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Director’s Message

During the current age of international competition in
Science and Technology, the Indian participation through
skilled technical professionals have been challenging to the
world. Constant efforts and desire to achieve top positions

are still required.

B. Singh (Ex. IES) | feel every candidate has ability to succeed but competitive

environment and quality guidance Is required to achieve
high level goals. At MADE EASY, we help you to discover your hidden talent
and success quotient to achieve your ultimate goals. In my opinion CSE, ESE,
GATE & PSU’s exams are tool to enter in to main stream of Nation serving. The
real application of knowledge and talent starts, after you enter in to the working
system. Here in MADE EASY you are also trained to become winner in your life
and achieve job satisfaction.

MADE EASY alumni have shared their winning stories of success and expressed

their gratitude towards quality guidance of MADE EASY. Our students have not
only secured All India First Ranks in ESE, GATE and PSU entrance examinations
but also secured top positions in their career profiles. Now, | invite you to
become alumni of MADE EASY to explore and achieve ultimate goal of your life.
| promise to provide you quality guidance with competitive environment which
s far advanced and ahead than the reach of other institutions. You will get the
guidance, support and inspiration that you need to reach the peak of your career.

| have true desire to serve Society and Nation by way of making easy path of
the education for the people of India.

After a long experience of teaching in Civil Engineering over the period of time
MADE EASY team realised that there is a need of good Handbook which can
provide the crux of Civil Engineering in a concise form to the student to brush
up the formulae and important concepts required for ESE, GATE, PSUs and
other competitive examinations. This handbook contains all the formulae and
important theoretical aspects of Civil Engineering. It provides much needed
revision aid and study guidance before examinations.

B. Singh(Ex. IES)
CMD, MADE EASY Group
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Important Mechanical Properties

e Elasticity
It is the property by virtue of which a material deformed under the load
is enabledto return to its original dimension when the load is removed.

4 ™y

S If body regains completely its original shape then it is called
perfectly elastic body
Elastic limit marks the partialbreak down of elasticity beyonad
which removal of load result in a degree of permanent
deformation.

Steel, Aluminium, Copper, may be cons:dered to be perfectly

$ elastic within certain limit.

Rawmomibor

e Plasticity
The characteristics of the material by which it undergoes inelastic stram

beyond those at the elastic limitis kKnown as plasticity.

This property is particularly useful in operation of pressing and
forging. ' .

When large deformation occurs in a ductile material loaded in
plastic region, the material is said to undergo plastic flow.

e Ductility
It is the property which permits a material to be drawn out longitudinally
to a reduced section, under the action of tensile force.

A ductile material must posses a high degree of plasticity 1\
and strength.
Ductile material must have low degree of elasticity.

\ This is useful in wire drawing. J

» Brittleness
It is lack of ductility. Brittleness implies that it can not be drawn out by

tension to smaller section

& Inbrittle material failure take place unaer load without significant )
& deformation.
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" Ordinary Glass is nearly ideal brittle material. )
Cast iron, concrete and ceramic material are brltt  material )

\.

@

Malleability

in all direction without rupture.

. l — \
A malleable material posses a high degree of plasticity, but
| Reunde not necessarily great strength. )
e Toughness

It is the property of material which enabiles it to absorb energy without
fracture.

o, t+ O,
Modulus of toughness U, = shaded area = 5 S

\ Rememlor W, .

L] [ 4 ] -‘\
It is desirable in material 51
which is subjected to
cyclic or shock
loading. A
Itis represented by area under i -s-- , U = Modulus
stress-strain curve of material SN s ; of toughness
R L e NS
Upto fraCture :“"”':: -r?**r.,?i:f“‘tf fq”‘* ; ol
= =
Bend test used for common EL F
comparative test of toughness.J
¢ Hardness ,
It is the ability of a material to resist indentation or surface abrasion.
- N
Brinnell hardness test is used to check hardness.
. P
Brinnell hardness number = -5
—[D ~JD? - d2]
2
where, P = Standard load
D = Diameter of steel ball (mm)
\ d = Diameter of indent (mm) )
®

Strength
This property enables material to resist fracture under load.
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This is most important property from design point of view.
Load required to cause fracture, divided by area of test

MADE EASY B Strength of Materials ST

rRemember  Specimen, is termed as ultimate strength )

e Creep
Creep is a permanent deformation which is recorded with passage of

time at constant loading. It is plastic deformation (permanent and non-
recoverable) in nature.

Note: The temperature at which creep is uncontrolable s called
Homologous Temperature. |

. Fatigue
- Due to cyclic or reverse cyclic loading fracture failure may occur if total

accumulated strain energy exceeds the toughness. Fatigue causes rough
fracture surface even in ductile metals.

e Resilience |
It Is the total elastic strain energy which can be stored in the given

volume of metal and can be released after unloading.
It is equal to area under load deflection curve within elastic limit.

Stressandstrain

Stress (N/mm?)

It is the resistance offered by the body to deformation

Load
Original Area

Nominal stress (Engineering stress) =

Load
Changed (Actual) Area

e |Actual/True stress =

Strain
- Deformation per unit length in the dlrect:on of deformation is known as
strain. B |_ -
. AL
L -
P ~— P
[@ It is a dimensionless quantity. . ‘ J

g

Engineering Stress-Strain curve of mild steel for tension under
static-loading

OA - Straight line

(proportional region,
Stress 4 Hooke's law is valid)
o S C OB - Elastic region
Oy ~ BC - Elasto plastic region

CD - Perfectly plastic region
DE - Strain hardening
EF - Necking region

i e e O e ol e o S A

I

Ml e e e e -

€y 1.5% u €1 Strain (%) A - Limitof proportionality
B - Elastic limit
C’ - Upper yield point C - Loweryield point
D - Strain hardening starts F - Fracture point

E - Ultimate point or maximum stress point

e [imit of Proportionality
Itis the stress at which the stress-strain curve ceases to be a straight -

line.
(A ™

tL-:}’ Hooke's law is valid upto proportional limit.

. ' W,
e Flastic Limit

It is the point on the stress-strain curve upto which the materials remains
elastic. -

N
Upto this point there is no perrmanent deformation after removal

of load.

kﬂmnr )
e Plastic Range

It is the region of the stress-strain curve between the elastic limit and
point of rupture.

e Yield Point |
This point is just beyond the elastic limit, at which the specimen
undergoes an appreciable increase in length without further increase

in the load.

e Rupture Strength
It Is the stress corresponding to the failure point ‘F’ of the stress-strain
curve, |

e Proof Stress
It is the stress necessary to cause a permanent extension eqgual to

defined percentage of gauge length.
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(Young's Modulus).

yield stress increases.

Slope of OA = Modulus of elasticity

It is constant of proportionality'which is defined as the intensity

of stress that causes unit strain.

Plastic strain is 10 to 15 times elastic strain.

Fracture strain (€;) depends on percentage carbon in steel.

When carbon percentage increases then fracture strain decreases and

~

MADE EASY K Strength of Materials R

\. J
Type of Tension failure in Metal
A. Ductile metal (Shear failure)
| el Failure plane is at 45°
i —————-—ﬂ:—ff{— 3 c@ —————————— ~{——E |
| RSV | Cup-cone fracture
Shear strength < Tensile strength < Compressive stréngth
- B. Brittle metal
000
i %; ______________ ¢

. T

k Rnﬂnr

Fatlure plane at 90°with longit
Necking is not formed and fail
Tensile strength < Shear strength < Compressive strength

udinal direction

Ure is due to tension failure.

Type of failure in compression

Stress-Strain Diagram for Various type of Steel/Material

- 2 )
2 ~
o(N/mm®) olimnm ) @ &
A & o

f’“ﬂ- High tension steel
)" High yield steel

Mild steel
——_ (Ductile)
~ Mitd steel
Concrete
H RUbW
o o - . -

All grades of steel have same young’s modulus but different yield stress.

Ductile material

If post elastic strain is greater than 5%, it is called ductile material.
It undergoes large permanent strains before failure,

Large reduction in area before fracture
e.g. lead, mild steel, copper

Brittle Material
It post elastic strain is less than 5%. It is called brittle material.
It fails with only little elongation after the proportional limit is

exceeded.
Very less reduction in area before fracture, e.g. Bronze,

Rubber (Glass

A.  Ductile material B. Brittle material

F,) .
i 1P Shear failure
j AR | Plane at 45°

I %
! ]
! ]

‘; Failure due to
) buizing

4
\ !

v ]

N
Behaviour of Various Material
o] o]
A A
'Elast_o Perfectly
plastic Plastic
ol -
O o) o}
A A A
Elasto plastic
with strain IQG-EI Ideal
hardening T gl Fluid
»C ol = Y o >~
Where o= Siress, € = Strain

6+ 'Mild steel’is more elastic than ‘Rubber’
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Hooke’s Law | Deflection (A) of Tapered Bar '
When a material behaves elastically and exhibits a linear relationship A. Circular tapering bar
between stress and strain, it is called linearly elastic. For such materials |
stress (o) is directly proportional to strain (). A 4PL
G=e]-[e=Ee] |Wheeo=Stes ®ED; D, |
e = Strain .
E = Young modulus of elasticity . where, P = Load applied
* Ecast iron l Esteei- ° EAI N ~ '1 Esteel - = Lerj]gth ot bar TalRi
2 | Jminium - 3 D.and D, are Diameter as shown in fig.

