17.1926 7.9287 12.0713

Member Number = 5
Global displacement matrix [DeltaBar] =

1.0e-06 *
0.6418 0 0.3310 0

Global End moment matrix [MBar] =
16.3403 -14.2213 10.5298 9.4702

Member Number = 6
Global displacement matrix [DeltaBar] =

1.0e-06 *
-0.6748 0.6418 0 0

Global End moment matrix [MBar] =
-0.9908 0.8523 -0.0277 0.0277

Joint forces =
Columns 1 through 9
0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 14.5990 99.9678 -9.4702
Columns 10 through 12
-14.2213 9.4702 100.0322

>>
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MATLAB® program input (with axial load)
pa = [100 100 7.9287 100 100 22.6011]*1000; %Axial load in N
load = [1 1 1 1 1 1]; % 0-zero load, 1-compression, 2-tension

Output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.0e+06 *
2.2930 1.1768 1.1566 -1.1566
1.1768 2.2930 1.1566 -1.1566
1.1566 1.1566 0.7377 -0.7377

-1.1566 -1.1566 -0.7377 0.7377
Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.6959 0.8887 0.6462 -0.6462
0.8887 1.6959 0.6462 -0.6462
0.6462 0.6462 0.2981 -0.2981

-0.6462 -0.6462 -0.2981 0.2981
Member Number = 3
Local Stiffness matrix of member, [K] =

1.0e+06 *
4.6633 2.3340 2.3324 -2.3324
2.3340 4.6633 2.3324 -2.3324

198 Advanced Steel Design of Structures



2.3324 2.3324 1.5523 -1.5523
-2.3324 -2.3324 -1.5523 1.5523

Member Number = 4
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.6959 0.8887 0.6462 -0.6462
0.8887 1.6959 0.6462 -0.6462
0.6462 0.6462 0.2981 -0.2981

-0.6462 -0.6462 -0.2981 0.2981
Member Number = 5
Local Stiffness matrix of member, [K] =

1.0e+06 *
1.6959 0.8887 0.6462 -0.6462
0.8887 1.6959 0.6462 -0.6462
0.6462 0.6462 0.2981 -0.2981

-0.6462 -0.6462 -0.2981 0.2981
Member Number = 6
Local Stiffness matrix of member, [K] =

1.0e+06 *
2.7848 1.4037 0.8377 -0.8377
1.4037 2.7848 0.8377 -0.8377
0.8377 0.8377 0.3306 -0.3306

-0.8377 -0.8377 -0.3306 0.3306
Stiffness Matrix of complete structure, [Ktotal] =

1.0e+06 *
Columns 1 through 9
6.3593 2.3340 0.6462 0.8887 0 -0.6462 0 2.3324 0
2.3340 6.3593 0.6462 0 0.8887 -0.6462 0 2.3324 0
0.6462 0.6462 0.5962 0.6462 0.6462 -0.5962 0 0 0
0.8887 0 0.6462 6.7737 1.4037 0.5104 1.1768 0.8377 -1.1566

0 0.8887 0.6462 1.4037 6.1767 0 0 0.8377 0
-0.6462 -0.6462 -0.5962 0.5104 0 1.6320 1.1566 0 -0.7377

0 0 0 1.1768 0 1.1566 2.2930 0 -1.1566
2.3324 2.3324 0 0.8377 0.8377 0 0 1.8829 0

0 0 0 -1.1566 0 -0.7377 -1.1566 0 0.7377
0 0 0 0 0.8887 0.6462 0 0 0
0 0 0 0 -0.6462 -0.2981 0 0 0

-2.3324 -2.3324 0 -0.8377 -0.8377 0 0 -1.8829 0
Columns 10 through 12

0 0 -2.3324
0 0 -2.3324
0 0 0
0 0 -0.8377

0.8887 -0.6462 -0.8377
0.6462 -0.2981 0

0 0 0
0 0 -1.8829
0 0 0

1.6959 -0.6462 0
-0.6462 0.2981 0

0 0 1.8829
Unrestrained Stiffness sub-matix, [Kuu] =

1.0e+06 *
6.3593 2.3340 0.6462 0.8887 0 -0.6462
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2.3340 6.3593 0.6462 0 0.8887 -0.6462
0.6462 0.6462 0.5962 0.6462 0.6462 -0.5962
0.8887 0 0.6462 6.7737 1.4037 0.5104

0 0.8887 0.6462 1.4037 6.1767 0
-0.6462 -0.6462 -0.5962 0.5104 0 1.6320

Inverse of Unrestrained Stiffness sub-matix, [KuuInverse] =
1.0e-05 *
0.0198 -0.0060 -0.0164 -0.0017 0.0030 0.0000

-0.0060 0.0199 -0.0192 0.0031 -0.0016 -0.0025
-0.0164 -0.0192 0.4696 -0.0483 -0.0354 0.1726
-0.0017 0.0031 -0.0483 0.0214 -0.0003 -0.0238
0.0030 -0.0016 -0.0354 -0.0003 0.0202 -0.0123
0.0000 -0.0025 0.1726 -0.0238 -0.0123 0.1307

Unrestrained Joint Load vector, [Jl] =
15 -15 0 0 0 0

Unrestrained displacements, [DelU] =
1.0e-05 *
0.3879 -0.3882 0.0429 -0.0719 0.0677 0.0380

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e-06 *
-0.7188 0 0.3802 0

Global End moment matrix [MBar] =
-16.2084 14.5939 -10.5508 -9.4492

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.3879 -0.0719 0.0429 0.0380

Global End moment matrix [MBar] =
-9.0287 17.2596 -7.9435 -12.0565

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e-05 *
0.3879 -0.3882 0 0

Global End moment matrix [MBar] =
9.0287 -9.0492 99.9932 100.0068

Member Number = 4
Global displacement matrix [DeltaBar] =

1.0e-05 *
-0.3882 0.0677 0.0429 0.0380

Global End moment matrix [MBar] =
9.0492 -17.2704 7.9435 12.0565

Member Number = 5
Global displacement matrix [DeltaBar] =

1.0e-06 *
0.6771 0 0.3802 0

Global End moment matrix [MBar] =
16.3939 -14.1526 10.5508 9.4492

Member Number = 6
Global displacement matrix [DeltaBar] =

1.0e-06 *
-0.7188 0.6771 0 0

Global End moment matrix [MBar] =
-1.0512 0.8765 -0.0350 0.0350
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Joint forces =
Columns 1 through 9
0.0000 0 -0.0000 0.0000 -0.0000 0.0000 14.5939 99.9582 -9.4492
Columns 10 through 12
-14.1526 9.4492 100.0418

>>

4.10 CRITICAL BUCKLING LOAD

One of the basic assumptions to obtain the buckling load of a structural system
with rigid joints is that the deformation of the structure is sufficiently small in
comparison to that of its initial condition. Therefore, to estimate the critical
buckling load, one can apply the linear theory. It is also important to note that
buckling loads of structural systems are estimated under the fact that the struc-
tural system is transferring only axial forces. Members that encounter transverse
loads develop additional moments, which alter the relative stiffness of the mem-
bers, significantly. Under such cases, where there is a continuous interaction of
the moment and the applied axial load (P–M interaction), critical buckling load
is estimated only through the iterative scheme. However, in the case of ideal mem-
bers that are subjected to axial forces only, buckling loads can be estimated in
a much simpler manner. By neglecting axial deformations the members undergo,

Stability of Structural Systems 201



joint loads related to the un-restrained joint displacements are set to ZERO at all
unrestrained joints.

JLuf g ¼ 0f g ð4:117Þ

However, from the fundamental equations of equilibrium, the following rela-
tionship holds good:

JLuf g ¼ Kuu½ � Δuf g ð4:118Þ

where [Kuu] is the submatrix of the stiffness matrix of the complete structural
system, indicating only the unrestrained degrees of freedom, and Δu is the dis-
placement vector of the unrestrained joints. By comparing the above two
equations, it is obvious to note that Eq. (4.117) can be true only if Δu is
a null vector. But, this is a trivial solution, which corresponds to no displace-
ments of the unrestrained joints. Hence, to obtain the nontrivial solution to
Eq. (4.117), the following condition should be satisfied:

Kuuj j ¼ 0 ð4:119Þ

The above is termed as the characteristic determinant, whose expansion will
yield the buckling condition of the structural system. It is important that,
when the magnitude of the applied axial load is lesser than that of the critical
buckling load, then the displacements of the unrestrained joints would be
zero. Hence, Kuuj j will be positive, which corresponds to a stable condition.
On the other hand, if the applied axial load exceeds the critical buckling load,
then it will refer to a unstable condition; in such case, Kuuj j will be negative.

In a structural system, comprising of more number of members, it is possible
that more than one member may be subjected to axial load. In such cases, it
becomes necessary to establish a relationship ’ið Þ between the respective axial
load and buckling load, as explained in Eq. (4.44). This becomes more compli-
cated when more than one member shares the applied axial load, at any joint.
The axial load shared by each member at that joint need to be computed by
a preliminary analysis. Then, the critical buckling load can be estimated using
the following relationship:

Pi
cr ¼ ’ið Þcritical

π2EI
L2
i

ð4:120Þ

Example 1: Estimate the critical buckling load of the column member using sta-
bility functions

With reference to the above figure, kinematic degrees of freedom, both unre-
strained and restrained are marked. A detailed procedure of analyzing a member
using the stiffness method is discussed in Srinivasan Chandrasekaran (2018a,
2018b). The member stiffness matrix is given as below (this is the same as given
by Eq. (4.80)). Numbers shown in circles are the labels of the degrees of freedom.
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ð4:121Þ

The above matrix can be partitioned to extract the unrestrained stiffness
matrix, which will be of size 2 × 2, as there are two unrestrained degrees of
freedom for this problem. Unrestrained stiffness matrix, as extracted from
Eq. (4.121) is given as

ð4:122Þ

As there is no joint load applied in the unrestrained degrees of freedom, as
per Eq. (4.119), let us set the determinant of Eq. (4.122) to zero. Expanding,
we get as follows:

1

3

2

4

1 3 2 4

1 2

1

2
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r
L

� � 2tr 1þ cð Þ
L3

� �
� r 1þ cð Þ

L2

� �2
¼ 0 ð4:123Þ

Simplifying the above expression, we get the following expression:

2t� c ¼ 1 ð4:124Þ

Eq. (4.124) is called as the characteristic equation, defining the critical buckling
condition in terms of the stability functions. Using Table 4.1, one can determine
the value of ’i, satisfying Eq. (4.124). MATLAB® given below helps to scan the
appropriate values of the stability functions and determines ’i as 0.25. The cor-
responding values of stability functions are: r = 3.6598, t = 0.7854 and c = 0.5708

Using Eq. (4.120), we get:

Pcr ¼ ’
π2 EI
L2 ¼ 0:25ð Þ π2 EI

L2 ð4:125Þ
% getting phi value condition: 2t = 1+c
lhs = 2*t;
rhs = 1+c;
n = length(out);
for i=1:n

if lhs(i) == rhs(i)
phi_value = out(i,1);

end
end
fprintf('Phi = %6.2f \n',phi_value);

Output:
Phi = 0.25

Example 2: Estimate the critical buckling load of the structure using stability
functions
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With reference to the above figure, kinematic degrees of freedom, both
unrestrained and restrained are marked. The member stiffness matrix for both
the members is given below.

Numbers shown in circles are the labels of the degrees of freedom of the
respective member.

