WELCOME TO PRESENTATION ON GREEN BUILDING CONCEPT A SNAP SHOT

BY
Dr. HEMANT SAHASRABUDDHE

WHAT IS GREEN BUILDING

- Green building is the practice of creating structures and using processes that are environmentally responsible and resource-efficient throughout a building's life-cycle from design, construction, operation, maintenance, renovation and deconstruction.
- It conserves natural scared resources.
- "GREEN" building design and construction is a method of wisely using resources to create highquality, healthier and more energy-efficient homes and commercial buildings.

INTRODUCTION OF GREEN-IGBC

- It addresses national priorities includes Site Efficiency, Water Efficiency, Energy Efficiency, Material Efficiency, Handling of Consumer Waste, Usage of Local & Re-Cycled Material, Air Efficiency etc.
- It evaluates certain credit points by using a prescriptive approach and performance based approach.
- Intangible benefits of Green Home include enhanced air quality, excellent day lighting, Health & wellbeing of occupants, safety benefit, conservation of scared national resources.

INTRODUCTION OF GREEN-IGBC

Indian Green Building Council (IGBC) launched Green Home Rating System formed in 2001.

(Origin US LEED rating Council-1993) (Nation wise Independent Councils)

- Established at Hyderabad.
- Provides various rating programme for Single building, Group of buildings, use of building etc.
- Introduced various technological aspects for green concept.
- Introduced various innovative material to be used in Green.
- Rating programme which always subjected to revision periodically with amendments.

PROJECT REGISTRATION AND CERTIFICATION WITH IGBC

- To register a project with IGBC.
- To submit a proposal before IGBC for Preliminary Certification giving details of all parameters along with proposed LEED credit points.
- After scrutiny of Proposal from IGBC, Preliminary Certification is granted by IGBC with terms and conditions to be followed during construction activities.
- Periodical review from IGBC during work progress.
- Application for final certification from IGBC after work completion submitting all relevant details, manufacturers certificate.
- To obtain final certification.

LEED Rating System

IGBC Check list

		Total Points	77
Points			
10	Site Efficiency	Possible Points:	10
Yes	Mandatory Requirement 1	Local Regulations	
Yes	Mandatory Requirement 2	Soil Erosion	
1	Site Credit 1.0	Basic Amenities	1
2	Site Credit 2.0	Natural Topography or Landscape	2
2	Site Credit 3.0	Heat Island Effect on Roof	2
2	Site Credit 4.0	Parking Facilities	2
1	Site Credit 5.0	Non Fossil Fueling Facility for Vehicles	1
1	Site Credit 6.0	Design for Physically Challenged	1
1	Site Credit 7.0	Home User Guide	1
23	Water Efficiency	Possible Points:	23
Yes	Mandatory Requirement 1	Rainwater Harvesting, 30%	
Yes	Mandatory Requirement 2	Water Efficient Fixtures	
2	Water Credit 1.0	Turf Design	2
3	Water Credit 2.0	Drought Tolerant Species	3
2	Water Credit 3.0	Management of Irrigation System	2
3	Water Credit 4.0	Rainwater Harvesting, 50%, 70%, 90%	3
2	Water Credit 5.0	Grey Water – Treatment	2
3	Water Credit 6.0	Grey Water – Reuse	3
2	Water Credit 7.0	Plumbing Systems for Flushing	2
6	Water Credit 8.0	Water Efficient Fixtures, 10%, 20%	6

LEED Rating System contd..