Axial elongation (A) of prismatic bar due to external load B. Rectangular tapering bar

PL Here, P = Load applied MASGREEE B, ||
A = AE L = Length of bar PL loge B,
A = Area of bar AE ! A = R B1)
E = Young modulus 1B, ~ B,
K = AE/L = Axial stiffness of bar . £
\_P P /L =AX 1 where, t = thickness
“EA K AE = Axial rigidity P ,
= =T . P = Loadapplied @ T TT~__
i El/L = Flexural stiffness | | |
l — T —
el = Flexural rigidity E = Young modulus Y
[ L -
Deflection of bar (A) due to self-weight Equivalent Young’s Modulus of Parallel Composite Bar
A. Prismatic bar _ _
| | - _ AiE;+ A Es P ;'f.;'-'.'”;_i-:'-:;..ﬁ}.:-E."{.ﬂ;--;:t'h a
equivalent Ai+Ay e
- (LI | A, = Area of second bar = L .
A = WI,‘ = L E. = Young’'s modulus of first bar
| 2AE 2E V!, | E, = Young's modulus of second bar
x .
0 _ ' —
. | AR ~ ElasticConstants
Stress diagram ~ — = ' | _ | - e Lo
Here, W = Total Self weight Elastic constants are those factor which determmg the deformation
B. Conical bar produced by a given stress system acting on material.
@
1 | Longitudi '
. . : . ongitudinal stress
A= e = — X Deflection of prismatic bar of same length Modulus of elasticity (E) = g. . .
| 6E 3 | - Longitudinal strain |

Shear stress

Shear strain
Direct stress

Volumetric strain

Here, vy = Specific weight

L = Length of bar
E = Young's modulus

Modulus of rigidity (G) =

Bulk modulus (K) =
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Poisson’s Ratio () Triaxial loading on Rectangular Parallelopipe
- —(Lateral strain) Lateral strain|
U = ; : : n = _ , . £ Gy MOy UOo, o/
Longitudinal Strain Longitudinal strain | . Ex= T E ==
Under uniaxial loading . /’
0 < u<0.5 " - . _9 _uo, Muo, 8b
p = Ofor cork y F E ®
i = 0.5 FFor perfectly plastic body (Rubber) 5 o, g
w = 0.25100.42 for elastic metals e, = = HOx 7y _ o
L = 0.11t00.2for concrete E__E E
L = 0.286 mild steel ey _ . . L . ]
W is greater for ductile metals than for brittle metals. [ﬁﬂ_ Sign convention: Tensile is positive, and Compressive is hegative.

Volumetric Strain of Cylindrical Bar

| L -
o8 Inxedirection i ) 1o
St ress | N Y" d | reC tl on i "*‘;"j;
= Stress in z-direction
= Volumetric strain

Volumetric Strain under Tri-Axial Loading

§

e, = Longitudinal Strain + (2- x Diametric strain) |

Volumetric Strain of Sphere

ey = 3 X Diametric strain

Matrix Representation of Stress and Strain
3-D stress matrix 3-D strain matrix

G,, Tyy Txz = q)"y EEEZ_

. XX 2 2

I-axial Loading on Rectangular Parallelopipe o Oy T o o
T,x T, O LI 03
o é{ — (_jl(_ | %— q)zy €,

Relation betweenE, G, K, 1
__Ad_ o, . [E=3K(1-2p)] E=2G(1+p)

Z o - |
s = = _ _9KG 3K -2G|

Here, €,, € and e, are strain in x, y and z directions respectively. : 3K+G " T 8K+ 2G

Al, Ab and Ad are change in length, width and depth respectively.

/, b and d are original length, width and depth respectively.

Here, E = Young’'s modulus, G = shear modulus
K = Bulk modulus, u = Poisson ratio
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. . Materia Number of Independent
| elastic constant
Homogeneous & Isotropic 2 *
Orthotropic (Wood) O
Anisotropic 21 |
Strain Energy

It is the ability of material to absorb energy when it is strained

Here, P = '
U=—1—P><8=-—1-—T><e Applled.load |
> 5 0 = Elongation due to applied load

T =Applied torgue
0 = Angle of twist due to applied torgue

Resilience: Ability of a material to absorb energy in the elastic region
when it is strained. '

= Area under P-8 curve = 1Fi’ X 0

iy ” 2
* Proof Resilience: Maximum energy absorbing capacity of a material

in the elastic regionis called proof resilience.

Area under P-§ curve = —;—PEL X Oy

Load at elastic limit
Elongation upto elastic limit

Here F"EL

%

| Modulus of Resilience = Proof Resilience OFL

Volume 2E

Here Oy = Strain at elastic limit
E = Modulus of elasticity

Thermal Stress and Strain

l OThstress =EOT ] where, 6 = Thermal stress

A=LaT o = Coefficient of thermal expansion
I' = Temperature change
Strain = LoT — oT A = Change in length
L
Xsteel = Keongrete = 12 x 107°/°C

aAluminium = Olgrass > aCopper > K Siegl

~\

When bar is free to expand then there will be no thermal
stress due to change in temperature.
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Types of Beam

e Simply Supported Beam
If the ends of a beam are made to rest freely on supports it is call
simply (freely) supported beam.

e Fixed Beam
If a beam is fixed at both ends it is called fixed beam its another n.
IS encastre or built-in beam.

e (Cantilever Beam
if a beam is fixed at one end while other end is free, it is called cantile
beam.

e (Continuous Beam
If more than two supports are provided to beam, itis called continu
beam.

ShearForce
It is the internal resistance developed at any section to maintain 1
body equilibrium of either left or right part of the section.

e Sign Convention . B
Shear force having an upward direction to the left [ & l l
hand side of sectionor downward direction to the
right hand side of section will be taken positive T
and vice-versa.

~ L Itmay be horizontal or vertical.
@ ~  Shear force at any section is algebraic sum of all transvers
rememter  fOrces either from left or right of that section.
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Bending Moment

Bending moment at any section is the internal reaction due to éH the
transverse force eitherfrom left side or from right side of that section.

~

Itis equal to algebraic sum of moments af that section either
from left or from right side of that section.

rRawember  BENAING Moment is different from twisting moment.

k_ -

e Sign convention of Bending moment

A bending moment causing concavity upward will be (@)
taken as positive and called sagging bending moment. >agging

A bending moment causing convexity upward will be (&7)
taken as negative and will be called a hogging bending

moment.

Hogging

Relationship Between Bending Moment (M), Shear Force (S) and
Loading Rate (w)

* Rate of change of shear force is equal to load

ds_,
ax
Here, w = Load per unit length
kg Negative slope represents downward Io'ading. J

* Rate of change of bending moment along the length of beam is
equal to shear force.

dM
dx

=S,

At hinge, bending moment will be zero.

Bending moment is maximum or minimum when shear force
IS zero or changes sign at a section.

If degree of loading curve = n then

degree of shear force curve = n + 1

and degree of bending moment curve = n + 2

Point of contra-flexture/inflexion is that point where bending moment
changes its sign.

Prmcnpal Stressl
Prmcnpal Strain

Principal Stress

Principal stress are maximum or minimum normal stress which may
developed on a loaded body.

(? " The plane of principal stress carry zero shear stress.
Sign Conventions
T Txy
e Tensilestressis consideread —_— —
positive and compressive [
stress is. negative. @y O
e Angle ‘0’ is considered e a— —

positive if it is in anti-  positive shear stress ~ Negative shea
clockwise direction.

e Shear stress acting on a posmve face of an element is conside
positive if it is acts in positive direction of one of the coordi
axes and negative if acts in the negative direction of the a
Similarly on a negative face of an element is positive if it a
negative direction of the axes and negative if it act in the pos

direction.

¢~ Normally the reference plane taken are major principal plane
rememéee  VETtical plane. |

Analytical Method of Analysis

(i) Ifo,and o, are given principal stress as shown in figure, then no
and shear stress on plane a-a which is inclined at angle 6"

major principal plane (6, > 6,) \

2 t 2
Cn, = 01 COS” 0+ 0, SN 0

G+ 0 G,—O
Gp =— Z :( 1 2)-00829

2 2
Oy + O5 G — 0> '
Cp, = 5 ( 5 ) C0OsS 26
Ty = To = —(0.1 ;Gz)Sin2e
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. ' \ I' ’ — — + 0. =06, + ¢/ = constant B
On, + On, =0, + 6, = constant Ox + Oy "51 2 = Oy y
. If 0 =45°or 135° then, | | y =€ +HEL S constant
Romembor ot ot o Gy — O | =1/ + Iy" = constant )
1 2 max 2 L

Ontheplaneoft .. Graphical Method of Analysis/Mohr’s Circle

Gy + 0o , . . . .
Om = On, = 5 Mohr's circle is the locus of points representing magnitude of normal and
) shear stress at various plane in a given stress element.
(i) If o, and o, are normal stress on } % ) 3
vertical and horizontal plane Tmax i LY

respectively and this plane is
accompanied by shear stress Tyy
then normal stress and shear stress
on plane a-a, which is inclined at an
angle 0 from plane of o, .