ð4:126Þ

ð4:127Þ

The above matrices are assembled to obtain the unrestrained stiffness
matrix, which will be of size 2 × 2, as there are two unrestrained degrees of
freedom for this problem. In the above equations of the stiffness matrices, sub-
stitute L1 = L2 = L. Unrestrained stiffness matrix, as assembled by combining
Eq. (4.126) and Eq. (4.127) is given as

1

2

1 2

ð4:128Þ

As there is no joint load applied in the unrestrained degrees of freedom, let
us set the determinant of Eq. (4.128) to zero. Expanding, we get as follows:

2r1
L

þ r2
L

� �
2r1
L

� �
� 2c1r1

L

� �2
¼ 0 ð4:129Þ

1

6

4

7

1 6 4 7

1 2 5 3

1

2

5

3
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Simplifying, we get the following expression:

2r1 1� c21
	 
þ r2 ¼ 0 ð4:130Þ

Eq. (4.130) is the characteristic equation, defining the critical buckling condi-
tion in terms of the stability functions. Also, we also know the following rela-
tionship with reference to the problem loading:

Pcrð Þ1 ¼ Pcrð Þ2 ¼ Pcr 0:707ð Þ ð4:131Þ

’1 ¼ P 0:707ð Þ
π2E 2Ið Þ

L2

h i ð4:132Þ

’2 ¼ P 0:707ð Þ
π2EI
L2


 � ð4:133Þ

From the above equations, the following relationship can be deduced:

2’1 ¼ ’2 ð4:134Þ

Using Table 4.1, one can determine the value of ’i, satisfying both Eq. (4.130)
and Eq. (4.134). MATLAB® code given below helps to scan the appropriate
values of the stability functions and determines ’1 as 1.01 and ’2 as 2.02. The
corresponding values of stability functions are: r1 = 2.4493, t1 = –0.0124, c1 =
1.0101 and r2 = 0.1120, t2 = –1.7148, c2 = 31.6264.

Using Eq. (4.132), we get:

Pcr ¼ ’1
π2 E 2Ið Þ
0:707ð ÞL2 ð4:135Þ

% getting phi value condition: 2φ1 = φ and 2 r1 (1- c1
2) + r2 = 0

lhs = 2*phi;
rhs = phi;
n = length (out);
phi1 = zeros(n,1);
phi2 = zeros(n,1);
u=1;
for i=1:n

for j=1:n
if lhs(i) == rhs(j)

r1 = r(i);
c1 = c(i);
r2 = r(j);
if -0.00001 <= (2*r1*(1-(c1^2)))+r2 <=0.00001

phi1(u) = phi(i);
phi2(u) = phi(j);
u=u+1;

end
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end
end

end
fprintf('Phi 1 = %6.2f \n',phi1(1));
fprintf('Phi 2 = %6.2f \n',phi2(1));

Output:
Phi 1 = 1.01
Phi 2 = 2.02

Example 3: Estimate the critical buckling load of the structure using stability
functions

With reference to the above figure, kinematic degrees of freedom, both
unrestrained and restrained are marked. The member stiffness matrix for both
the members is given below. Numbers shown in circles are the labels of the
degrees of freedom of the respective member.

ð4:136Þ

1 3 7 5

1

3

7

5
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ð4:137Þ

The above matrices are assembled to obtain the unrestrained stiffness
matrix, which will be of size 2 × 2, as there are two unrestrained degrees of
freedom for this problem. In the above equations of the stiffness matrices, sub-
stitute L1 = 2L and L2 = L. Unrestrained stiffness matrix, as assembled by
combining Eq. (4.136) and Eq. (4.137), is given as

1 2

1

2

ð4:138Þ

As there is no joint load applied in the unrestrained degrees of freedom, let
us set the determinant of Eq. (4.138) to zero. Expanding, we get as follows:

r1 þ 2r2
2L

� �
r2
L

� �
� c2r2

L

h i2
¼ 0 ð4:139Þ

Simplifying, we get the following expression:

r1 ¼ 2r2 c22 � 1
	 
 ð4:140Þ

Eq. (4.140) is the characteristic equation, defining the critical buckling con-
dition in terms of the stability functions. Also, we also know the following
relationship with reference to the problem loading:

Pcrð Þ1 ¼ 2P ð4:141Þ

Pcrð Þ2 ¼ P ð4:142Þ

’1 ¼ 2P
π2EI
4L2


 � ¼ 8P
π2EI
L2


 � ð4:143Þ

’2 ¼ P
π2EI
L2


 � ð4:144Þ

1

2

4

6

1 2 4 6
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From the above equations, the following relationship can be deduced:

’1 ¼ 8’2 ð4:145Þ

Using Table 4.1, one can determine the value of ’i, satisfying both Eq. (4.140)
and Eq. (4.145). MATLAB® code given below helps to scan the appropriate
values of the stability functions and determines ’1 as 2.96 and ’2 as 0.37.
r1 = –4.6727, t1 = –5.7540, c1 = –1.4628 and r2 = 3.4878, t2 = 0.6754, c2 =
0.6127

Using Eq. (4.143), we get:

Pcr ¼ ’1
π2 EI
8L2 ð4:146Þ

% getting phi value condition: φ 1 = 8φ 2 and r1 = 2r2 (c2
2-1)

lhs = phi;
rhs = 8*phi;
n = length (out);
phi1 = zeros(n,1);
phi2 = zeros(n,1);
u=1;
for i=1:n

for j=1:n
if lhs(i) == rhs(j)

r1 = r(i);
c1 = c(i);
r2 = r(j);
c2 = c(j);
if -0.00001 <= (r1-(2*r2*((c2^2)-1))) <=0.00001

phi1(u) = phi(i);
phi2(u) = phi(j);
u=u+1;

end
end
end

end
fprintf('Phi 1 = %6.2f \n',phi1(1));
fprintf('Phi 2 = %6.2f \n',phi2(1));

Output:
Phi 1 = 2.96
Phi 2 = 0.37

Example 4: Estimate the critical buckling load of the structure using stability
functions

With reference to the above figure, kinematic degrees of freedom, both
unrestrained and restrained are marked. The member stiffness matrix for both
the members is given below. Numbers shown in circles are the labels of the
degrees of freedom of the respective member.
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ð4:147Þ

ð4:148Þ

2

1

7

6

2 1 7 6

 

1 3 6 5

1

3

6

5
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ð4:149Þ

The above matrices are assembled to obtain the unrestrained stiffness matrix,
which will be of size 2 × 2, as there are two unrestrained degrees of freedom for
this problem. In the above equations of the stiffness matrices, substitute L1 = L2 =
L; L3 = 2L. After appropriate substitution, unrestrained stiffness matrix as assem-
bled by combining Eq. (4.147), Eq. (4.148) and Eq. (4.149) is given as

1 2

1

2

ð4:150Þ

As there is no joint load applied in the unrestrained degrees of freedom, let
us set the determinant of Eq. (4.150) to zero. Expanding, we get as follows:

2r1 þ r3
2L

� �
r2
L

� �
� c2r2

L

h i2
¼ 0 ð4:151Þ

Simplifying, we get the following expression:

2r1 þ r3 ¼ 2r2c22 ð4:152Þ

Eq. (4.152) is the characteristic equation, defining the critical buckling con-
dition in terms of the stability functions. Also, we also know the following
relationship with reference to the problem loading:

’1 ¼ ’2 ¼ 0 ð4:153Þ

Pcrð Þ3 ¼ 2P ð4:154Þ

’3 ¼ 2P
π2EI
4L2


 � ¼ 8P
π2EI
L2


 � ð4:155Þ

Using Table 4.1, one can determine the value of ’i, satisfying Eq. (4.152),
Eq. (4.153) and Eq. (4.155). MATLAB® code given below helps to scan

1

8

4

9

1 8 4 9
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the appropriate values of the stability functions and determines ’3 as 3.10;
r3 = –6.0519; t3 = −7.0072; c3 = −1.3157

Using Eq. (4.155), we get:

Pcr ¼ ’3
π2 EI
8L2 ð4:156Þ

% getting phi value condition: phi1 = phi2 =0
r1 = 4;
r2 = 4;
c2 = 0.5;
r3 = (2*r2*c2*c2)-(2*r1);
n = length (out);
phi3 = zeros(n,1);
u=1;
for i = 1:n

if r3 == round(r(i))
if r(i)-r3 <=0.00001

phi3(u) = phi(i);
u=u+1;

end
end

end
fprintf('Phi 3 = %6.2f \n',phi3(1));

Output:
Phi 3 = 3.10

Example 5: Estimate the critical buckling load of the structure using stability
functions

With reference to the above figure, kinematic degrees of freedom, both
unrestrained and restrained are marked. The member stiffness matrix for both
the members is given below. Numbers shown in circles are the labels of the
degrees of freedom of the respective member.

ð4:157Þ

1 3 9 5

1

3

9

5
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ð4:158Þ

ð4:159Þ

1

2

4

7

1 2 4 7

2

6

9

8

2 6 9 8
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The above matrices are assembled to obtain the unrestrained stiffness matrix,
which will be of size 2 × 2, as there are two unrestrained degrees of freedom for
this problem. In the above equations of the stiffness matrices, substitute L1 = L3 =
2L; L2 = L. After appropriate substitution, unrestrained stiffness matrix, as assem-
bled by combining Eq. (4.157), Eq. (4.158) and Eq. (4.159) is given as

ð4:160Þ

As there is no joint load applied in the unrestrained degrees of freedom, let
us set the determinant of Eq. (4.160) to zero. Expanding, we get as follows:

r1 þ 2r2
2L

� �
2r2 þ r3

2L

� �
� c2r2

L

h i2
¼ 0 ð4:161Þ

simplifying, we get the following expression:

r1 2r2 þ r3ð Þ þ r2 4r2 þ 2r3ð Þ ¼ 4r22c22 ð4:162Þ

Eq. (4.162) is the characteristic equation, defining the critical buckling con-
dition in terms of the stability functions. Also, we also know the following
relationship with reference to the problem loading:

’1 ¼ P
π2EI
4L2


 � ¼ 4P
π2EI
L2


 � ð4:163Þ

’2 ¼ P
π2EI
L2


 � ð4:164Þ

’3 ¼ 2P
π2EI
4L2


 � ¼ 8P
π2EI
L2


 � ð4:165Þ

’1 ¼ 4’2 ð4:166Þ

’3 ¼ 8’2 ð4:167Þ

Using Table 4.1, one can determine the value of ’i, satisfying Eq. (4.162), Eq.
(4.166) and Eq. (4.167). MATLAB® code given below helps to scan the appro-
priate values of the stability functions and determines ’2 ¼ 0:38. The corres-
ponding stability coefficients are r2 = 3.4732; t2 = 0.6660; c2 = 0.6165.