19	Energy Efficiency	Possible Points:	19
Yes	Mandatory Requirement 1	CFC Free Equipment	
11	Energy Credit 1.0	Energy Performance	11
1	Energy Credit 2.0	Metering	1
	Energy Credit 3.0	Refrigerators	0
1	Energy Credit 4.0	Solar Water Heating Systems	1
1	Energy Credit 5.0	Captive Power Generation	1
3	Energy Credit 6.0	Onsite Renewable Energy	3
	Energy Credit 7.1	Lighting - Internal	0
1	Energy Credit 7.2	Lighting - External	1
1	Energy Credit 8.0	Energy Saving Measures in other Equipment	1
12	Materials	Possible Points:	12
Yes	Mandatory Requirement 1	Separation of Wastes	
3	Material Credit 1.0	Waste Reduction during Construction	3
1	Material Credit 2.0	Solid Waste Management, Post Occupancy	1
2	Material Credit 3.0	Materials with Recycled Content	2
	Material Credit 4.0	Rapidly Renewable Materials	0
2	Material Credit 5.0	Local Materials	2
	Material Credit 6.0	Reuse of Salvaged Materials	2
2	Material Credit 7.0	Wood Based Materials and Furniture	2

LEED Rating System contd..

9	Indoor Air Quality	Possible Points:	9
Yes	Mandatory Requirement 1	Tobacco Smoke Control	
Yes	Mandatory Requirement 2	Day Lighting, 50%	
2	IAQ Credit 1.0	Exhaust Systems	2
1	IAQ Credit 2.0	Fresh Air Ventilation	1
2	IAQ Credit 3.0	Low VOC Materials	2
	IAQ Credit 4.0	Carpets	0
1	IAQ Credit 5.0	Building Flush Out	1
2	IAQ Credit 6.0	Day Lighting, 75%, 95%	2
1	IAQ Credit 7.0	Cross Ventilation	1
4	Innovation in Design	Possible Points:	4
1	INN Credit 1.1	Innovation	1
1	INN Credit 1.2	Innovation	1
1	INN Credit 1.3	Innovation	1
1	INN Credit 2.0	IGBC AP	1

Out of Total Points - 77	
Certified - 30 to 37 points	
Silver - 38 to 44 points	
Gold - 45 to 52 points	
Platinum - 53 to 77 points	

Rating	
rating	

GREEN HOME PROCESS

- **PARAMETERS**:
- □ Site Efficiency
- Water Efficiency
- Energy Efficiency
- Material Efficiency
- Indoor Air Quality

□Site Efficiency:

- Project shall be within local regulation
 - Safeguarding DCR, Building Byelaws
 - Within frame work of National Building Code.
 - Within MRTP/SRTP provisions
- Regulation ranges depending upon quantum of Project. Exp - for larger quantum
 - Required above
 - MOEF, Forest, Archeology, Irrigation etc.
 - AAI for larger height
 - SPCB / CPCB clearances
 - Clearances from District Collector pertaining land etc.

Site Efficiency Contd...

- Control Soil Erosion
 - Its a natural phenomenon, erosion can be reduced.
 - To prevent soil erosion-various methods
 - To provide shrub plantation
 - To provide turf
 - To construct retaining walls for preventing soil sliding.
 - To conserve top soil layer for landscape purpose.

Site Efficiency contd...

To control Soil Erosion

- □ Planting vegetation, trees, ground cover, shrubs and other plants. Roots from these plants will help hold soil in place on the ground.
- □ Create windbreaks, which are barrier rows planted along the windward exposure of a plot of land. Windbreaks made out of trees, brushes.
- □ Grow cover crops on farm land. When land is not being used during the off season, matting can help prevent soil erosion due to wind and rain.
- Apply mulch to retain moisture and also help prevent soil erosion. Topsoil is not as likely to be washed or blown away when it is covered by mulch.
- Construct surface runoff barriers, such as edging made of bricks or stones, can help prevent soil erosion by minimizing runoff.

Site Efficiency Contd...

- Provide Basic Amenities to the site (within 1.50 Kms) Commercial, School, College, Hospital, Library, markets, worship places etc.
- To maintain natural topography. Top soil to be conserved. Rich for cultivation. Conserve contouring- Planning with no tampering
- Ample Parking Facilities (DCR Provisions)
- Design for Physically Challenged.
 Uniformity in floor level, easy access.
- Provide Home User Guide to Occupants.