Trrax

Y
’ Gx + Gy Gx - Gy .
Oia-a) = 5 + 2 - |-cos20 + 1, sin20 =
o, +C g, — 0O 5 G, + 06
' | 61/02 — A Y i A 4 + (Txy) ad = L 2
, O, +0, G, — O, | 2 \ 2 2
O2(a—a) = 5 ~ - C0820 —1,, SIN20
e Radius of Mohr’s circie
Oy, —Oy |
Tia—a) = — Sin20 + 1,,, COS20 NG
| Ox — Oy 2 _04—0p
) = 5 + Txy = 5
It © occupies a position such that T(a_a) becomes zero, then \

such a plane is called principal plane and 6, and 6, become
principal stress.

Remember > Tyy

I tan 20, = — ' inci
P G, - o, 0, = Angle of principal plane

. il

>

(iii)l It o,, o, and Tay are given and we have to find out principal stresses

2

e Radius of Mohr circle represent the value of maximum )
shear stress.

e Normal stress on the plane of maximum shear stress is
represented by coordinate of centre of Mohr circle.

e Mohr circle reduce to a point in case of hydrostatic
loading and zero shear. In case of pure shear, centre will fall at |

c,/0, =

G, + O,

2

_|_

G, — O,

-

2

+ T

2
Xy

origin.

(iv) Pure shear case
Thus normal stress on plane a—a

01(8_8) = ’ny Sin 26
Co(a-a) = — Txy SIN20
T = Tyy COS 20

e |f shear stress causes clockwise couple at the centre of element

then it will be plotted above o, (+Vve) and vise-versa.
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Analysis of Strain y
A
e , = Major princtpal strain = ° p-G—z—
= E BRI R
. - 0, WO S
e, = Minor principal strain = —2 1 Oy 27 oo i O e . .«
2 princip c T E U i ‘ Maximum principal stress theory (Rankines theory)
. — E e tue] o = E e, 4] l According to this theory, permanent set takes place under a state of complex
1 1— e 1 S 1— 2 2 TH & | o y stress, when the value of maximum principal stress is equal to that of yield
. T - | nd in a simple tensile test.
Symbol has usual meanings. point stress as found in a P |
. . ign criterion, the maximum principal stress (o,) must not exceed the
e TJotal strain energy per unit volume \’z:v%rrl?iizgstress o the materialp P (G4)
G 1 _ ’
= 50 +§0252 G12 = Oy | For no failure.
1
U= 5= | 6% + 65 + 03 — 211(0,0, + 6,0, + 0,0, )| for 3D case G,
040 < '
: 12 = EQg For design.
U= o= | 6% + 63 — 2p0,0, |for2D case
Note: For no shear failure 1< 0.570,
. - . Y | ' Y
* Plane stress does not lead to plain strains. Graphical representation i,
' 2
roncmter @ FOI strain analysis formulas, put Py s place of 1, every %~  ror brittle material, which do
" where in stress forijlas ' 2 N not fail by yielding but fail by
1 . brittle fracture, this theory _ - (Rectangular)
* Maxshear stress =  (difference of principal stress) gives satisfactory result. |
Max shear strain = difference of principal strains '(gk;fe gra{)h IIS alwafys sq%are even for !
e For shear: Radius of Mohr circle = T o . Herent vaiues oo, an O2 | )
For strain: Radius of Mohr circle = ¢;ﬂx Maximum principal strain theory (ST.Venant’s theory)
| ~ According to this theory, a ductile material begins to yield when the maximum
nEN principal strain reaches the strain at which yielding occurs in simple tension
€10 S = For no failure in uni-axial loading.
o) G ] C L .
ﬁ - —E*z— = u—E~3-—£ —| For no failure in tri-axial loading.

y } For design. Here,e = Principal strain

c,,0, and o,= Principal stresses
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4 . . o N
Graphical Representation X
_—-"'#H—-ﬂ
This ’Fheory over estimate the _ - &, (Rhombus)
elastic strength of ductile
material. o
Romomber Y
o | _/

Maximum shear stress theory
(Guest & Tresca’s theory)

According to this theory, failure of a specimen subjected to any combination
of loads when the maximum shearing stress at any point reaches the failure
value equal to that developed at the yielding in an axial tensile or compressive

test of the same material.

—

~

Graphical Representation ‘fz
Oy .
Thmax = 3 For no failure.
» G, (Hexagon)
Romember Gy
C1—O0sS5 .
1 2= FOS For design.

6, and 6, are maximum and minimum principal stresses respectively.
Here, t__ = Maximum shear stress

O, = Permissible stress

| This theory is well justified for ductile materials.

Maximum strain energy theory (Haigh’s theory)

According to this theory, a body under complex stress fails when the total
strain energy on the body is equal to the strain energy at elastic limit In

simple tension.

"‘,\

. Graphical Representation

2 .
{012 + G% + G% — 21 (0102 + 6,03 + 0301)} <oy |for nofailure.

Remomber

for design.

2
{G2+02+02-—2|.L(GG + 6,03 + O 01)}$ !
1 2 3 192 293 .3 FOS

it

MADE EASY &
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A
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Strength of Materials 27

 This theory does not apply to brittle material
for which elastic limit stress in tension and In
compression are quite different.

[
_

N y

Maximum shear strain energy/Distortion energy theory/
Mises-Henky theory '

It states that inelastic action at any point in a body, under any combination
of stress begins, when the strain energy of distortion per unit volume
absorbed at the point is equal to the strain energy of distortion absorbed
per unit volume at any point in a bar stressed to the elastic limit under the
state of uniaxial stress as occurs in a simple tension/compression test.

l[(m ~6,)" +(06, ~03) + (03 “701)2] <o,

5 For no failure.

%[(01 - 62)" +(02 —05)" + (o _01)2] E(F(;YST

For design.

Ellipse

> G

-
L/

"

e |t can not be app ied for material under hydrostatic pressure.
e All theories will give same results if loading is uniaxial.

"‘\,4
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For design purpose, a beam should be designed in such a way that it has
adequate stiffness so that the deflections are within permissible limits.

f.

Stiffness of beam is inversely proportional to deflection.

Methods of Determining Deflection of Beam

 Double integration method.

* Moment area method
e Strain energy method
e (Conjugate beam method

Deflection of Beam Under Different Loading/Support Condition

e Notation used

05 = Slope at Bw.rt A

AL = Deflection at Bw.rt A

Deflection (AR)

Slope (05

Deflection (AB)
Slope (65
Deflection (A5)
Slope (05 )

Deflection (AR)

Slope ( Oé‘ )

Il

2 El

Strength of Materials

e Simply supported beam

Deflection (A5)

Slope (65)

_ ;@;;ﬁ Deflection (AR)

Slope (8R)

. .-'..-'::‘E:‘iar"u" F - L

fe—— /2

Fixed Beam

—_ |
—r
II.."II-- i
-"-_-I-I—-"I'-

Y

/f

-

- : {-F:E"__- it

Deflection (AA)

Slope (6R)

Deflection(A_) = A

max — 192 E| " 4

I/2

!l:w
Y
e

2

Deflection(A,) = A

-

WiIi* 1
max ~ 384 El - 5

X A

X A

il

wirt  wit

8El 30El
Wre WP

GEl 24E]

3384 El

max

max

24 E|

N 5SS beam

= - a _
L 0, = 65 =0

iNn 9SS beam
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Analysis of thin cylinder
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Types of Pressure Vessels

Pressure vessels are mainly of two type:
(i) Thin shells
It the thickness of the wall of the shell is less than 1/10 to 1/15 of its

diameter, then shell is called thin shells. s~ Z o
- ' 1
Dl D ' - | ' —— !_.- oL
< —to=—- _ _ pd | - ;
10 15 * Longitudinal Stress | OL = 7 P
For thi t ) — —
or t N shell, it is assumed that the normali stresses, which — oL
may be eithertensile or compressive are uniformly distributed _ pd 9

e HooOp Stress | Oh = ot

Ramemser  NTOUGN the thickness of wall.
J

(ii) Thick Shells

If the thickness of the wall of the shell is greater than 1/10to 1/15 of its

diameter, then shell is called thic d
ed thick shells. € = 4?[ = (1—2u)

Hoop stress (oy,)

e | ongitudinal Strain

D.. D
t I I
~ 10 10 15

d .
e Hoop Strain | €= ftE (2-1)

Nature of stress in thin cylindrical shell subjected to internal Here, p = Pressure of fluid, t = Thickness of cylinder
pressure ' | d = Inside diameter, y = Poisson’s ratio

(i) Hoop stress /circumferential stress will be tensile in nature. | e, 2-—\
* -Ratio of Hoop Strain to Longitudinal Strain | . =~ 1 _ 5,

(i) Longitudinal stress/axial stress will be tensile in nature.

(i) Radial stress will be compressive in nature.