1 2

1

2
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Using Eq. (4.164), we get:

Pcr ¼ ’2
π2 EI
L2 ð4:168Þ

% getting phi value condition: phi1 = 4phi2
n = length (out);
lhs = phi;
rhs = 4*phi;
phi1 = zeros(n,1);
phi2 = zeros(n,1);
phi3 = zeros(n,1);
u=1;
for i=1:n

for j=1:n
if lhs(i) == rhs(j)

r1 = r(i);
c1 = c(i);
phi22 = phi(j);
r2 = r(j);
c2 = c(j);
for k = 1:n

if (8*phi22) == phi(k)
r3 = r(k);

if -0.00001 <= ((r1*((2*r2)+r3))+(r2*((2*r3)+(4*r2)))-
(4*r2*r2*c2*c2)) <= 0.00001

phi1(u) = phi(i);
phi2(u) = phi(j);
phi3(u) = phi(k);
u=u+1;

end
end

end
end
end

end
fprintf('Phi 1 = %6.2f \n',phi1(1));
fprintf('Phi 2 = %6.2f \n',phi2(1));
fprintf('Phi 3 = %6.2f \n',phi3(1));

Output:
Phi 1 = 0.76
Phi 2 = 0.19
Phi 3 = 1.52

MATLAB® code for preparing the stability chart
%% This MATLAB® code is for plotting the stability indices
% Re-type the following code in MATLAB® new script and run the file to get the

output.
clc;
clear;
phi=0.01:0.01:4;
alrad = pi.*sqrt(phi);
al = radtodeg (alrad);
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% Compression
r = (alrad.*((sind(al))-(alrad.*cosd(al))))./((2.*(1-cosd(al)))-(alrad.

*(sind(al)))); % rotation function
c = (alrad-sind(al))./(sind(al)-(alrad.*cosd(al))); % rotation function
t = 1-((pi*pi*phi)./(2.*r.*(1+c))); % Translation function
outcomp = [phi' r' c' t'];
% for zero
outzero = [0 4.0 0.5 1.0];
% Tension
phit =10:-0.1:0.1;
alrad = pi.*sqrt(phit);
al = radtodeg (alrad);
rt = (alrad.*((alrad.*cosh(alrad))-sinh(alrad)))./((2.*(1-cosh(alrad)))

+(alrad.*sinh(alrad)));
ct = (alrad-sinh(alrad))./(sinh(alrad)-(alrad.*cosh(alrad)));
tt = 1-((pi*pi*(-phit))./(2.*rt.*(1+ct)));
outten = [-phit' rt' ct' tt'];
% Stability chart
out = [outten; outzero; outcomp];
filename='StabilityChart.xlsx';
sheet=1;
xlswrite(filename,out,sheet);
phi = out(:,1);
r = out(:,2);
c = out(:,3);
t = out(:,4);
figure;
plot (phi,r,'b','linewidth',2)
xlabel('Phi');
ylabel('r');
grid on;
figure;
plot (phi,c,'b','linewidth',2)
xlabel('Phi');
ylabel('c');
grid on;
figure;
plot (phi,t, 'b','linewidth',2)
xlabel('Phi');
ylabel('t');
grid on;
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Output:
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TABLE 4.1 Stability functions
(negative sign indicates tensile
axial load)
Phi r c t

−10 11.1864 0.1118 4.9678

−9.9 11.1382 0.1124 4.9429

−9.8 11.0897 0.1131 4.9179

−9.7 11.0410 0.1137 4.8928

−9.6 10.9921 0.1144 4.8675

−9.5 10.9430 0.1150 4.8421

−9.4 10.8936 0.1157 4.8166

−9.3 10.8440 0.1164 4.7909

−9.2 10.7941 0.1171 4.7652

−9.1 10.7440 0.1178 4.7392

−9 10.6937 0.1185 4.7131

−8.9 10.6431 0.1193 4.6869

−8.8 10.5922 0.1200 4.6606

−8.7 10.5411 0.1208 4.6341

−8.6 10.4897 0.1215 4.6074

−8.5 10.4380 0.1223 4.5806

−8.4 10.3860 0.1231 4.5536

−8.3 10.3338 0.1239 4.5265

−8.2 10.2813 0.1248 4.4992

−8.1 10.2285 0.1256 4.4717

−8 10.1754 0.1265 4.4441

−7.9 10.1220 0.1274 4.4163

−7.8 10.0683 0.1283 4.3884

−7.7 10.0143 0.1292 4.3602

−7.6 9.9600 0.1301 4.3319

−7.5 9.9054 0.1311 4.3034

−7.4 9.8504 0.1321 4.2747

−7.3 9.7951 0.1331 4.2458

−7.2 9.7395 0.1341 4.2167

−7.1 9.6835 0.1351 4.1875

−7 9.6272 0.1362 4.1580

−6.9 9.5706 0.1373 4.1283

−6.8 9.5136 0.1384 4.0984

−6.7 9.4562 0.1395 4.0683

−6.6 9.3984 0.1407 4.0380

−6.5 9.3403 0.1419 4.0074

−6.4 9.2817 0.1431 3.9766

−6.3 9.2228 0.1444 3.9456
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−6.2 9.1635 0.1457 3.9144

−6.1 9.1037 0.1470 3.8829

−6 9.0436 0.1483 3.8512

−5.9 8.9830 0.1497 3.8192

−5.8 8.9220 0.1511 3.7869

−5.7 8.8605 0.1526 3.7544

−5.6 8.7986 0.1541 3.7216

−5.5 8.7362 0.1556 3.6885

−5.4 8.6733 0.1572 3.6551

−5.3 8.6100 0.1588 3.6215

−5.2 8.5461 0.1604 3.5875

−5.1 8.4818 0.1621 3.5532

−5 8.4169 0.1639 3.5187

−4.9 8.3515 0.1657 3.4838

−4.8 8.2855 0.1676 3.4485

−4.7 8.2190 0.1695 3.4129

−4.6 8.1520 0.1715 3.3770

−4.5 8.0843 0.1735 3.3407

−4.4 8.0161 0.1757 3.3040

−4.3 7.9472 0.1778 3.2669

−4.2 7.8777 0.1801 3.2295

−4.1 7.8075 0.1824 3.1916

−4 7.7367 0.1848 3.1533

−3.9 7.6652 0.1873 3.1146

−3.8 7.5930 0.1899 3.0755

−3.7 7.5201 0.1926 3.0359

−3.6 7.4465 0.1954 2.9958

−3.5 7.3721 0.1983 2.9552

−3.4 7.2969 0.2013 2.9141

−3.3 7.2209 0.2044 2.8725

−3.2 7.1441 0.2076 2.8304

−3.1 7.0664 0.2110 2.7877

−3 6.9878 0.2145 2.7444

−2.9 6.9084 0.2182 2.7005

−2.8 6.8280 0.2220 2.6560

−2.7 6.7466 0.2260 2.6108

−2.6 6.6642 0.2302 2.5650

−2.5 6.5808 0.2346 2.5185

−2.4 6.4963 0.2392 2.4712

−2.3 6.4107 0.2440 2.4232
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−2.2 6.3239 0.2491 2.3744

−2.1 6.2360 0.2544 2.3248

−2 6.1468 0.2600 2.2743

−1.9 6.0564 0.2659 2.2230

−1.8 5.9645 0.2721 2.1706

−1.7 5.8714 0.2787 2.1174

−1.6 5.7767 0.2857 2.0631

−1.5 5.6806 0.2931 2.0077

−1.4 5.5828 0.3010 1.9512

−1.3 5.4835 0.3094 1.8935

−1.2 5.3824 0.3183 1.8346

−1.1 5.2795 0.3279 1.7743

−1 5.1748 0.3381 1.7127

−0.9 5.0681 0.3490 1.6496

−0.8 4.9593 0.3608 1.5850

−0.7 4.8483 0.3735 1.5187

−0.6 4.7351 0.3872 1.4508

−0.5 4.6194 0.4021 1.3809

−0.4 4.5013 0.4183 1.3092

−0.3 4.3804 0.4360 1.2354

−0.2 4.2567 0.4553 1.1593

−0.1 4.1299 0.4765 1.0809

0 4.0000 0.5000 1.0000

0.01 3.9868 0.5025 0.9918

0.02 3.9736 0.5050 0.9835

0.03 3.9604 0.5075 0.9752

0.04 3.9471 0.5101 0.9669

0.05 3.9338 0.5127 0.9585

0.06 3.9204 0.5153 0.9502

0.07 3.9070 0.5179 0.9418

0.08 3.8936 0.5206 0.9333

0.09 3.8802 0.5233 0.9249

0.1 3.8667 0.5260 0.9164

0.11 3.8531 0.5288 0.9078

0.12 3.8396 0.5316 0.8993

0.13 3.8260 0.5344 0.8907

0.14 3.8123 0.5372 0.8821

0.15 3.7987 0.5401 0.8735

0.16 3.7849 0.5430 0.8648

0.17 3.7712 0.5460 0.8561

(Continued )

220 Advanced Steel Design of Structures



TABLE 4.1 (Cont.)

Phi r c t

0.18 3.7574 0.5490 0.8474

0.19 3.7436 0.5520 0.8386

0.2 3.7297 0.5550 0.8298

0.21 3.7158 0.5581 0.8210

0.22 3.7019 0.5612 0.8122

0.23 3.6879 0.5644 0.8033

0.24 3.6739 0.5676 0.7943

0.25 3.6598 0.5708 0.7854

0.26 3.6457 0.5741 0.7764

0.27 3.6315 0.5774 0.7674

0.28 3.6174 0.5807 0.7584

0.29 3.6031 0.5841 0.7493

0.3 3.5889 0.5875 0.7402

0.31 3.5746 0.5910 0.7310

0.32 3.5602 0.5945 0.7218

0.33 3.5458 0.5981 0.7126

0.34 3.5314 0.6017 0.7034

0.35 3.5169 0.6053 0.6941

0.36 3.5024 0.6090 0.6848

0.37 3.4878 0.6127 0.6754

0.38 3.4732 0.6165 0.6660

0.39 3.4586 0.6203 0.6566

0.4 3.4439 0.6242 0.6471

0.41 3.4292 0.6281 0.6376

0.42 3.4144 0.6321 0.6281

0.43 3.3995 0.6361 0.6185

0.44 3.3847 0.6402 0.6089

0.45 3.3698 0.6443 0.5992

0.46 3.3548 0.6485 0.5895

0.47 3.3398 0.6528 0.5798

0.48 3.3247 0.6571 0.5701

0.49 3.3096 0.6614 0.5603

0.5 3.2945 0.6659 0.5504

0.51 3.2793 0.6703 0.5405

0.52 3.2640 0.6749 0.5306

0.53 3.2487 0.6795 0.5206

0.54 3.2334 0.6841 0.5106

0.55 3.2180 0.6889 0.5006

0.56 3.2025 0.6937 0.4905

0.57 3.1870 0.6985 0.4804
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0.58 3.1715 0.7035 0.4702

0.59 3.1559 0.7085 0.4600

0.6 3.1403 0.7136 0.4498

0.61 3.1246 0.7187 0.4395

0.62 3.1088 0.7239 0.4291

0.63 3.0930 0.7292 0.4187

0.64 3.0771 0.7346 0.4083

0.65 3.0612 0.7401 0.3978

0.66 3.0453 0.7456 0.3873

0.67 3.0293 0.7513 0.3768

0.68 3.0132 0.7570 0.3661

0.69 2.9971 0.7628 0.3555

0.7 2.9809 0.7687 0.3448

0.71 2.9646 0.7746 0.3340

0.72 2.9484 0.7807 0.3233

0.73 2.9320 0.7869 0.3124

0.74 2.9156 0.7932 0.3015

0.75 2.8991 0.7995 0.2906

0.76 2.8826 0.8060 0.2796

0.77 2.8660 0.8126 0.2686

0.78 2.8494 0.8193 0.2575

0.79 2.8327 0.8261 0.2463

0.8 2.8159 0.8330 0.2351

0.81 2.7991 0.8400 0.2239

0.82 2.7822 0.8472 0.2126

0.83 2.7653 0.8544 0.2013

0.84 2.7483 0.8618 0.1899

0.85 2.7312 0.8693 0.1784

0.86 2.7141 0.8770 0.1669

0.87 2.6969 0.8848 0.1554

0.88 2.6797 0.8927 0.1438

0.89 2.6623 0.9008 0.1321

0.9 2.6450 0.9090 0.1204

0.91 2.6275 0.9173 0.1086

0.92 2.6100 0.9258 0.0968

0.93 2.5924 0.9345 0.0849

0.94 2.5748 0.9433 0.0729

0.95 2.5570 0.9523 0.0609

0.96 2.5392 0.9615 0.0489

0.97 2.5214 0.9709 0.0367
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0.98 2.5035 0.9804 0.0246