■ Water Efficiency :

- Rain Water Harvesting to increase GWT & to reduce usage of water through effective rain water management.
- Erection of waste water treatment unit to promote usage of Gray Water / Re-Cycled Water.
- Minimize Indoor water usage by installing efficient water fixtures.

Water Efficiency:

Rain Water Harvesting to increase GWT & to reduce usage of water through effective rain water management.

Evaluate runoff with the help of rail fall

Surface Run Off & Roof Water

Recharge - Retention - Reuse (Most Industries use stored Water)

Recharge - Filtration Unit + Polypropylene Plastic liner tank + Recharging

+ Overflow to discharge or infiltration pit

Rain water Harvesting – IGBC Standards

50% Runoff from roof area [CP1]

75% Runoff from roof area [CP2]

95% Runoff from roof area [CP3]

 Minimize Indoor water usage by installing efficient water fixtures. – IGBC Standards

Flushing 6.5 LPF

Taps 7.6 LPM

Showers 7.6 LPM

Erection of waste water treatment unit to promote usage of Gray Water / Re-Cycled Water.

FMR / MBR depending upon use.

Grey Water Treatment – IGBC Standards

75% black water treated [CP1]

95% black water treated [CP2]

Water Efficiency Contd...

□ Landscape : Turf Design – IGBC standards

Turf area % as compared to landscape area < 20% [CP2]

Turf area % as compared to landscape area < 40% [CP1]

To evaluate total open space

To evaluate total landscape area

To propose turf area depending upon CR points

To compare turf area with total landscape area

WATER EFFICIENCY contd...

Drought Tolerant Species – IGBC Standards

Drought tolerant species > 20% of landscape area [CP1]

Drought tolerant species > 30% of landscape area [CP2]

Drought tolerant species > 40% of landscape area [CP3]

Dalosperma

Rudbeckia

ENERGY EFFICIENCY

Energy Performance-

For India (Most of part) having Hot & Dry climate the comfortable U-Value (Thermal Resistance) prescribed as 3.3 Watt/M2Kelvin for glazing to openings.

For India (Most of part) having Hot & Dry climate the average U-Value for roof and wall is prescribed as 0.60 to 0.70 W/M2K.

U-Value for individual building prototype is evaluated and its additional costing along with pay back period, energy saving per sqm per annum need to be evaluated.

Energy Efficiency:

- Use of CFC Free Equipment.
- Use of Solar System for hot water, illumination at open spaces and Street Lighting.
- For Solar Power Generation 1MW

System Solar PV (Photovoltaic) / Crystalline

Area Requirement 1Lac sqft / MW

CAPAX Rs. 6.80 Cr (Civil Works+Solar Model+Evacuation cost+others)

Total Units of Generation 1600000

Cost of Power @ Rs. 10/- per Unit = Rs. 1.60 Cr

Pay Back Period 4.25 Years.

30% subsidy from Govt. for CAPAX

ENERGY EFFICIENCY contd...

Properties of AAC blocks

Face Size mm 600x200

Thickness mm 75 100 150 200 230

Dry Weight Kg 5.25 7.0 8.75 14.0 16.10

Compressive Strength N/sqmm 3.0

Normal Dry Density Kg/CuM 550-600

Thermal Conductivity (U-Value) W/SqmK 0.67

Sound Resistance db 37

Fire Resistance Hrs 4

Energy Efficiency Contd....

- □ Heat from walls 30%, from Roof 70%
- Bld. Elevation considering Sun Path Diagram.
- Use of Hollow Brick wall with fly ash material Insulated blocks,
- Cavity wall const having U-Value around 0.70.
- Solar Heat Gain Coeff. consideration.

AEROCON IN FILL BLOCK CONSTRUCTION SLAB

Energy Efficiency Contd....