_ pd
4t E

_"0\

(5 —4p)

Sv

Radial compressive stress varies from a wvalue at the inner * Volumetric Strain () of Cylinder

o surface equal to pressure ‘p’ to the atmospheric pressure at
rRemember  the outside surface. | e Max shear stress in the plane of metal (x-y plane) or

G, — O _plane

It internal pressure in thin cylinders is low, the radial stress
s negligible compared with axial stress and hoop stress. This radial 5. —-6G. 6. —6 PD
1 2 h L

siress is neglected. Tmax= " o T T o tmax = gy
\. J/
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e Absolute max shear stress i e Lames equations
| _ B |
T, _ 21795 _ PD/2t - O PD _, (i) Hoop stress: 6, = — + A(tensile)
ODsS.Mmax 2 2 4t , X

If fluid is compressible volumetric strain will be

B .
(il) Radial stress: P, = " A(compressive)

Where, B and A are Lame’s constant
e Subjected to internal pressure

(5 44) t P k =" Bulk modulus of fluid

' V
Remember 4t E

P = Pressure of fluid
Minimum th|ckness of cylinder required for a given pressure ‘P’ and

i ‘A’ | pd F’[R2 + Rz] 2

diameter‘'d’is t=> — . o T ) 2PR:
() Atx =R, |Oh = i) Atx=R_ [Oh = '

“‘ = — TRR | o

i

Analysis of thin sphere |
e Subjected to external pressure

®
o Hoop stress/longitudinal stress | OL = Op = % _2PR?2 | —P[Rg + R.z]
- = () Atx =R, |On= R _pz | () Atx=R, o= Rz _F7]
° .
e Hoop strain/longitudinal strain | SL=Sh = 41 E (1— 1) . I
3pd where, R, = Innerradius (Oh)max |
* Volumetric strain of sphere | ©v= 41 E (T=1) R, = Outlet radius XI\I
. Thickness ratio for cylindrical shell (t.) and sphere (t.), for , (OhJmax = P+ (Sn)min . On)mi
same strain in both side. - % _
tc B 2_IJ B B X=Ri X:RO
tS - 1'-—” GK"P}:::(XQ =A)_(;§'—A)=2A
Thickness re_itio for cylindrical shell (t,) and sphere (t,), for same
maximum stress in both side. [ 2‘_ Radial and hoop compression vary hyperbolically.
o
tq | Analysis of Thick spheres
Auto frittage Is used for prestressing the cylinder. e Lame’s equation:
Wire winding is done for strenghting thin shell. Compounding is 5
. . 2
~ done for thick shell cylinders. ) Cy = 2+ A(Tensile) Py = -)2(—?- — A(compressive)
Analysis of Thick Cylinders/Lame’s Theorem
e | ame’s Assumption
EEE

(i) Material of shell is homogeneous, isotropic and linear elastic.

(1) Plane section of cylinder, perpendicular to longitudinal axis remains
plane under pressure.



Torsion

Torsion means twisting of a structural
member when itis loaded by couplethat
produces rotation about longitudinal axis. i \EGweEssEeseanEze
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R L .\‘II'.":" 'II" it ..:':.r-.r: R -""."'..' C v oL oty - -
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axis.

Rewweber

member ther

.

lorsion causes rotation of all the fibre about longitudinal/polar

Force required for torsion is normalto longitudinal axis having
certain eccentricity from centroid.
It no shear force and no bending moment is present in structural

For pure torsion, shaft is prismatic.
It torgue applied in non-circular section then warping will occur.
A plane section before twisting remains plane after twisting.

™y

it will be a case of pure torsion.

Equation of Torsion

Shear stress

Here,

[}

T
i
D
T
J
G =

0 =
| =

distribution

= Shear stress
= Distance trom centre of shaft

Diameter of shaft
Torgue

Polar moment of inertia
Shear modulus

Angle of twist

Length of shatft

et ANGlE OF

Shear stress should be maximum at extreme fibre of shaft.

twist is maximum at the free end of shaft. |

G—T
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Sigh Convention

Sigr? F:onvention of torque can be explained by right hand thumb rule. A
positive torque is that in which there is tightening effect of nut on the
bolt. From either side of the cross-section. |If torgque Is applied in the

direction of right hand fingers than right hand thumbs direction represents
movement of the nut.

. oL - T .
Ve YL ';"‘"x'r?fll-.-i:-' Do e :_r.ﬁ{q.\-'._,a' e .‘--\.:.':I. T N, - N
P - ol ol S Mt e Nyt i ey M LT Sl m,
s, e R, e el "w—f"‘—..”' ol el L L L T S FAP NG F e
1 N S P o g gt g T e, e s M ]
o _' ] L L r I:: i A | H. Rl o PR S B R e || LN L
D m e A T o L S Mo -y by ] .Ir_ d o I Ear et

L5
—
+
<
D
—

TMD stands for Torsion moment diagram.
T = Torque

Moment of Inertia About Polar Axis

(i) For Solid Circular Section

J=L =+l =" # 4+ T H4_T 44
2=y =5aY e 4 =35

* Polar section modulus/torsional strength (Zp)
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T T T Compound Shaft
r_J M2 3 ax e Series Connection
_ b 6,z =Angular deformation of
T —
ez, i 15t shaft
05 =Angular deformation of
5 Y T A 29 shaft
P . 16 ' 0,~ = Total angular deformation
ST SR T of free end of shaft from
16T the fixed end
Tmax = S = Opg + B¢
Ly = TL TL
i) For Holl Circular Section 2 Opc = — + 2
(ii) For Holiow . Gy Gods
T 4 4
| =— (D" -d") - N
z(Hollow) — 39 Torque will be same on both shafts.
Outside diameter Total angular deformation of free end of shaft from the fixed
D = U_Z' 2_ I , e . end will be equal to surn of angular deformation of first shaft
d = Inside diameter Remember  and angular deformation of second shaft.
e Polar section modulus/torsional strength (Z ) \ | )
— . T = A d * Parallel Connection 5
J = —e—ED (1=K 2= 16 D~ (1-K7) K = D 0, = Angular deflection of first shaft

0, = Angular deflection of second shaft
T, = lorque on first shaft
T, = Torque on second shaft

L T,L
91=9%] |G, Gy, |

i
BT E "ﬁ‘_‘tﬂ:&l’tﬁ‘ s
WM

::'4:-!-:-‘;_'5,!5'-. *H 5' :
wiim il BT

s g iy g R “; E :
:i’;ﬁ.ﬁ'ﬁ;}ﬁiﬂ;&;{ﬂ _.-L'.'{:{: i 'E\.

How to find out tension (failure) plane

]

T R St

3
.n.i!#“l i -

Strain energy (U) stored in shaft due to torsion

| 1 1 T°L 12, i
This will be the U=—1T.06=— = X Volume of shaft
Cailure tension/failure plane 2 2G-J 4G
Here, G = Shear modulus

plane

T = Torgue
J = Moment of inertia about polar axis

\

e |n ductile metals in pure torsion failure is due to shear stress in the
direction of ©__ . Which is at 90° with the longitudinal axis ana
failure plane is smooth plane.

e Brittle mettle fails in tension so in brittle mettle failure plane wilt be Remombar Unoon D2 + d2
a rough helical plane at 45° from longitudinal axis. , Uqoric = D2 d = Inside diameter of hollow shaft

Ratio of strain energy for solid and hollow shaft subjected to
same torqgue If outside diameter of both shaft is equal.
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Ratio of torgue in case of hollow and solid shaift subjected o o2 Hollow Circular Section

same maximum shear stress.

4 4 :
Remember THollow — D™ —ad -
4 S |
TSoiid D '
L Tmax
E Trnin

Effect of pure bending on shaft

35 M o = Principal siress

~ 3 D = Diameter of shaft
nt D .
, M = Bending moment

O

Pure bending is different from pure torsion.

Effect of Pure Torsion on Shaft

16T | Tmax = Maximum shear stress
tmex = 3 T = Torque
D = Diameter of shaft

Combined effect of bending and torsion

4. Thin Tubular Section: In view of small thickness shear stress is
assumed to be uniform.

Principal Stress = 163 [Mi IV + T2]

D
Power Transmitted in the Shaft
Maximum shear stress = 163 JMZ + T2 | 2rNT 2RNT 2N
D P = Watt P = KW o =
60 60, 000 60
1 _ N = No. . . . ” .
= quivalent bending moment = ——[I\/I . \/Mg N TZ] . No. of revolut or.w per minute i.e., rpm, T = Torque in Nm
o ® = Angular speed in rad/sec
Equivalent torque = /T2 4 M2
HEN

Shear Stress Distribution
1. Solid Circular Section
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S = sFear centre,—G = Centre of gravity
Distance of shear centre forimportant sections

1. Channel Section
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- b*h=t
e =

ks i 41

| saspa | t = thickness
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Where, | is MOI about symmetrical axis.
2. Semlclrcular Section
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o . . | STRUT
Shear centre is a point from which a concentrated load passes then

there will be only bending and no twisting. it is also called centre of
flexure. It is that point through which the resultant of shear passes.

e Shear centre always lies on the axis of symmetry if exists.