0.99 2.4855 0.9901 0.0123

1 2.4674 1.0000 0.0000

1.01 2.4493 1.0101 −0.0124

1.02 2.4311 1.0204 −0.0248

1.03 2.4128 1.0309 −0.0373

1.04 2.3944 1.0416 −0.0498

1.05 2.3760 1.0526 −0.0625

1.06 2.3575 1.0638 −0.0752

1.07 2.3389 1.0752 −0.0879

1.08 2.3202 1.0868 −0.1007

1.09 2.3015 1.0987 −0.1136

1.1 2.2827 1.1109 −0.1266

1.11 2.2638 1.1233 −0.1396

1.12 2.2448 1.1360 −0.1527

1.13 2.2258 1.1490 −0.1658

1.14 2.2066 1.1623 −0.1790

1.15 2.1874 1.1759 −0.1923

1.16 2.1681 1.1898 −0.2057

1.17 2.1487 1.2040 −0.2192

1.18 2.1293 1.2185 −0.2327

1.19 2.1097 1.2335 −0.2463

1.2 2.0901 1.2487 −0.2599

1.21 2.0704 1.2644 −0.2737

1.22 2.0506 1.2804 −0.2875

1.23 2.0307 1.2968 −0.3014

1.24 2.0107 1.3137 −0.3153

1.25 1.9906 1.3309 −0.3294

1.26 1.9705 1.3487 −0.3435

1.27 1.9502 1.3669 −0.3577

1.28 1.9299 1.3855 −0.3720

1.29 1.9094 1.4047 −0.3864

1.3 1.8889 1.4244 −0.4009

1.31 1.8683 1.4447 −0.4154

1.32 1.8476 1.4655 −0.4300

1.33 1.8267 1.4869 −0.4447

1.34 1.8058 1.5089 −0.4595

1.35 1.7848 1.5316 −0.4744

1.36 1.7637 1.5549 −0.4894

1.37 1.7425 1.5790 −0.5044
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1.38 1.7212 1.6038 −0.5196

1.39 1.6997 1.6293 −0.5348

1.4 1.6782 1.6557 −0.5502

1.41 1.6566 1.6828 −0.5656

1.42 1.6348 1.7109 −0.5811

1.43 1.6130 1.7399 −0.5967

1.44 1.5910 1.7699 −0.6125

1.45 1.5690 1.8009 −0.6283

1.46 1.5468 1.8329 −0.6442

1.47 1.5245 1.8661 −0.6602

1.48 1.5021 1.9005 −0.6763

1.49 1.4796 1.9361 −0.6925

1.5 1.4570 1.9731 −0.7089

1.51 1.4342 2.0114 −0.7253

1.52 1.4114 2.0512 −0.7418

1.53 1.3884 2.0926 −0.7585

1.54 1.3653 2.1356 −0.7752

1.55 1.3420 2.1804 −0.7921

1.56 1.3187 2.2271 −0.8090

1.57 1.2952 2.2757 −0.8261

1.58 1.2716 2.3264 −0.8433

1.59 1.2479 2.3794 −0.8606

1.6 1.2240 2.4348 −0.8781

1.61 1.2000 2.4927 −0.8956

1.62 1.1759 2.5534 −0.9133

1.63 1.1516 2.6170 −0.9311

1.64 1.1272 2.6838 −0.9490

1.65 1.1027 2.7540 −0.9670

1.66 1.0780 2.8278 −0.9852

1.67 1.0532 2.9056 −1.0035

1.68 1.0282 2.9877 −1.0219

1.69 1.0031 3.0744 −1.0405

1.7 0.9779 3.1662 −1.0592

1.71 0.9525 3.2635 −1.0780

1.72 0.9270 3.3667 −1.0969

1.73 0.9013 3.4766 −1.1160

1.74 0.8754 3.5936 −1.1353

1.75 0.8494 3.7187 −1.1546

1.76 0.8233 3.8524 −1.1741

1.77 0.7969 3.9960 −1.1938
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1.78 0.7705 4.1504 −1.2136

1.79 0.7438 4.3169 −1.2336

1.97 0.2339 14.8562 −1.6208

1.98 0.2038 17.1355 −1.6440

1.99 0.1734 20.2327 −1.6674

2 0.1428 24.6841 −1.6910

2.01 0.1120 31.6264 −1.7148

2.02 0.0809 43.9616 −1.7388

2.03 0.0497 71.9627 −1.7631

2.04 0.0182 197.3863 −1.7875

2.05 −0.0135 −267.2161 −1.8122

2.06 −0.0455 −79.8138 −1.8371

2.07 −0.0777 −46.9612 −1.8622

2.08 −0.1101 −33.2921 −1.8875

2.09 −0.1428 −25.8013 −1.9130

2.1 −0.1757 −21.0722 −1.9388

2.11 −0.2089 −17.8154 −1.9648

2.12 −0.2423 −15.4361 −1.9911

2.13 −0.2760 −13.6217 −2.0176

2.14 −0.3099 −12.1925 −2.0444

2.15 −0.3441 −11.0376 −2.0714

2.16 −0.3786 −10.0850 −2.0986

2.17 −0.4134 −9.2858 −2.1261

2.18 −0.4485 −8.6059 −2.1539

2.19 −0.4838 −8.0203 −2.1820

2.2 −0.5194 −7.5107 −2.2103

2.21 −0.5553 −7.0632 −2.2389

2.22 −0.5916 −6.6673 −2.2678

2.23 −0.6281 −6.3143 −2.2970

2.24 −0.6649 −5.9978 −2.3264

2.25 −0.7020 −5.7124 −2.3562

2.26 −0.7395 −5.4537 −2.3863

2.27 −0.7773 −5.2181 −2.4166

2.28 −0.8154 −5.0027 −2.4473

2.29 −0.8538 −4.8050 −2.4783

2.3 −0.8926 −4.6230 −2.5096

2.31 −0.9318 −4.4547 −2.5413

2.32 −0.9713 −4.2988 −2.5733

2.33 −1.0111 −4.1540 −2.6056

2.34 −1.0513 −4.0190 −2.6383
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2.35 −1.0919 −3.8930 −2.6713

2.36 −1.1328 −3.7750 −2.7047

2.37 −1.1742 −3.6644 −2.7384

2.38 −1.2159 −3.5604 −2.7725

2.39 −1.2580 −3.4626 −2.8070

2.4 −1.3006 −3.3703 −2.8419

2.41 −1.3435 −3.2831 −2.8772

2.42 −1.3869 −3.2006 −2.9129

2.43 −1.4307 −3.1225 −2.9490

2.44 −1.4749 −3.0484 −2.9855

2.45 −1.5196 −2.9780 −3.0224

2.46 −1.5647 −2.9111 −3.0598

2.47 −1.6103 −2.8473 −3.0976

2.48 −1.6563 −2.7865 −3.1359

2.49 −1.7028 −2.7286 −3.1746

2.5 −1.7499 −2.6732 −3.2138

2.51 −1.7974 −2.6202 −3.2534

2.52 −1.8454 −2.5695 −3.2936

2.53 −1.8939 −2.5210 −3.3342

2.54 −1.9430 −2.4744 −3.3754

2.55 −1.9926 −2.4298 −3.4170

2.56 −2.0427 −2.3869 −3.4592

2.57 −2.0934 −2.3457 −3.5020

2.58 −2.1447 −2.3061 −3.5452

2.59 −2.1965 −2.2680 −3.5891

2.6 −2.2490 −2.2312 −3.6335

2.61 −2.3020 −2.1959 −3.6785

2.62 −2.3557 −2.1618 −3.7241

2.63 −2.4100 −2.1289 −3.7704

2.64 −2.4650 −2.0971 −3.8172

2.65 −2.5206 −2.0665 −3.8647

2.66 −2.5769 −2.0369 −3.9128

2.67 −2.6339 −2.0082 −3.9616

2.68 −2.6915 −1.9805 −4.0111

2.69 −2.7499 −1.9538 −4.0613

2.7 −2.8091 −1.9278 −4.1122

2.71 −2.8690 −1.9027 −4.1639

2.72 −2.9296 −1.8784 −4.2162

2.73 −2.9911 −1.8548 −4.2694

2.74 −3.0533 −1.8319 −4.3233
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2.75 −3.1164 −1.8097 −4.3781

2.76 −3.1803 −1.7882 −4.4336

2.77 −3.2451 −1.7673 −4.4900

2.78 −3.3108 −1.7470 −4.5473

2.79 −3.3774 −1.7273 −4.6055

2.8 −3.4449 −1.7081 −4.6645

2.81 −3.5133 −1.6895 −4.7245

2.82 −3.5828 −1.6714 −4.7854

2.83 −3.6532 −1.6538 −4.8474

2.84 −3.7246 −1.6366 −4.9103

2.85 −3.7972 −1.6200 −4.9742

2.86 −3.8707 −1.6038 −5.0392

2.87 −3.9454 −1.5880 −5.1053

2.88 −4.0213 −1.5726 −5.1725

2.89 −4.0983 −1.5576 −5.2409

2.9 −4.1765 −1.5430 −5.3104

2.91 −4.2559 −1.5288 −5.3811

2.92 −4.3366 −1.5149 −5.4531

2.93 −4.4186 −1.5014 −5.5263

2.94 −4.5019 −1.4882 −5.6008

2.95 −4.5866 −1.4754 −5.6767

2.96 −4.6727 −1.4628 −5.7540

2.97 −4.7602 −1.4506 −5.8327

2.98 −4.8492 −1.4387 −5.9129

2.99 −4.9398 −1.4270 −5.9946

3 −5.0320 −1.4157 −6.0778

3.01 −5.1258 −1.4046 −6.1627

3.02 −5.2212 −1.3937 −6.2491

3.03 −5.3184 −1.3832 −6.3373

3.04 −5.4174 −1.3728 −6.4273

3.05 −5.5182 −1.3628 −6.5191

3.06 −5.6209 −1.3529 −6.6127

3.07 −5.7256 −1.3433 −6.7083

3.08 −5.8323 −1.3339 −6.8058

3.09 −5.9410 −1.3247 −6.9055

3.1 −6.0519 −1.3157 −7.0072

3.11 −6.1651 −1.3069 −7.1111

3.12 −6.2805 −1.2983 −7.2174

3.13 −6.3984 −1.2899 −7.3259

3.14 −6.5186 −1.2817 −7.4369
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3.15 −6.6415 −1.2737 −7.5505

3.16 −6.7669 −1.2659 −7.6666

3.17 −6.8951 −1.2582 −7.7854

3.18 −7.0262 −1.2508 −7.9071

3.19 −7.1601 −1.2434 −8.0316

3.2 −7.2971 −1.2363 −8.1592

3.21 −7.4373 −1.2293 −8.2899

3.22 −7.5807 −1.2224 −8.4238

3.23 −7.7276 −1.2157 −8.5611

3.24 −7.8779 −1.2092 −8.7019

3.25 −8.0320 −1.2028 −8.8464

3.26 −8.1899 −1.1965 −8.9947

3.27 −8.3518 −1.1904 −9.1469

3.28 −8.5178 −1.1844 −9.3032

3.29 −8.6881 −1.1786 −9.4639

3.3 −8.8629 −1.1729 −9.6290

3.31 −9.0425 −1.1673 −9.7988

3.32 −9.2269 −1.1618 −9.9734

3.33 −9.4165 −1.1565 −10.1532

3.34 −9.6114 −1.1512 −10.3382

3.35 −9.8119 −1.1461 −10.5289

3.36 −10.0183 −1.1412 −10.7253

3.37 −10.2308 −1.1363 −10.9279

3.38 −10.4497 −1.1315 −11.1369

3.39 −10.6755 −1.1269 −11.3526

3.5 −13.7190 −1.0824 −14.2840

3.51 −14.0601 −1.0789 −14.6148

3.52 −14.4149 −1.0755 −14.9591

3.53 −14.7842 −1.0722 −15.3180

3.54 −15.1689 −1.0690 −15.6922

3.55 −15.5702 −1.0659 −16.0829

3.56 −15.9890 −1.0628 −16.4912

3.57 −16.4267 −1.0599 −16.9183

3.58 −16.8845 −1.0570 −17.3655

3.59 −17.3640 −1.0542 −17.8343

3.6 −17.8668 −1.0514 −18.3264

3.61 −18.3946 −1.0488 −18.8435

3.62 −18.9494 −1.0462 −19.3875

3.63 −19.5335 −1.0438 −19.9608

3.64 −20.1492 −1.0413 −20.5657

(Continued )
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TABLE 4.1 (Cont.)