- High performance glass to openings / windows.
 - DG Window with optimum U-Value 2.50 to 3.50 towards south and west sides openings.
 - SG Window with optimum U-Value ranging from 4.50 to 5.50 towards North and East sides openings.
- Building Insulation Use of an Insulating Material like "Styrofoam" to for better insulation (fixit).
- Terrace shall have surface coat which reflects sun rays, UV Rays reducing inside temperature.

GREEN HOME PROCESS-RESEARCH METHODOLOGY-sky shades

GREEN HOME PROCESS-RESEARCH METHODOLOGY-high performance glass

GREEN HOME PROCESS-RESEARCH METHODOLOGY- shading on glass

GREEN HOME PROCESS-RESEARCH METHODOLOGY- roof insulation + solar

SOME BUILDINGS EXISTED WITH AAC BLOCKS

Material:

Use of Waste Material /Re-Cycled Material i.e. Fly Ash, Raw Gypsum, Raw POP, Broken Tiles-Glass, Brick Bats.
IGBC Standards

% Re-Use of Salvaged Material 5% CP1

% Re-Use of Salvaged Material 10% CP2

Minimize Construction Waste Being sent to Land Fill.

IGBC Standards

% of Waste diverted to landfill 95% CP1

% of Waste diverted to landfill 75% CP2

% of Waste diverted to landfill 50% CP3

Material Efficiency Contd...

Solid Waste Management-Post Occupancy

1. Recycled Waste : % i.e. --- MT/Day

2. Vermiculture : % i.e. ---MT/Day

3. Mechanical Composting : % i.e. ---MT/Day

Use of Local Material like Sand, Aggregates, Bricks

Material within 400Km

Use of Salvage Material/Recycled Material.

Indoor Air Quality:

- Tobacco Smoke Control-Designated Area in the building.
- Day Lighting: Provide high performance glass /Sky Lighting
 Achieve a minimum Day light factor

A Day Light Factor is evaluated as follows

 $D = 0.1 \times P$

Where: D = Daylight factor

P = Percentage glazing / opening to floor area.

IGBC prescribed the standards depend on use of building.

■ Use of Exhaust System- Moves air out of the enclosure. To remove inside heat during summer. as per IGBC Standards.

Indoor Air Quality Contd..

■ Use of Low VOC (volatile organic compound) Material.

Type of material	VOC Limit	
Paints:		
Non-flat paints	150 g/L	
Flat (Mat) paints	50 g/L	
Anti-corrosive/ anti-rust paints	250 g/L	
Varnish	350 g/L	
Adhesives:		
Wood flooring Adhesive	100 g/L	
Tile adhesives	65 g/L	
Indoor carpet adhesives	50 g/L	
Wood	30 g/L	

CROSS VENTILATION
AIR MOVEMENT
TYPE-I

TwoOpenings-Adjacent Walls

Two Openings -Opposite Walls

CROSS VENTILATION
AIR MOVEMENT
TYPE-II

Modifying Wind Flow With Landscaping

BUILDING
FLUSH OUT TO
HAVE SAFTY
REGARDS
AGAINST
CONTAMINATED
AIR

COST & MANAGEMENT IMPLICATION

- Green home project costs around 10% more than conventional residential project depending upon **LEED** rating proposed for the project.
- Pay Back period is around 3 years.
- Project Construction management includes additional parameters which are cited in a preliminary certification of IGBC required to be fulfilled.
- Necessary evidential photographs like top soil preservation need to be taken along with its quantity.
- To obtain manufacturers certification for material / fixtures used in construction activities as a documentation measures.
- To maintain data like periodical BOD / COD of effluent, water balancing, SWM, use of salvage material etc.
- Achieve LEED certification as tabulated by IGBC

RECOMMANDATIONS

- All Govt. Institutions, Local authorities should promote idea of green building.
- Authorities should provide incentive / relief on green buildings.
- Especially Local authorities should provide in their enactment certain concessions in property taxation, Building regulation control fees, premium areas fees/demands etc.
- Electricity department should provide concessions in power billing for providing solar in homes.
- To provide relief from levy of stamp duty, registration fees for green homes.

THANKS