J

Structural member subjected to axial compressive load is called strut.
e Column: Vertical structural member fixed at both ends and subjected
to axial compressive load is called column.

Buckling Failure : Euler’sTheory

* Assumptions in Euler’'s Theory
(i) Axisof column is penecz‘/y straight when unloaded
(i) Load passes through axis

() Stress in structure are within elastic limit.

(iv) Flexural rigidity is constant. |

(v) Material is isotropic, homogeneous and linear elastic.

(vi) Column is long and prismatic and it fails only in buckling.

o |imitation of Euler’'s Formula

() Thereisalways crookednessin the column and the load may not be
exactly axial.

(i) This formula does not take into account the axial stress and the
buckling load given by this formula may be much more than the
actual buckling load.

o w2 El_ P, =Beckling load -
Fo=—05 | =Min. Mement of inertia about centroidal axis
L e | = Effective length

[Q It is applicable for long column. Effect of crushing is neglected. ]

bl mellar

Column Failsin

1. Short column Crushing

2. Long column Buckling

3. Intermediate column | Combined Crushing and Buckling

Euler’s load for different coiumn with different end Condition
Both end | One end fixed | Bothend | One end fixed

hinged other free fixed | and other hinged

Effective
| 21 E __E_

length(Z, ) - 2 J2

Slenderness Ratio (A)
Slenderness ratio of a compression member is defined as the ratio of its
eifective length to least radius of gyration.

End condition
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73 Effect of both crushing and buckling is considered in this formula.

\ J
Shape of kern in eccentric loadings

y, Kern/core
[ /
: 'y Kern/core
]
|
Tl;.
------ A : S )
Y I St Skl it B X d
s i |
-..Il¥, t
e /3 -] 1
— Df3 -—--
. Y
Vi
| oo e —— - -]

Circular Column

Shape of kern for rectangular and I-section is Rhombus and for square
section shape is square for circular section-shape is circular.

ERE

Rectangular Column

‘42 AHandbookon Civil Engineering 8 MADEEASY § . - - = . o o
2 Le L, = Effective length .
r . .
— T = Leastradius of gyration, ac
_ | nin Buckling stress (o) = e
[ ... == b A 2
min ‘\ A 6?# i ?\4
=or validity of Euler’s theory Spring are used to absorb energy and restore it slowly or rapidly.
G S G E i I > - .
/ ez y L Failure Type of spring on the basis of helixangle
nt<E | i e : - 40 A Axis of sprin
. kz\j A =90 for Miid steel| - * Ifhelixangleis less than or equalto 10 J
Gy | —i -\ then it is called closed coil spring.
Here, o, = Permissible siress C = Safelong column e i helix angle is greater than 10° then it
D = Unsafe long column B = Intermediate safe column s called open coil spring. /o (Hé'ﬁx angie)
A = Salf.e short column | E = Unsafe short column e The best form of spring absorbs greatest “\ Plane of coil
A, = Critical slenderness ratio amount of energy for a given stress.
Rankine’s Formula . e Spring stores energy in the form of resilience.
-1 -1 '1 Rank'ne load = PR s » d " | ° . -
=R + o Crushingload = P =, x A eries and parallel arrangement of springs/Equivalent spring
= 5 2 constant (k_ )
. 1t El.. T EA eq
Buckling load = P_ = mn P= —
| A
e
P = AC SiP = G A :
-1 4 ( GC ) %2 1 +- Cf;%
| nE
Here, A = Aéea of column ® [N Series: T = —l+ -1—+ .
o= —= = Rankine’s constant Keq K1 Ko Kn
nE
‘.. This formula is applicable to any column. )

® [nparallel: Keg =Ky +Ko +--- K,

e GStiffness of spring is inversely proportional to number of
colls In the spring. Therefore when a spring is cut into two
parts its stiffness become double for every individual part.

e Springs are added just like as capacitors in electronics.Both

does the same work i.e., absorbs energy.
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Closed coil helical spring under axial pu!l!

(i)
(1

(iii)

(V)

~16PR

Tmax "" Tl.'.ds

Strain energy stored in spring

T°L _ 32P°R°n
°Gl.  Gd"

Axial deflection under load P

U =

oU 64PR°n
—_— = A e
oP Gd*

Coefficient of stiffness of spring (k)

P Ga* 1
A  B4R°n n

L
— g
ey l“l"\..-..'\'r':' Y
i vl
' i
LS .
st

| Reoemesnuber

.

Spring index (C) = %

Wahl’s factor is considered to consider the effect of direct
shear stress and curvature effect.

Strain energy stored in spring (U)

2

U=—-T-6

T = torgue applied
0 = angular deflection

Wahl’s correction factor ( k )/Stress concentration factor (kc)

Here,

_4C-1 0615 | _ 4C-1
4C-4 C ©AC-4
C = Spring index

Kw

RemessiBer

.

The average value of modulus of rigidity for steel used for

spring equal to79300 MPa.
Shot peening, result in raising the fatiguelife of spring because it
leave the surface in compression.
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(i) [Dgg =1 =3 For 2D
Do =1, ~ 6 ~or 3D
where, r, = total external reactions
Statically Determinate Structures * Internal static indeterminacy:

It refers to the geometric stability of the structure. If after knowing
the external reactions it is not possible to determine all internal
forces/internal reactions using static equilibrium equations alone
then the structure is said to be internally indeterminate.

-or geometric stability sufficient number of members are required
to preserve the shape of rigid body without excessive deformation.

Conditions of equilibrium are sufficient to analyse the structure. Bending
moment and shear force is independent of the cross-sectional area of
the components and tlexural rigidity of the members. No stresses are
caused due to temperature change. No stresses are caused due to
lack of fit or differential settlement.

Statically Indeterminate Structures

(iii) Dsi = 3C — g | - For 2D

Additional compatibility conditions are required. Bending moment and
shear force depends upon the cross-sectional area and flexural rigidity Dy =6C—r, | .. For3D
of the members. Stresses are caused due to temperature variation.

‘where, C = number of closed loops.
Stresses are caused due to lack of fit or differential settlement. | _ P
and r. = released reaction.
'”deteimi”ac’y | (iv) |fr=x(my —1) .. For 2D
' v
St?tlc Kinematic | . =3X(m; —1)  For 3D
Y Y | where  m, = number of member connecting with J number of
External Internal o
Jjoints.
and J' = number of hybrid joint.
StaticIndeterminacy (v) |Dg=m+r, —2] ... For 2D truss

If a structure can not be analyzed for external and internal reactions
using static equilibrium conditions alone then such a structure is called

indeterminate structure.

Do =, —3|&|Dg =m — (2] - 3)

=

i)y [D.=D.. +D (vi) |Dg=m+r, = 3] ... For 3D truss
s — —se Si
where, D, = Degree of static indeterminacy Dge =T —6 |& | Dg; = m — (3j ~ 6)
D, = External static indeterminacy ) 5—3 3 oD Ridid
D.. = Internal static indeterminacy (Vi) [Ps=9M+Te =3I~ F igid frame.
e External static indeterminacy: N wii) [D.=6m+r, —6j—7 . 3Drigid frame.
It is related with the support system of the structure and it is equal
t | in addition to number of - o
' X =({r, —0) + — rigia irrame
o number of external reaction components in a (x) [D.=(r. —6)*(6C=T) 3D rigid f

static equilibrium equations.
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Kinematic indeterminacy

If the number of unknown displacement components are greater thar

the number of compatibility equations, for these structures additiona
- equations based on equilibrium must be written in order to obtair

sufficient number of. equations for the determination of all the unknown
~displacement components. The number of these additional equations
necessary is known as degree of kinematic indeterminacy or degree of

freedom of the structure.
- A fixed beam Is kinematically determinate and a simply supported

peam is kinematically indeterminate.

- (i) Each joint of plane pin jointed frame has 2 degree of freedom.

(i) - Each joint of space pin jointed frame has 3 degree of freedom.

(i) -Each joint of plane rigid jointed frame has 3 degree of freedom

(iv) Each joint of space rigid jointed frame has 6 degree of freedom.

‘Degree of kinematic indeterminacy is given by:

(1)

(1)

(iii)

(iv)
(V)
(Vi)

Dy =3(+|)—re —m+r,

D, =3]—-r, ...For 2D Rigid frame when all members are

axially extensible.

D, =3]—r, = m ..For 2D Rigid frame if ‘m’ members are

axially rigid/inextensible.

.. For 2D Rigid frame when

J = Number of Hybrid joints is available.

D, =6(j+))—T, —m+r

D =2(j+]) -1, —m+r,

D =3(+]))—rgo —m+r,

...For 3D Rigid frame.

.. For 2D Pin jointed truss.

.. For 3D Pin jointed truss.
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Influence Line Diagram represents variation in the values of a particul
stress function such as reactions, SF, BM, axial force, slope or deflectio
etc., when a unit concentrated load moves from one end to the other end

span.