Phi r c t

3.65 −20.7993 −1.0390 −21.2049

3.66 −21.4868 −1.0367 −21.8814

3.67 −22.2150 −1.0345 −22.5987

3.68 −22.9879 −1.0324 −23.3606

3.69 −23.8096 −1.0304 −24.1713

3.7 −24.6852 −1.0284 −25.0358

3.71 −25.6201 −1.0265 −25.9597

3.72 −26.6208 −1.0247 −26.9492

3.73 −27.6945 −1.0229 −28.0117

3.74 −28.8496 −1.0212 −29.1556

3.75 −30.0960 −1.0196 −30.3907

3.76 −31.4449 −1.0180 −31.7284

3.77 −32.9098 −1.0165 −33.1820

3.78 −34.5066 −1.0151 −34.7673

3.79 −36.2539 −1.0138 −36.5033

3.8 −38.1745 −1.0125 −38.4124

3.81 −40.2956 −1.0112 −40.5220

3.82 −42.6506 −1.0101 −42.8655

3.83 −45.2809 −1.0090 −45.4842

3.84 −48.2381 −1.0079 −48.4298

3.85 −51.5874 −1.0070 −51.7674

3.86 −55.4130 −1.0061 −55.5813

3.87 −59.8247 −1.0052 −59.9813

3.88 −64.9691 −1.0045 −65.1139

3.89 −71.0459 −1.0037 −71.1789

3.9 −78.3349 −1.0031 −78.4560

3.91 −87.2400 −1.0025 −87.3492

3.92 −98.3675 −1.0020 −98.4647

3.93 −112.6696 −1.0015 −112.7548

3.94 −131.7337 −1.0011 −131.8069

3.95 −158.4168 −1.0008 −158.4779

3.96 −198.4334 −1.0005 −198.4823

3.97 −265.1166 −1.0003 −265.1534

3.98 −398.4666 −1.0001 −398.4912

3.99 −798.4833 −1.0000 −798.4956

4 65,535.0000 −1.0000 INF
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5 Mathieu Stability of
Compliant Structures

5.1 INTRODUCTION

Structural systems that are designed as form dominant are also compelled to
remain as positive buoyant while encountering the lateral loads. Offshore
floating platforms, ships and large vessels, semi-submersibles and offshore pro-
duction platforms that are moored to the seabed fall in this category. While
they are flexible in the horizontal plane, they remain very stiff in the vertical
plane, imposing motion constraints to the topside. Mathieu equation describes
the stability of compliant structures to their parametric oscillations whose
solution is dependent on Mathieu parameters and represented as Mathieu sta-
bility chart (Chandrasekaran & Kiran, 2017). Mathieu stability conditions
should be satisfied to ensure the safe operations of these structures. Position
restrained by high pretension tethers, floating and compliant offshore plat-
forms exhibit larger stiffness in the vertical plane. These platforms are gener-
ally moored to the seabed using mooring lines or tethers, which ensure
position restraint of the platform under the lateral loads caused by ocean
waves. They experience coupled response between the displacements in
a horizontal and vertical plane under the environmental loads, resulting in the
dynamic tether tension variations in the mooring lines (Chandrasekaran,
2015b). Under the displaced position, the horizontal component of tether
force enables recentering of the deck while the vertical component imposes
heave restraint. Thus, a major contribution to their stability under operational
loads is achieved by tethers. Classic examples of such structural systems are
tension leg platforms, triceratops, buoyant-leg storage, regasification platforms
and semi-submersibles. Their dynamic tension variations impose a challenge
to its stability, which can be described using the Mathieu equation. Detailed
studies on spar platforms showed Mathieu-type instability in systems where
the natural pitch period is about twice as that of the heave (Haslum & Faltinsen,
1999; Koo et al., 2004). Dynamic behavior under such unstable conditions
showed chaotic behavior, which is critical to ensure safe functionality of the plat-
form (Rho et al., 2005).

5.2 MOORING SYSTEMS

Mooring systems play a significant role in position restraining and recentering
of offshore compliant and floating structures. Mooring lines that extend from
the structure to the seabed may be of the following types (i) steel chain type,
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(ii) steel wire ropes and (iii) synthetic ropes. A specific type of the mooring is
chosen according to the strength and elasticity requirements, apart from the
structural and functional requirements of the platforms that are moored.

The catenary mooring system is the most common type of the mooring
system deployed in the offshore industry. Catenary mooring systems have
mooring length much greater than that of the water depth; hence, they are
freely suspended from the structure, resulting in a catenary shape formed
when freely suspended due to its self-weight. Catenary moorings resist the
loads by their self-weight alone. When the structure responds to an external
force, it tends to lift the mooring lines. In such cases, self-weight of the lines
pulls down by applying an equivalent restoring force and thus holding down
the structure. Guyed towers and semi-submersibles are examples of offshore
structures using catenary mooring systems.

Taut mooring systems are used for positively buoyant offshore platforms
like tension leg platforms (TLPs). In this type, the moorings are tightly
stretched to accommodate a very high initial pretension. Pretension is imposed
on the moorings by altering the draft of the platform, which is usually done
by ballasting and deballasting. Unlike the earlier type, taut moorings require
high axial stiffness and elasticity. Upon the response of the structure to lateral
loads, moorings get stretched. It invokes an equivalent magnitude of the
restoring force, which arises from the axial stiffness of moorings. Taut-
mooring system provides high stiffness in the vertical plane and better load
distribution between the mooring lines. Unlike catenary moorings, a taut
mooring imposes high vertical forces in the anchor, and thus anchors should
be designed for sustaining this pullout. Taut mooring may be vertical or
inclined.

Turret-mooring system, as shown in Fig. 5.1, consists of a vertical assembly
with a rotating holder to hold the mooring lines. It is a single-point-mooring

FIGURE 5.1 Turret-mooring system.
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system commonly deployed in vessels and FPSOs. The lower end of the
moorings is fixed to the seabed while the other end to the turret, which is
integrated into the vessel. Turret-mooring system can be either internal or
external.

5.3 MATHIEU EQUATION

Mathieu equation describes the stability of compliant structures for their
parametric oscillations. The solution to this equation depends upon the
Mathieu parameters, which are represented in the Mathieu stability chart
(Chandrasekaran & Kiran, 2018). Mathieu equation to assess the stability of
floating structures that are anchored to seabed is given by the following
expression:

d2y
∂z2

þ ðδ� 2qcos 2zð ÞÞy ¼ 0 ð5:1Þ

where δ and q are known as Mathieu parameters. Mathieu equation is
a special form of Hills equation with a single harmonic mode. A general solu-
tion cannot be obtained for this equation as it depends on the values of the
parameters. Therefore, the solution to the Mathieu equation is described by
the Floquet’s theorem as follows:

γγ zð Þ ¼ ei
ffiffi
x

p
p zð Þ ð5:2Þ

where γ is a function of Mathieu parameters δ and q, p(z) is a periodic
function with same period of cosine function as shown in Eq. (5.1). Solu-
tion of the equation is periodic with periods varying from (π or 2π), if γ is
real and integer. The solution is said to be unstable, if γ is an imaginary
number for which the periodic function will vary in the range �∞;þ∞ð Þ.
Mathieu equation shall be satisfied by one of the periodic solutions given
below:

y ¼
X∞

n¼0
A2ncos2nz ð5:3aÞ

y ¼
X∞

n¼0
A2nþ1cos 2nþ 1ð Þz ð5:3bÞ

y ¼
X∞

n¼0
B2nþ1cos 2nþ 1ð Þz ð5:3cÞ

y ¼
X∞

n¼0
B2nþ2cos 2nþ 2ð Þz ð5:3dÞ

The recurrence relation is obtained by substituting Eq. (5.3) in Eq. (5.2) and
equating cosine and sine function to zero for n = 0,1,2,3…. For the given
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values of n, Mathieu parameters (q, δ) are obtained by trial and error method.
These are plotted to obtain the Mathieu stability chart. Figure 5.2 shows
a typical Mathieu stability chart, where the colored region shows stable area
while the uncolored ones represent the unstable region.

5.4 MATHIEU STABILITY FOR COMPLIANT STRUCTURES

The new-generation offshore compliant structures namely triceratops and
buoyant leg storage and regasification platform (BLSRP) are inspired from
the existing offshore structures (Chandrasekaran & Lognath, 2016; Chandra-
sekaran et al., 2015b). Both the new platforms are form-dominant design,
where the structural form is conceived to counteract the applied lateral loads
(Chandrasekaran & Nannaware, 2014). The structure remains floating in the
sea but position restrained by tethers with high initial pretension (Chandrase-
karan & Nassery, 2015b). As both the platforms are compliant (means, flexible
in the horizontal plane), they alleviate the lateral loads that arise from waves,
wind and current by undergoing large displacements but not by their strength
of the members (Chandrasekaran & Mayank, 2017; Chandrasekaran et al.,
2015b). Patel and Park (1991) investigated the dynamic analysis of tethers
under low pretension for the parametric oscillation of tethers using Mathieu
equation. They considered tether as a simply supported column element sub-
jected to constant axial tension and neglected the nonlinear damping term.
Lateral motion of tethers is expressed as a partial differential equation, which
is further reduced to a nonlinear Mathieu equation using Galerkin’s method.
Even though stability charts for small parameters exists (Goldstein, 1929;
Ince, 1925), Mathieu stability chart is extended to large parameters using the
perturbation method.

FIGURE 5.2 Mathieu stability chart.
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Simos and Pesce (1997) generated a dynamic model for the Mathieu equa-
tion for TLP tethers using a linear cable equation. Lateral vibration of tethers
is assumed to arise from the submerged mass of the tethers, resulting in
dynamic tension variation in tethers. Chandrasekaran et al. (2006b) illustrated
the stability of tension leg platforms at different water depths and examined
the effect of geometric shape on Mathieu stability. Tao and Jun (2006) showed
that the presence of damping eliminates Mathieu-type stability in high-order
unstable zones. Mathieu instability is found to be critical in lower stability
zones due to limited effects of damping. Stability chart with damping for regu-
lar waves was generated, and generation of stability chart for damped irregular
wave condition remains highly challenging.