Simply Supported Beam

The ordinate of influence line at any section (say y,) represents magnituc
of that stress function when unit concentrated load is placed at that sectic

U

1 kN > > |
l | w unit/run
I * ‘I' | B
_ R\f\ .' : sy
. or Ry | y . : R
(1) : | (i) R
! ILD For Ry
/ 1 unit ~ Total vertical reactions RB
' Y due to given load system is
ILD for Rg
R, =P,Y,+P)Y, + WA
A A ,C
SREREENT :
—a
. L=
(Iv) ' aby

ILD for shear force at C ILD for Bending Moment at C
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iLD for SF at C

Mm
«— R —

Position of load for maximum positive SF at C

e REE mim SN el N BN BN S AN AN R NN S B A
v gt
-
=

; |
le— H —
(.: Position of load for maximum SF at C
(Vi) i
e a -t b . —
i Maximum positive SF at C = wA,
b} b-H -
A T ]
1 unit ® * , .
t | Maximum negative SF at C = wA,
! I
ILD for SF at C
P, kNi i
f >
Position of load for maximum positive SF at C i
f

5 N P> kN .
| i l 5 i ILDforR, | T
le— H —> : E : [+ 1
Position of load for maximum negative SF at C ': ; 4
7 LD for Ry i
o : X i |
e : L l
/ \ @ 1 ;
. b b—-H | ! }\irN +
MaX|mum+veSFatC=P1(-l— +Po | - l 5 3 , ; | !
. | X | i
9 a— H ! ILD i for SF at section x-X :
Maximum - ve S.F atC=-—F’1(7)—F’2( l ] : : Lab E
| | ] | !
eb| o ' : o |-
/ | /
ILD for BM at section x-X

—r p— - —_—
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Simply Supported Beam Carrying Internal Hinge
A

LD for Ry 5

§ A1

W

ILD for BM at B

_\

* The ordinate of ILD for reaction and shear force is
dimensionless. Whereas ordinate of BM in ILD has dimension
of length.

e [LD for réaotion, shear force and BM is linear for determinate

structures and will be curved for indeterminate structures

Eff_ect of rolling loads

To find maximum SF and BM at section C when a UDL passes over the
girder from let to right having length less then length of girder.

e d ~ |t ] — 2 -

4%

5

s
] |
L
J®

NI afl

| ILD for BM at C
Length of load is I’ (<L)

TR N AT R ‘

MADE EASY ® Structural Analysis By

1. The maximum negative shear force at section C will be, when head of
the load Is just to the left of section and loaded part is AC.

M-

W )
YN C

i

TR e [

maximum negative shear force at C = w x area of ILD below loading

2. Maximum positive shear force at C will occur when tail of load is just to
the right of C.

3. Maximum BM at C will occur when

average loading just to the left of C = average loading just to the right of C.
It means section C will devide load in the same ratio as it devides to the

span.

* [0 obtain absolute max BM due to UDL average loading to the
eft of span = average loading to the right of span. It means
oad should be placed symmetrically at the centre.

* Absolute max SF will occur either at left support A or at right support
B when load is adjacent to the support. )
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ILD for Inclined members
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V)
b
i
)
Q
<
=

| S i ORI

B MADEEASY

ineering

A Handbook on Civil Eng

Influence line diagram for truss members
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L S Mmax = o
S0
BMC — O Q\Q‘@— h"“'-..,
Three Hinged Arches 307 1, .2730%
i Point of contraflexure =0 WAN e

() Three Hinged Parabolic Arch of Span L andrise ‘h’ carrying a‘UDL

- over the whole span.
(i) Three Hinged Parabolic Arch Having Abutments at Different Levels

Ds =0 T (@) When it is subjected to UDL over whole span.
BM; =0 h wWi° W
. HA — HB — _
H = wi? | ’ l 2(«./h1 + 1fh2) | h_f1 EC _T_
8h A\ H - : i
e - H—=#K-- -~ E 2
WX2 Y, _wl 5 Y wlL [, = ¢ h.l Ar.,}.‘f"*{ /s |
AT B~ 1 / / ! |
M}( — VAX 2 Hy 2 | L o 2 h1 + h2 y T e e B H
. . | A !2 £3% 4 AR
where,  H = Horizontal thrust . o ho Ve
. : w/ ﬂ\fh1 + 1fh2
V, = Vertical reaction at A = 5
. BM, =0

(b) Whenitis subjected to concentrated load W at crown.

2
WX
(VAX- 5 ) = Simply supported beam moment i.e., moment

caused by vertical reactions.

Hy = H-moment :
D, = Degree of static indeterminacy le i
. H = H—mK - "
BM_ = Bending Moment at C. - 2 :
.. T T e . | (VR + he) T
(i) Three Hinged Semicircular Arch of Radius R carrying a UDL over b H
the whole span. .
e v
XH C
. (iii) Three Hinged Semicircular Arch Carrying Concentrated Load W at
~R Crown
wR A 0/ B Y
"= T A :
V, = WR T Vg = WR r y”
H — VA —_ VB —_— E

- 5 |
M, = _V;R [sin® — sin® 0] | A }

X
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Temperature Effect on Three Hinged Arches

4h

2 2
(i) Ah=(l + 4n ]aT

where, Ah = free rise in crown height
[ = length of arch
N = rise of arch
o = coefficient of thermal expansion
T = rise intemperature in °C

where, H horizontal thrust

and h

rise of arch.

(i) | % Decrease in horizontal thrust = —?— x 100

Two Hinged Arches

Two hinged arch of any shape

where, M= Simply supported Beam moment caused by vertical forces.

() Two hinged semicircular arch of radius R carrying a concentrated
load ‘'w’ at the crown.

W
H=" Jz

TU

Ry

1L
I
|
|
l
|
|
I
i
|
I
L.

Two hinged circular arch

A 1 mp - — A
" R I o
a N Ha E

MADE EASY M Structural Analysis BQ

(i) Two hinged semicircular arch of radius R carrying a load w at a
section, the radius vector corresponding to which makes an angle
o with the horizontal.

Two hinged circular arch

[@ HThree hinged semicircular arch = HTwo hinged semicircular arch J

R ot seliin

(i) A two hinged semicircular arch of radius R carrying a UDL w per
unit length over the whole span.

Two hinged semicircular arch

(iv) A two hinged semicircular arch of radius R carrying a diétributed
load uniformly varying from zero at the left end to w per unit run at

the right end.

MR
I
o\
It ‘
s

N

S

uy
L

R
]
H=3— AT
Ri tva

Two hinged semicircular arch

(v) A two hinged parabolic arch carries a UDL of w per unit run on
entire span. If the span of the arch is L and its rise Is n.
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W
T (Y Y
h
2 l A 5
H = W 2 AN

8h AR R ok

Va=wR T T Vg = WR
e / -

Two hinged parabolic arch

. _ ~ N
Horizontal thrust for two hinged parabolic arch is equal to

horizontal thrust for three hinged parabolic arch carrying UDL

_Rewmember OVEr €NTIre span. )

(vi) When half of the parabolic arch is loaded by UDL, then the horizontal
reaction at support is given by -

-
— . AP0

VAT TVB
| / »]
Two hinged parabolic arch

(vii)  When two hinged parabolic arch carries varying UDL, from zero to
w the horizontal thrust is given by

W
T Y YY Y
h
‘wi? l
H _ H —— ——
! 1 6 h KRR SR RES R
- - VAT | TVB
| / =

Two hinged parabolic arch

MADE EASY B Structural Analysis 6T

—

(viii) Atwo hinged parabolic

arch of span / and rise T
h carries a concentrated
load w at the crown. n
25 Wi i |
VA* | TVB
e ] -]

Two hinged parabolic arch

Temperature Effect on Two Hinged Arches

i " -
loT h "
O=/oT
(i} o 4E1oT where H = Horizontal thrust for two hinged |
=Y semicircular arch due to rise in
temperature by T °C.
(ii) o 15 ElyaT {where |, = Moment of inertia of the arch at crown.
8 h® | H = Horizontal thrust for two hinged
parabolic arch due to rise in
temperature T °C.

Reaction Locus for a Two Hinged Arch
(a) Two Hinged Semicircular Arch

Reaction locus is straight line parallel to the line joining abutments

and height at 2

2

W

Reaction locus
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(b) Two Hinged Parabolic Arch

Methods of Structural Analysis

D; <D, J, | ,‘, D, <D,
Force Method/Flexibility Displacement Method/
Method/Compatibility Stiffness Method/Equilibrium
Method Method
Examples: Examples:
(i) Virtual work/Unit load method (i) Slope deflection method
1.8h L2 (i) Method of consistent deformation (i)  Moment distribution method
y = PE = 5 > (iii) Three moment theorem (ili) Minimum potential energy method
L= +Lx —x° | (iv) Column analogy method
| | (v) Elastic centre method
- Eddyrs Theorem (vi) Cast_igliano's theorem of minimum
strain energy

(vii) Maxwell-Mohr equation

1% .

. LinearArch Difference between Force Method and Displacement Method

. ForeeMethod . © = | -~ DisplacementMethod -
, - 1.Unknowns are taken 1 Unkno taken disol t
: - | Unknowns are taken displacemen
M, oy : Given Arch redundants forces/reactions. P

| 2.To find unknown forces _ , -

!y — 2. To find unknown displacement joint
or redundants compatibility ibr | it t |

. _ _ equlibrium conditions are written.
where, M, = BM at any section | equations are written. .
y = distance between given arch and linear arch 3. The number of compatibility { 3.The number of equlibrium conditions
equations needed is equal to | needed is equal to degree of
p—— degree of static indeterminacy. | kinematic indeterminacy.

STRAIN ENERGY METHOD

e Strain energy stored due to axial load
where, P = Axialload

Ui = _[Pzdx | dx = Elemental length
") oAE - Heme 3
| AE = Axial rigidity
e Strain energy stored due to bending
where,” M, = Bending moment at section x-x
ds = Elemental length
El = Flexural rigidity

MZds
=] >F|
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or E = Modulus of elasticity
| = Moment of inertia

e Strain energy stored due to shear
D where, g = Shear stress

U = 2 av G = Modulus of rigidity
dv = Elemental volume

e Strain energy stored due to shear force
where, A, = Area of shear

S = Shearforce
G = Modulus of rigidity
ds = Elemental iength.

U. =I S4ds

2GAq

e Strain energy stored due to torsion
where, T = Torque acting on circular bar.

T2dx ,
Ui =_[ 5G| dx = Elemental length
- G = Modulus of rigidity
|, = Polar moment of inertia
e Strain energy stored in terms of maximum shear stress,
2 where, t__ = Maximum shear stress at the
U- —-— mnax V d f : t
: 4G surface of rod under twisting.

G = Modulus of rigidity
V = Volume

e Strain energy stored in hollow circular shatt is,

2 D2 + g2 where. D=External dia of hollow
max . .
U = 4G 'V'( D2 ] ~circular shafts
, d=Internal dia of hollow

circular shaft

T .. =Maximum shear stress

e Castigliano'ss first theorem

U _ ouU _
JA 30

where, U = Total strain energy

M A =Displacement in the
direction of force F.

P | &

0= Rotation in the direction

of moment M.

MADE EASY H
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Castiglianos Second Theorem

ou
EEa

oU _

FTV I

e DBetti's Law

EPOmn = ZP.8,

where, Pm

= Load applied in the direction m.
= Load applied in the direction n.

= Deflection in the direction ‘m’ due to load applied in
the direction 'n’.

Detlection in the direction ‘n’ due to load applied in
the direction ‘m’.

e Maxwells Reciprocal Theorem

321— = 812
where, 0,
812

= deflection in the direction @ due to applied load in
the direction (3).

Deflection in the direction @) due to applied load in
the direction @.

® [otal real external work done
1 /"
Remember
WE‘ _— '2_P8 ) -
_ SN LI .3
where, 0 = Deflection caused Oy a static force P in the

Total external

direction of P.
virtual work done,

wr

Wez:P.S*

where, o' = Deflection caused by any other force system say Q.
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e Standard Cases of Deflection

() For the portal frame shown in the figure below horizontal | . | a
deflection at D due to load P, assuming all membpers have | | B J,
5 A

same flexural rigidity is given by T

(iv) A portal frame as shown in figure carries a load P at A

B C 1 Pah® 2 h
Iy ; 5, = A | o |, - Pal(a+3h)
2E| PF|

5 _ Ph?(2h + 3b) | |  —a—n
= 3E | where, §H & o, is horizontal & vertical deflection at end A
respectively.

(V) Figure shows two identical wires OA and OB each of area A
and inclined at 45° from horizontal. A load P is supported at O

where, & = Deflection of D in the direction of load P.

(i) Semicircular arch whose one end is hinged and other supported -
on roller carried a load P as shown in the figure. 5

L At Sy ot . o T . oy L o . e N
e e e S S e S g
= - - - e

L P b e

3
5= . PR
2 EI

where, 3§ = Vertical deflection at ‘O,

where, o0 = Deflection at B in the direction of load P.

(i) A quadrantal ring AB of radius r support a concentrated load |
P as shown e JStiffness: itisthe foroe/moment required to be applied at a Jomt SO
f as 1o produce unit deflection/rotation at that joint.

- moment distribution method (Hardy Cross method)

. F or M | where, K = Stiffness
A o | F = Force required to produce deflection A
M = Moment required to d |
- 2 proauce rotation 6.
5, = % _ P:; 5, = ; _ PERL e Stitffness of beam
() Stiffness of member BA when farther end A is fixed.
where, ¢§, = Vertical deflection (deflection in the direction of K 4F]

oad P) atend A i
Horizontal deflection of end A. :

n
{

where, K = Stiffness of BA at joint B. When farther end is fixed.
El = Flexural rigidity
L. = Length of the beam
M = Moment at B.
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(i) Stiffness of member BA when farther end A is hinged

M
ra}
0g & - "

= L -
where, K = Stiffness of BA at joint B. When farther end is hninged

e Carry over factor:

Carry over moment
Applied moment

Carry over factor =

COF may greater than, equal to or less than 1. |
e Standard Cases:

M
v |COF = r\
i F = — TP Y
(1) 2 !
- M
L
M
a D
(iii) COF = _a_ Hir:ge
D L

e Distribution Factor (D.F):

Stiffness of a member
oF = Sum of stiffness of allmembers at that joint
or
Relative stiffness of a member
i = Sum of relative stiffness of all member at that joint

Summation of DF for all member at a joint is one.

MADE EASY & Structural Analysis 69

where M., M,,, M, and M, are moment induced in member OA, OB,
OC and OD respectively.

e Relative Stiffness:
(i) When farther end is fixed.

Relative stiffness for member = II__

(i) When farther end is hinged.

L P

Relative stiffness for member = %I_-
where, | = MOl and L = Length of Beam
B
*"-‘?\‘%?—“ e 4E]
® T Stiffness of OA = ;
/
| 3E!
1 Stiffness of OB =
O /
]
3E|
Y D Stiffness of OC = E
DU AN T S
Stiffness of OD =0
¢ Fixed End Moments
- Sign Convention
+ve — Sagging
-ve — Hogging
and All clockwise moment — +ve
and All Anti clockwise moment — —ve
Span length is /
i Mas MVea
—P/ P7
8 8
_Pab2 Pazb




E MADE EASY -

MADE EASY B Structural Analysis

_3EIA
0 3
BEI(A; + A,) 6EI(A; + A,)
J? J4
£ S Wa_2 W82
| le—a e (l—a) > 12]° 1972
(612 — 816.a + 3a2) (41— 3a)

A Handbook on Civil Engineering
—Wf2 Wf2
12 12
— N
i
—WiI° W<
30 20
- ) |
—11 2 O 2
w/ [
192 192
VY iW[2
06
|
|
Mob(3a — 1) Moa(3b — 1)
L2 L2 !
|
Mo Mo ]
4 4
|
—
|
—0EI|A —bEIA
/2 & |
|

Slope deflection Method (G.A. Man_;y Method)

In this method, joints are considered rigid. It means joints rotate as a
whole and the angles between the tangents to the elastic curve meeting
at that joint do not change due to rotation. The basic unknowns are joint
displacements (0 and A).

To find © and A, joints equilibrium conditions and shear equations are
established. The forces (moments) are found using force displacement
relations. Which are called slope deflection equations.

e Slope Deflection Equation
(1)  The slope deflection equation at the end A for member AB
can be written as:

MAB

Rotation of member
e
\.BA = B s
\&)i
[ /

Mag = Mpg + %E-I—(%A + Op BIA)
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IH- .II. -
oo e,

(i) The slope deflection equation at the end B for member BA
can be written as:

2E | 3A
)-MBA — MBA +—I__(298 -+ BA —T)

Degree of Static Indeterminacy

where, L = Length of beam, El = Flexural Rigidity

(i) |Ds=m+r, —2]|where, D ,=Degree of static indeterminacy

' ' ' ively. .
Mag & Mgy are fixed end moments at A & B respectively m = Number of members,  r_=Total external reactions

M,.g & Mg, are final moments at A & B respectively. i = Total number of joints
6, and 85 are rotation of joint A & B respectively.
A = Settlement of support.
* Sign Convention - f | Dge = +11&|Dg; = —1| then | Dg = 0 | at specified point.
+ M — Clockwise :

— M — Anti-clockwise

+ 8 — Clockwise
— 0 — Anti-clockwise

(i) | Dg =0 |= Trussis determinate

(Hi) [ D > 0 |= Truss is indeterminate or redundant.

Truss Member Carrying Zero forces M, -

Joint
A — +ve, if it produces clockwise rotation to the member (H M., M,, M, meet at a joint
& vice-versa. ' ' M. & M, are collinear. .
- The number of joint equilibriurh conditions will be equal to number of ‘@’ | = M, carries zero force. - M,

components & number of shear equations will be equal to number of ‘A" where M,, M, M,

components. | represents member.

| (i) M, &M, are non collinear | o
M1 T

= I\/11 & I\/12 carries zero force.