Haslum and Faltinsen (1999) presented Mathieu instability in pitch response
of spar platforms for different geometric forms of the spar platform; heave-
pitch coupling effects are included in the Mathieu stability analysis. Extreme
heave response was observed under unstable condition, resulting from a larger
pitch response. It verifies the fact that pitch damping shall reduce the unstable
motion of the compliant structures. Rho et al. (2005) verified through experi-
mental investigations that Mathieu-type instability occurs when the natural
pitch period is twice as that of the heave. Koo et al. (2004) also investigated the
heave and pitch coupling effects using a modified Mathieu equation. They
showed that under unstable condition, a lock-in phenomenon is noted in pitch
response. They also confirmed that increased pitch damping reduces instability.

Further, they suggested that shifting of the natural frequency of the pitch
motion has a significant effect on stability; it can be achieved by considering
the riser buoyancy. Rho et al. (2005) showed that a larger heave response
makes the metacentric height negative, which in turn results in unstable con-
figuration and cause dynamic instability. The addition of helical stakes and
damping plates restricts the heave resonance motion and thus helps stabilize
the unstable nonlinear motion.

Tethers play a significant role in the stability of taut-moored compliant
structures, and hence understanding tether stability is important. Further sec-
tion deals with the stability analysis of triceratops and BLSRP in detail.

5.5 MATHIEU STABILITY OF TRICERATOPS

Mathieu equation and parameters are used to examine the stability of various
systems such as stability of oscillations, electrical circuits with varying resist-
ance, the vibration of structures under stretched strings and column subjected
to periodic axial pull (Mclachlan, 1947). Mathieu stability chart represents the
solution for Mathieu’s equation (Goldstein, 1929). A general solution does not
exist as they are dependent on Mathieu’s problem-specific parameters (Ince, 1925).
The environmental load on taut-moored structures induces dynamic tension vari-
ation in tethers. It may cause instability in tethers, which can be identified using
the Mathieu equation (Koo et al., 2004). Mathieu equation is a second order,
linear, homogeneous differential equation whose canonical form is given in
Eq. (5.1), where (δ, q) are termed as Mathieu parameters. Mathieu equation is

Mathieu Stability of Compliant Structures 235



a special form of Hills equation with single harmonic mode. Solution to this equa-
tion can be obtained using Hill’s method or Floquet’s theory. However, for obtain-
ing solution involving large parameters, the perturbation method is used to obtain
the solution; the latter is required in case of offshore compliant structures. It is
important to note that the Mathieu parameters (δ, q) are required to be derived
for each case under study.

5.5.1 FORMULATION OF MATHIEU EQUATION

Dynamic equation of tether is formulated using an idealized linear model
(Simos & Pesce, 1997). Dynamic equation of tether vibration is formulated
using an idealized linear model (Chandrasekaran & Kiran, 2017; Chandrase-
karan & Seeram, 2012). It is similar to that of the straight, slender column
with simply supported ends under varying axial tension caused by its sub-
merged mass (Nagavinothini & Chandrasekaran, 2019). Ignoring the effects
caused by the flexural rigidity, the dynamic equation for the lateral motion of
tethers is given as

M
∂2y
∂t2

� ∂
∂x

T xð Þ : ∂y
∂x

� �
þ Bv

∂y
∂t

����
���� : ∂y∂t ¼ 0 ð5:4Þ

where M is the total mass of the tether, which is the sum of added mass and
physical mass per unit length. T(x) is the total tension in the tether, which is
the sum of static tension and dynamic tension and is given as

T xð Þ ¼ Pþmg L� xð Þ � Acos ωtð Þ ð5:5Þ

where P is the initial pretension in tethers, m is the mass per unit length of
the tether, L is the length of the tether, A is the tension amplitude, ω is the
wave frequency and Bv is the viscous damping coefficient. For free lateral
vibration of tether, Eq. (5.4) reduces to the following form:

M
∂2y
∂t2

� ∂T xð Þ
∂x

¼ 0 ð5:6Þ

Let the lateral motion under nth mode is assumed as

yn Xntð Þ ¼ fn tð Þ :Xn xð Þ ð5:7Þ

Substituting, Eq. (5.6) will result into the classical Sturm–Liouville problem:

P
M

þmg L� xð Þ
M

� �
Xn þ ωn

2Xn ¼ 0 ð5:8Þ

Eq. (5.8) can be rewritten using a new variable η. It shall reduce a modified
Bessel equation as given below:
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η2Xn þ ηXn þ 4βn
2η2Xn ¼ 0 ð5:9Þ

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmg L� xð Þ

P

r
ð5:10Þ

βn
2¼ PM

mgð Þ2 ωn
2 ð5:11Þ

Solution for Eq. (5.8) is obtained in the form of Bessel functions (J0, Y0)
(Bowman, 1958):

Xn nð Þ ¼ C1J0ð2βnηÞ þ C2Y0ð2βnηÞ ð5:11Þ

Constants C1 and C2 can be deduced by applying the following boundary
conditions:

Xnðη τ ¼ 0Þ ¼ 0 and Xnðηj jτ ¼ 1Þ ¼ 0 ð5:12Þ

Eq. (5.11) reduces to the following form:

Xn xð Þ ¼ J0 2βn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmg L� xð Þ

P

r !
� J0 2βnð Þ

Y0 2βnð Þ Y0 2βn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmg L� xð Þ

P

r !

ð5:13Þ

where βn is obtained as the solution of the equation and is given as

J0 2βn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmgL

P

r !
Y0ð2βnÞ � Y0 2βn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmgL

P

r !
J0ð2βnÞ ¼ 0

ð5:14Þ

By substituting and applying Galerkin’s variation method, Eq. (5.4) is reduced
to the following form:

d2f
dτ2

þ ðδ�q cosð2τÞÞfþc
df
dτ

����
���� dfdτ ¼ 0 ð5:15Þ

where 2τ = ωt (τ is a dimensionless time variable), (δ, q) are Mathieu parameters
given by Patel and Park (1991):

δn ¼ 4
Mω2 mg

I2 þ I4ð Þ
I1

� �
� Pþ mgLð Þ I3

I1
ð5:16aÞ
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qn ¼ � 2A
Mω2

I3
I1

ð5:16bÞ

Cn ¼ B
M

I5
I1

ð5:16cÞ

I1 ¼
ðL
0
Xn

2 xð Þdx ð5:17aÞ

I2 ¼
ðL
0

dXn

dx
dx ð5:17bÞ

I3 ¼
ðL
0

d2Xn

dx2
Xndx ð5:17cÞ

I4 ¼
ðL
0

d2Xn

dx2
Xnx dx ð5:17dÞ

I5 ¼
ðL
0
x3 xð Þdx ð5:17eÞ

Fig. 5.3 shows the stability chart extended to large parameters (Patel & Park,
1991; Rho et al., 2005) where shaded regions show instability.

5.5.2 MATHEMATICAL MODEL

A mathematical model is developed using MATLAB® to obtain the
Mathieu parameters to study the dynamic stability of tethers. The lateral
motion of tethers is computed for the first mode of frequency. Lateral
motions of higher modes are neglected as they are insignificant in the pre-
sent case. Tether properties such as pretension, length and area are applied
along with tension amplitude from a numerical model to obtain the coeffi-
cients I1, I2, I3, I4 and I5. Mathieu parameters are obtained for each case,
appropriately. The Mathieu parameters thus obtained are plotted in stabil-
ity chart to get the stability condition of the structure. The mathematical
model generated using MATLAB® is validated with the existing results from
the literature (Chandrasekaran et al., 2006b). The mathematical model devel-
oped has a maximum error of about 3.25%, which is well within the accept-
able limits.
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5.6 INFLUENCE OF PARAMETERS ON STABILITY

Numerical analysis of offshore triceratops for hydrodynamic response and
dynamic tether tension variation are carried out. Triceratops consisting of three
circular buoyant legs and the triangular deck are modeled using the software. As
buoyant legs qualify for Morison region, they are modeled using line elements.
Each buoyant leg is modeled with an outer diameter of 14.14 m and wall thick-
ness of 0.15 m. The mass of buoyant legs, ballast load and weight of the deck is
assigned to the mass center on the vertical plane. Each buoyant leg is modeled as
an independent, rigid body as they are not interconnected. The deck consists of
quadrilateral and triangular plate elements with appropriate mass properties.
Buoyant legs are connected to the deck using ball joints. Tethers, those extending
from the keel of the buoyant leg to seabed, are modeled as flexible elements.
Buoyant legs are connected to the seabed with groups of tethers containing four
tethers in each group. Total numbers of 12 tethers in three groups are used, one
group per buoyant leg is used for mooring system. Geometric and structural
details of the platform under study are given in Table 5.1. Fig. 5.4 shows the
numerical model of the triceratops.

5.6.1 INFLUENCE OF WAVE HEIGHT

The numerical model is subjected to a regular wave of wave height 5.1 m and
wave period 6.8 s for 500 s, and the tether tension variations are obtained.
Figs. 5.5–5.7 show the dynamic tether tension variations in each buoyant leg,
which will be further used to compute the stability. Triceratops is analyzed
under different wave heights for a constant wave frequency, at a water depth
970 m. To investigate the influence of wave height on Mathieu parameters, the
wave height is varied in the range of 8–15 m for a wave period of 15 s.

FIGURE 5.3 Mathieu extended stability chart (Patel & Park, 1991).
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TABLE 5.1 Properties of triceratops
Description Value Units

Water depth 1069.36 m

Total mass 320,500 kN

Buoyant force 470,440 kN

Diameter of buoyant leg 14.14 m

Plan dimension 99.40 m

Freeboard 33.12 m

Draft 99.36 m

Length of buoyant leg 132.48 m

Total tether force 149,940 kN

Pretension in one tether 12,495 kN

Tether length 970 m

No. of tethers (three groups) 12 4 tethers in each group

Axial stiffness of tethers 57,623 kN/m

Unit weight of material 7850 kg/m3

Unit weight of surrounding fluid 10.25 kN/m3

rxx of buoyant leg 76.65 m

ryy of buoyant leg 76.65 m

rzz of buoyant leg 6.99 m

rxx of the deck 36.32 m

ryy of the deck 54.35 m

rzz of the deck 63.87 m

FIGURE 5.4 Numerical model of offshore triceratops.
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Maximum tension in each tether for each case is summarized in Table 5.2.
It is observed from the table that tension variation increases with an increase
in wave height. Corresponding to the maximum wave height of 15 m,
a maximum tension variation of 11.14% of initial pretension is observed. With
the tension variation obtained and tether properties, Mathieu stability analysis
was done using the mathematical model, and the Mathieu parameters and its
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FIGURE 5.7 Tether tension variation in buoyant leg 3.
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FIGURE 5.5 Tether tension variation in buoyant leg 1.
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FIGURE 5.6 Tether tension variation in buoyant leg 2.
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stability conditions are expressed in Table 5.3. From the table, it is noted that
the Mathieu parameter (δ) remains unaffected but (q) increases with the
increase in wave height. Since tension variation is not large enough to provoke
Mathieu instability, the platform remains stable for all wave heights considered
in the present study. However, the increase in parameter (q) independent of
the parameter (δ) shows that the stability condition tends to shift towards the
unstable region from a stable region. Depending upon the region of Mathieu
parameters, an increase in wave height may lead to the unstable condition as
a vertical shift in parameters is observed for the increase in wave height.

5.6.2 INFLUENCE OF WAVE PERIOD

To investigate the influence of wave frequency on Mathieu parameters, the tri-
ceratops is analyzed under different wave frequencies at a water depth of
970 m. Wave period is varied as 10, 12, 15 and 18 s for a constant wave
height of 8 m. Maximum tension variation for each case is obtained from the
numerical model and summarized in Table 5.4. The Mathieu parameters
obtained from the mathematical model is listed in Table 5.5 along with its sta-
bility condition. The maximum tension in each tether is not influenced by the
change in the wave period. Parameters show that the platform is stable under

TABLE 5.3 Influence of wave height on Mathieu parameters (wave
period 15 s)
Wave height (m) Mathieu parameters Stability condition

δ q

8 359.90 7.56 Stable

10 359.90 9.76 Stable

12 359.90 12.43 Stable

15 359.90 20.93 Stable

TABLE 5.2 Tension variation in tethers for different wave height
(wave period 15 s)
Wave height
(m)

Buoyant leg 1
(MN)

Buoyant leg 2
(MN)

Buoyant leg 3
(MN)

Initial pretension
(MN)

8 50.79 52.32 52.03 49.98

10 51.08 53.00 52.76

12 51.46 53.82 53.74

15 52.93 56.45 55.55
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all wave periods considered in the study. However, the significant increase in
the Mathieu parameter (δ) is noted for an increase in wave period while par-
ameter (q) increases with a marginal variation. The increase in parameter (δ)
shifts the parameters to a more stable region and hence increase in the wave
period is advantageous to the stability condition. Thus, ensuring increased sta-
bility condition with an increase in the wave period.

5.6.3 INFLUENCE OF WATER DEPTH

Triceratops under different water depth is analyzed under regular waves of
(5 m, 6.8 s) for the dynamic tether tension variation. As stiffness remains
unaltered, it is seen from the study that dynamic tether tension variation is
not much significant. Maximum tension variation in each buoyant leg is
given in Table 5.6. Stability analysis is carried out using a mathematical
model, considering the changes in tether length and area of tethers for
varying water depth and the parameters obtained are listed in Table 5.7.
Corresponding points are traced on the extended stability chart, as shown
in Fig. 5.8, and the stability conditions are obtained and listed in Table
5.7. As seen from the figure, a combination of larger values of (δ) and
smaller values of (q) ensure stable condition. It is also evident that with

TABLE 5.5 Mathieu parameters for different wave
frequencies (wave height 8 m)
Wave period (s) Mathieu parameters Stability condition

δ q

10 159.95 6.44 Stable

12 230.33 5.85 Stable

15 359.90 7.56 Stable

18 518.25 27.40 Stable

TABLE 5.4 Tension variation in tethers for different wave
frequencies
Wave
period (s)

Buoyant leg 1
(MN)

Buoyant leg 2
(MN)

Buoyant leg 3
(MN)

Initial pretension
(MN)

10 51.56 54.20 54.46 49.98

12 50.85 52.81 52.08

15 50.79 52.32 52.03

18 52.68 55.86 54.72

Mathieu Stability of Compliant Structures 243



TABLE 5.7 Mathieu parameters for different water depth
Water depth (m) Stiffness

(MN/m)
Mathieu parameters Stability condition

δ q

485.00 76.83 544.81 40.32 Stable

727.50 167.35 10.95 Stable

970.00 73.969 3.91 Stable

1212.50 40.03 2.63 Stable

1455.00 24.69 1.74 Stable

TABLE 5.6 Dynamic tension variation in tethers for different water depths
Water depth
(m)

Stiffness
(MN/m)

Buoyant leg 1
(MN)

Buoyant leg 2
(MN)

Buoyant leg 3
(MN)

Initial pretension
(MN)

485.00 76.83 53.24 56.91 57.60 49.98

727.50 52.9 56.15 56.94

970.00 52.68 55.86 54.72

1212.50 52.98 56.61 57.68

1455.00 53.17 58.73 57.75

FIGURE 5.8 Mathieu stability for different water depths.
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the increase in water depth, Mathieu parameters decrease and shift towards
the first zone of stability region. It is important to note that in this region,
even a minor variation in the Mathieu parameters significantly affect the
stability condition. Hence, Mathieu stability analysis is more critical for
deep water structures.

5.6.4 INFLUENCE OF TETHER STIFFNESS

Influence of axial stiffness of tethers on Mathieu stability is examined for
a fixed water depth of 970 m; axial stiffness of tethers is varied. Tension vari-
ation in each leg of tethers is summarized in Table 5.8. It is seen from the
table that tension variation in tethers decreases with the increase in stiffness
and reduction in stiffness induces more tension in tethers as response increase.
Mathieu parameters for each case are computed and summarized in Table 5.9;
corresponding values are also mapped on the chart, as shown in Fig. 5.9. The
shaded region shows an unstable condition. As expected, a reduction in stiff-
ness to about 40% causes instability, which resulted in chaotic time history.
Mathieu-type instability occurs for this case from the Mathieu parameters
plotted in the figure. Since the parameters are not exhibiting linear variation,
we cannot predict or extrapolate the Mathieu parameters. However, there is
a direct correlation between the stiffness and stability, increase in stiffness

TABLE 5.9 Mathieu parameters for different stiffness
Stiffness (MN/m) % variation in stiffness Mathieu parameters Stability condition

δ q

92.20 +20 62.93 2.18 Stable

76.83 normal 73.96 3.91 Stable

61.46 –20 90.53 6.80 Stable

36.88 –40 118.17 86.20 Unstable

TABLE 5.8 Tension variation in tethers for different stiffness
Stiffness
(MN/m)

%
variation

Buoyant leg 1
(MN)

Buoyant leg 2
(MN)

Buoyant leg 3
(MN)

Initial pretension
(MN)

92.20 +20 53.15 53.09 53.91 49.98

76.83 Normal 52.68 55.86 54.72

61.46 –20 54.17 58.08 58.18

36.88 –40 127.60 127.97 128.35
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increases the stability condition, and a decrease in stiffness leads to Mathieu
instability.

5.6.5 INFLUENCE OF INCREASED PAYLOAD

The increased payload is admitted in the analysis to create a postulated failure
under which tether stability is examined. It is important to note that increased
payload results in the reduction of pretension in tethers. The magnitude of
increase in the payload is expected to occur (and not unusual) in production
and drilling platforms; such scenarios can even occur under normal operating
conditions. Six different cases of postulated failure with increased payload are
analyzed for tether tension variation under regular waves (5 m, 6.8 s), which
corresponds to a normal operational sea state of deep water offshore plat-
forms. The increase in payload and the corresponding reduction in initial
tension is listed in Table 5.10. The amplitude of maximum tension in each

FIGURE 5.9 Mathieu stability chart for different tether stiffness.

TABLE 5.10 Total mass and reduced pretension
Description Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Increase in payload – 5% 10% 15% 20% 25%

Total mass (kN) 320,500 336,525 352,550 368,575 384,600 400,625

Total tether force (MN) 149.940 133.915 117.890 101.865 85.840 69.815

Tether force in each leg (MN) 49.980 44.638 39.296 33.955 28.613 23.272

Pretension in each tether (MN) 12.495 11.159 9.824 8.488 7.153 5.817

% reduction in pretension – 10.69 21.37 32.06 42.75 53.44
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leg is obtained using a numerical model and listed in Table 5.11. It is seen
from the table that tension variation increases with the increase in payload.
For an increase in payload more than 15%, tension variation is significantly
high, and it becomes essential to examine tether stability under such
variations.

Tether stability is examined under the dynamic tether tension variation
using Mathieu’s stability chart. Under the maximum tension variation
(amplitude), dynamic analysis is carried out to obtain Mathieu parameters
for each of the postulated failure cases; Mathieu parameters thus obtained
are listed in Table 5.12, and the corresponding points are plotted in
Mathieu’s stability chart, as shown in Fig. 5.10; points that fall in the
shaded region indicate that the platform is unstable. From the Mathieu sta-
bility analysis, it is seen that an increase in payload more than 15% causes
Mathieu-type instability.

TABLE 5.12 Mathieu parameters for increased payload
Description Mathieu parameters Stability condition

δ q

Case 1 73.96 3.73 Stable

Case 2 (5%) 66.86 12.21 Stable

Case 3 (10%) 59.77 15.73 Stable

Case 4 (15%) 52.69 30.01 Unstable

Case 5 (20%) 45.62 49.12 Unstable

Case 6 (25%) 38.46 55.18 Unstable

TABLE 5.11 Maximum tension variation under the
increased payload
Description Maximum tension in

each leg (MN)
Initial tension in
each leg (MN)

1 2 3

Case 1 52.553 55.597 54.621 49.980

Case 2 (5%) 50.654 63.001 62.499 44.638

Case 3 (10%) 58.246 62.917 58.818 39.296

Case 4 (15%) 66.335 78.912 72.455 33.955

Case 5 (20%) 101.928 83.372 90.697 28.613

Case 6 (25%) 105.323 94.725 92.779 23.271
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5.7 MATHIEU STABILITY OF BLSRP

The new geometric form of BLSRP is derived based on the functional
requirements including salient advantages of different offshore structures
(Chandrasekaran & Lognath, 2016, 2017a, 2017b). The deep-draft buoyant
legs provide higher stiffness in the vertical plane as that of the spar while the
positive buoyancy and taut-mooring system resemble the TLP. BLSRP is
a form-dominant compliant structure, which resists environmental loads by its
compliance. Compliance is allowing flexibility in the structure, and hence dis-
placements of the buoyant legs are expected. Transfer of rotational degrees of
freedom from buoyant leg to the deck causes discomfort, and hence hinged
joints are used between legs and the deck to isolate the rotational degrees of
freedom, an idea borrowed from offshore triceratops platforms where ball joints
are used to isolate the deck. BLSRP is a hybrid geometry comprising the merits
of different existing platforms in the offshore industry. Salient features of
BLSRP are (i) positively buoyant structure, (ii) spread taut mooring system
with high initial pretension, (iii) six buoyant legs placed symmetrically, (iv) iso-
lation of rotational degrees of freedom in the deck using hinged joints, (v) deep
draft buoyant legs and (vi) insensitivity to wave direction. Buoyant leg struc-
tures have few other advantages such as easy installation, transportation, fabri-
cation and technical. This section shall describe the stability analyses of
BLSRP in detail.

5.7.1 NUMERICAL MODELING

Numerical analysis of BLSRP is carried out in detail. BLSRP consists of
a circular deck with the 100 m diameter and six buoyant legs placed symmetric-
ally at 60° to each other. The draft of the legs are at three-fourths that of the

FIGURE 5.10 Mathieu stability chart for increased payload cases.
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length of the buoyant legs, and thus making the buoyant legs as deep-draft sys-
tems. The circular deck is connected to legs using hinged joints, which isolates
the rotational degrees of freedom. Buoyant legs are modeled as line elements
since it qualifies for Morison region. Tethers that connect the legs to the seabed
are modeled as flexible elements. Since BLSRP is positive-buoyant structure, it
is position-restrained using high pretension tethers, comprising four tethers on
each leg with a total of 24 tethers. Spread mooring system with 20° inclination
is used to hold down the platform in position. Fig. 5.11 shows the numerical
model, and Table 5.13 shows the structural details of the platform, which is
under investigation. The static equilibrium between the mass, buoyancy force
and the initial tether force is given as

Fb ¼ Wþ 6T0cos 20�ð Þ ð5:18Þ

Without altering the static equilibrium, the geometric properties are derived
considering the huge storage capacity of the regasification units, giving rise to
a large mass.

FIGURE 5.11 Numerical model of BLSRP.

Mathieu Stability of Compliant Structures 249



The numerical model of BLSRP is analyzed for hydrodynamic responses
under a regular wave of height of 5.1 m and wave period of 6.8 s. The
dynamic tether tension variation is obtained and plotted, as shown in Figs.
5.12–5.17, for each leg. The dynamic tether tension induces different heave
responses in each leg, which is subsequently transferred to the deck as the
platform is stiff in the vertical plane.

5.7.2 MATHIEU STABILITY UNDER TETHER PULLOUT

Two postulated failure conditions under tether pullout are discussed in this
section. The effect of tether pullout on the stability of the structure is investi-
gated using Mathieu stability analysis and compared with that of the normal
condition (case 1). First postulated condition examined is single leg tether
pullout (case 2), where the tethers in the wave-facing buoyant leg are removed
(Fig. 5.18a). Second, the postulated condition is when the tethers of two buoy-
ant legs are removed (Fig. 5.18b), i.e., buoyant leg one and four, which are
opposite to each other (case 3).

TABLE 5.13 Structural properties of BLSRP (Chandrasekaran
et al., 2015b)
Description BLSRP Units

Water depth 1069.36 M

Total mass 641,000 kN

Buoyant force 940,880 kN

Diameter of buoyant leg 14.14 m

Plan dimension 100 m

Freeboard 33.12 m

Draft 99.36 m

Length of buoyant leg 132.48 m

Total tether force 319,125.60 kN

Pretension in each leg 53,187.61 kN

Tether length 964.81 m

No. of tethers (six groups) 24 4 tethers/group

Axial stiffness of tethers 76,830.67 kN/m

Unit weight of material 7850 kg/m3

Unit weight of surrounding fluid 10.25 kN/m3

rxx of buoyant leg 76.65 m

ryy of buoyant leg 76.65 m

rzz of buoyant leg 6.99 m

rxx of deck 38.40 m

ryy of deck 38.40 m

rzz of deck 8.11 m
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FIGURE 5.12 Tether tension variation in buoyant leg 1.
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FIGURE 5.13 Tether tension variation in buoyant leg 2.
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FIGURE 5.14 Tether tension variation in buoyant leg 3.
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Dynamic response analysis is carried out under the postulated failure cases
for a regular wave (5.1 m, 6.8 s) for 500 s. Upon the removal of tethers, redis-
tribution of initial tether tension is noted in both the cases, inducing higher
initial pretension in the tethers (Chandrasekaran & Kiran, 2018b; Chandrase-
karan & Madhuri, 2015; Chandrasekaran et al., 2013c). For case 3, the
removal of tethers in two legs increases the initial pretension by 50%. Table
5.14 shows the maximum tension amplitude in tethers, obtained from the
dynamic analysis under the postulated failure cases.

Mathieu parameters are obtained for each case and listed in Table 5.15,
along with its stability condition obtained from plotting the parameters in the
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FIGURE 5.15 Tether tension variation in buoyant leg 4.
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FIGURE 5.16 Tether tension variation in buoyant leg 5.
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stability chart. Fig. 5.19 shows the plot. The parameter ‘δ’ which depends on
tether properties remains constant for all the cases, whereas parameter ‘q’
increases for each case, which is very critical. The stability analysis shows that
when the tethers of two buoyant legs are pulled out, Mathieu-type instability
occurs indicating a chaotic nature in the tether tension.

As seen from the figure, for normal condition (case 1) where no tether pull-
out is postulated, it confirms a stable condition. For the postulated case of
failure case 2, stability parameters, even though move vertically toward the
unstable region, the structure remains stable and Mathieu instability does not

FIGURE 5.18 Postulated failure cases: (a) one leg affected and (b) two legs affected.
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FIGURE 5.17 Tether tension variation in buoyant leg 6.
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TABLE 5.14 Maximum tension amplitude in tethers for
postulated cases of failure
Description Leg 1

(MN)
Leg 2
(MN)

Leg 3
(MN)

Leg 4
(MN)

Leg 5
(MN)

Leg 6
(MN)

Maximum
tension (MN)

Normal
(case 1)

62.49 61.53 61.43 61.40 61.85 60.97 62.49

Postulated
failure
(case 2)

– 94.93 81.0 89.92 94.57 97.41 97.41

Postulated
failure
(case 3)

– 148.28 142.98 – 141.30 144.28 148.28

TABLE 5.15 Mathieu parameters under postulated failure
Description δ q Stability condition

Normal
(case 1)

75.07 5.9 Stable

Case 2 75.07 28.06 Stable

Case 3 75.07 60.34 Unstable

FIGURE 5.19 Mathieu stability chart for BLSRP under tether pullout cases.
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occur. Further removal of tether 4 as in case 3 leads to instability. As seen from
the table, one of the stability parameter (δ) remains unaltered for all the cases
under consideration as this depends on tether stiffness and initial pretension. Sig-
nificant increase in the other parameter q is observed under postulated cases of
failure.

5.7.3 MATHIEU STABILITY ANALYSIS UNDER ECCENTRIC LOADING

Probability of eccentric loading is unavoidable in offshore platforms, which
may occur under operational conditions. It is important to note that floating
and compliant structures will be highly influenced under such conditions, and
their stability will be challenged (Chandrasekaran & Lognath, 2015). Eccentri-
city may also result from the position of various equipment like cranes used
for drilling. The presence of regasification units and storage tanks, which is
one of the prime functions of the platform, imposes large mass to the plat-
form. This section describes a detailed dynamic analysis carried out under
probable eccentric loading and stability is assessed for each case. To investi-
gate the effect of eccentric loading in BLSRP, three different cases of loading
are considered. Figs. 5.20 to 5.22 show the position of eccentric loads on the
deck. Each case of eccentric loading is analyzed for two load values, 5% and
10% of that of the total mass of the platform.

BLSRP is analyzed for tether tension variation under a regular wave (5 m,
6.8 s) in the condition of two eccentric loads: 32,050 kN (5%) and 64,100 kN
(10%). Maximum tension variation is obtained for each leg of tethers for all
the cases is listed in Table 5.16.

FIGURE 5.20 Eccentric loading on top of the buoyant leg (case 2).
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Detailed Mathieu stability analysis is carried out for all cases, and the
Mathieu parameters are obtained and plotted in the extended Mathieu stabil-
ity chart (Fig. 5.23). The parameter ‘δ’ which depends on the stiffness and ini-
tial pretension of the tether remains constant for all the cases, whereas

FIGURE 5.22 Eccentric load on top of two consecutive buoyant legs (case 4).

FIGURE 5.21 Eccentric load between two buoyant legs (case 3).
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TABLE 5.16 Tether tension variation for different eccentric loading cases
Description Load Cable 1

(MN)
Cable 2
(MN)

Cable 3
(MN)

Cable 4
(MN)

Cable 5
(MN)

Cable 6
(MN)

Max
(MN)

Case 1 – 62.49 61.53 61.43 61.40 61.85 60.97 62.49

Case 2 5% 89.99 71.78 59.08 63.56 65.76 73.70 89.99

10% 168.54 140.70 76.40 128.80 80.79 136.04 168.54

Case 3 5% 85.06 18.52 68.28 67.98 65.11 77.17 85.06

10% 153.42 112.99 103.06 100.50 110.26 144.23 153.42

Case 4 5% 82.34 64.45 64.91 64.57 63.22 69.21 82.34

10% 112.36 99.39 73.37 68.76 80.14 107.94 112.36

FIGURE 5.23 Mathieu stability chart for eccentric loading.

TABLE 5.17 Mathieu parameters under eccentric loading
Description Load δ q Stability condition

Case 1 – 75.07 5.9 Stable

Case 2 5% 75.07 23.35 Stable

10% 75.07 73.19 Unstable

Case 3 5% 75.07 20.22 Stable

10% 75.07 63.6 Unstable

Case 4 5% 75.07 18.49 Stable

10% 75.07 37.54 Stable (boundary)
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parameter ‘q’ depends on the tension variation and hence differs for different
cases. The stability condition obtained for each case along with Mathieu
parameters is listed in Table 5.17.

For normal condition, case 1 and eccentric loading with 5% load for all cases
show stable condition. For eccentric loading of 10%, case 2 and case 3 show an
unstable condition, indicating a chaotic nature. It is vital to note that irrespective
of the position of eccentric load considered, platform undergoes Mathieu-type
instability for eccentric load >10% of the total mass of the structure.

5.8 NUMERICAL MODELING EXAMPLE OF TRICERATOPS

This section illustrates the step-by-step procedure to model the example prob-
lems in Anysy Aqwa software. Table 5.18 shows the structural properties of
both triceratops and BLSRP platforms

Step 1: Modeling of the deck and buoyant legs
The deck is modeled as a plate element, comprising of quadrilateral and triangu-
lar plate elements with appropriate mass properties. Buoyant legs are modeled as
line elements as they qualify for the Morison region. An appropriate cross section
is assigned to the buoyant legs.

TABLE 5.18 Structural properties of triceratops and BLSRP of
example problems
Description Triceratops BLSRP Units

Water depth 1069.36 1000 m

Total mass 320,500 641,000 kN

Buoyant force 470,440 940,880 kN

Diameter of buoyant leg 14.14 14.14 m

Plan dimension 99.80 100 m

Freeboard 33.12 33.12 m

Draft 99.36 99.36 m

Length of buoyant leg 132.48 132.48 m

Total tether force 149,940 319,125.60 kN

Pretension in each leg 49,980 53,187.61 kN

Tether length 970 964.81 m

No. of tethers 12 24

Axial stiffness 76,830.67 76,830.67 kN/m
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Step 2: Complete the numerical model
Buoyant legs and the deck are interconnected using ball joints. Buoyant legs
are connected to the seabed using tethers to achieve the desired structural
form of the model.
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Step 3: Ball joints
Appropriate joints are created between the structural elements.

Step 4: Tethers and pretension
Cables properties and connections are defined. Pretension is applied to cables
using appropriate stiffness. Length before applying tension is modeled as the
unstretched length. By this manner, when the cable is stretched from seabed to
bottom of the leg, required pretension is achieved in the cable, automatically.
Once pretension is applied to the structure, it is balanced, and there exists an
equilibrium between the draft, mass and tether force (Fb – W – 3T0 = 0).
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Step 5: Meshing
Once structural detailing and connections are completed, the mesh size of the
model is fixed to suit the analysis requirements.

Step 6: Loading
Self-weight of the members is added as a point mass to their respective mass
center. The appropriate type of wave loading is selected (e.g., random or regu-
lar) from the menu with appropriate wave characteristics and direction.
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Step 7: Solver
Once analysis under regular wave load is completed, results for the response of the
system in the time domain and frequency domain can be obtained. For Mathieu
stability analysis, tether tension variation in the time domain is required.
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5.8.1 TYPICAL PLOTS OF MEMBERS SHOWING INSTABILITY

5.9 NUMERICAL MODEL OF BLSRP

Step 1: Basic geometry
Basic geometric changes such as a circular deck, six buoyant legs placed
symmetrically.
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Step 2: Hinged joint and its direction

All other steps are similar to that of the previous model. One can run the
model to obtain the response plots.
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