:::‘f‘.'ﬁfﬂ 4 ~;

Indeterminate Truss

(i) Final force in the truss member

; ~« PKL
X — AE
S=P+kX| and k2|
> AE
sign convn —» +ve for tension, — ve for compression.
where, S = Finalforce in the truss member

K = Force in the member when unit load is applied

inthe redundant member

= - - . — £ -= a - 1 - -, -im
LIy e o By e e £ 2 5L - - h
Calm e TXm "'.' o L. -

R A
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| ength of the member
= Area of the member

= Modulus of eiasticity
Force in the member when truss become
determinate after removing one of the member. Flexibility
P = Zero for redundant member.

o m >
|

| < The flexibility of a structure is defined as the displacement caused
it D, = +1thenreaction is taken as redundant a unit force.
it D_. = +1then member is taken as redundant.
| Ramomber Sl / -|: —_ 6 -|: — e — (y aqe
“PIOITTM where, f = Flexibility, 8 = Displacement
Lack of Fitin Truss ' .- P = Force, 8 = Rotation, M = Mom
30 | AL Stiffness
:})_)2: A where, U = E2AE" S : | | The stiffness is defined as the force required to produce a u
Q = Force induce in the member due to that m_ember which I1s ‘A | displacement. | '
too short or ‘A’ too long is pulled by force 'X". - . P ; M
| | | R R Y where, k = stiffness
Deflection of Truss - |
. ] From Maxwel!
- - — Deflection of truss due to effect f=—| [T =T k. — Kk }
j . PL where, y, = Detle | | - kLY ¥X & Fxy yX Reciprocal Theorem
Yo =ZKjLoal + AE of loading & temp. both.
: where,
if effect of temperature is neglected then | i, f .= Deflection in direction x due
YPKL o, = Coefficient of thermal expanstion : to unit force in direction vy,
Yo = — T = Change intemperature f . . . J L . , |
AE _ - Direction of displacement Direction of unit force.
T = +ve | ittemperature is increased ; k, , = Force in direction x due to unit
T = —ve | it temperature is decreased. t - D ) J L displacement in direction v.
| : irection of force | i it di
P & K have same meaning as mentioned apove. f Direction of unit displacement.

. Results
Stiffness Method for Truss ]

| : . Type of Displacement Diagram Flexibility Stiffnes
Apg = Ag — Ap 3 @
() Axia _ 9 L AE
i L, A E | AE L
Pag = E[(ABX — Ap, ) COSO + (Agy — Apy ) SIN 6] E (if) Transverse Displacement
L ;
where, A,, = Axial deflection of member AB. E 3 o
= Force in member AB (Axial force) ) : ~ -
"ne | E (a) with far end fixed 6 126 13
T |
;
5

SO
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(b) with far end hinged

(iii) Flexural Displacement

(a) with far end end fixed L 4F

(b)with far end hinged

(iv) Torsional Displacement

L Glo

1. Introduction

oINS 15 -
b - Sl
PR Ao o [T

AR -, =

N

,, _ — _ ‘ 2. Working Stress Method ................c...c........ e, ST 8
€y~ ltisnotnecessary that all members of flexibility or stitfness matrix | |

Remombor Wl” be homogeneous

3'. Limit State Method ...oovreo 8

M |
Bond, Anchorage & Development Length............. e 9

o

B, TOISION oo e 9

-\l
oy
D
S
-
3
Q)
-
0
D
N
O
%

L R

8. Columns ..., PSP UPUR e .. 10

I"'I"'l"-ul-!'{'1 o Fr e T S T
Ty H{r-:-"'.l"! Taayi o=, i1,
- e w7, aan —= 1 ara

b TR
|

J. Footings ......cc.cooeein, e e 171

A f Il Ty

T R
e T A e

10. Prestress CONCIEIE i e e 111

vy A T

. Fﬁﬂéﬁﬁkbw I

R



ot

Introduction

Concrete
1. Modulus of elasticity of concrete

E = 5000,/fy

where f_ = characteristic strength of concrete
2. Tensile strength of concrete in flexure

=070

a&," - Characteristic strength of concrete is the value of strength of )
;@\ concrete below which not more than 5% of test results are

-

-5:\%
| Remember  €XPECted to fall.

3. Permissible value of strength in concrete

r 1 Direct tensile _EBmpressiEm Bondstress (de)
=rade| strength (Toke) |LDirect Bending ]
(Gcc__l (6..) | WSM | LSM
M15 2 4 5 06 | 1
M20 2.8 l 5 - 7 08 | 1.2 l
M25 3.2 6 8.5 09 | 1.4
M30 3.6 3 10.0 1.0 1.5
! M35 4.0 9 11.5 1.1 1.7
M40 | 4.4 10 | 130 1.2 | 19 |
* 1T,.49lvenintableis only for plain mild steel bar in tension.

° 1 _,Vvalue should be increased by 60% for deformed bars both in
LSM and WSM.

¢ [or barsin compression the value should be increased by 25%.

Steel
1. Young's modulus of all type of steel is 2 x 10° N/mm?2.

e Type of steel
1. Mild steel — Fe 250
Here, 250 is the characteristic strength of mild steel bars.

Also, f, = 250 N/mm?

M ADE E ASY W RCC &-Prestressed.Concrete 79
o HYSDDbars
Fe 415
Fe 500

Parmissible stresses in steel
Permissible Stresses in Steel Reinforcement

Permissible stresses in N/mm#

Type of Stress in Steel

.0_ Reinforcement .
Fq Mild steel bars High yield strength
(Fe250) deformed bars
) (2) (3)
1y | Tenston (G,, OF O,)
l (a) Up to ana including - 140 ‘ 230
20 mm
| (p) Over 20 mm 130 230
kiiy | Compression in column 130 190

The calculated compressive stress in the surrounding
concrete multiplied by 1.5 times the modular ratio or

o, Whichever is lower

Liii) | Compression In pars in
| a beam or slab when the
compressive resistance
| of the concrete is taken
into account

v Compression in bars in a
beam or slab where the
compressive resistance
of the concrete Is not
taken intoc account:

(a) Up to and including 140 190
20 mm
(b) Over 20 mm 130 190

1. Forhigh yield strength deformed bars of Grade Fe 500 the
permissible stress in direct tension and flexural tension
shall be 0.55 fy. The permissible stresses for shear and
compression reinforcement shall be as for Grade Fe 415.

2. Forwelded wire fabric, the permissible value in tension Oy 15.230
N/mm?2.

3. For the purpose of this standard, the yield stress of steels for
which there is no clearly defined yield point should be taken to
be 0.2 percent proof stress.




Working Stress Method FP4ag |

Modulur Ratio

where, m =Modular ratio
E. =Modulus of elasticity of steel
E. =Modulus of elasticity of concrete

Equivalent Area of Concrete

A, =mA,

Here, AC = Area of concrete
A, = Area of steel

Stress in Concrete

P

M

_ Ps

Critical Depth of Neutral Axis (X )

where, p_. = stress in concrete
P, =stress in steel

Oepe = C

M cC
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Overall depth
Effective depth
C = permissible stress in concrete
{ = permissible stress in steel

SINGLE REINFORCED RECTANGULAR SECTION

- Actual depth of Neutral axis (X_)

LR
RS
w -
e
I
A
Y
g

Raomeslar

o

In working stress method actual depth of neutral axis is
calculated by equating moment of Area on both side of Neutral

axis.

\

B X2

2

=mA,(d-X,)

oy - -
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Special case:

(i_) when

Xa=Xc

(i) when

Xy > X,

Xy < Xe

(i) when

Moment of resistance (Mr)

(i) For balanced section (X, = X.)
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Section

for balanced section.
for over reinforced section.

for under reinforced section.

X.[3
C = Compressive
force

Stress diagram

O X
2g=(a-%) |or

3

M, =Gst'Ast(d ‘Xa]

(973

Xa

) = Lever Arm

(i) For under reinforced section (X, < X.)
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Section

Stress diagram

2

Mr=BXa-9—a—(d—

Xa)
= || or

Mr=cst-Ast(d

Xa)
3

Ca

Ogt - Xa

" m(d - X,)

Here, C, < 0.
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s

) For over-reinforced section (X, > X.)

~

Ocbe _ ta /m
| o

L
X d A X 1:_-;.1.“” ":_-\. l.-l‘-\‘\--. "'"-- - L;.E ‘_a I‘llr‘\ .h_: ‘-_.‘-__
. - - -
a a R it
Aoy aF - B T i L
. - 11 > a a' M -
¥, T e - . ' TGS
i Yo [ R | L ,.T\'.I
| ] o n o Tieo- - -
[l o [ " . a
WSl Tae sy i T
. 3o
L] - -
LR
g
W=t
II

|
o
X
Q
O
o
&
Q

M;

1
L "1
e — M oy e, e ' e ey s ol el ok
- . ,
‘., . :
" - - " b
- - -~ (S Y
' r
'l.‘-:l' v o= R — a0
s -
. L "
"

- ' Lo -
por - g -
- - " e - !
- L - - "
R . P LEF LR
P r 3 ] PN H
1 - 4. 1 - r e
I.l. L - - = - r- -
s - . -7 . - Ea.
- - P ' .
' - - - . -
' r " “ o N -
- - - = % - e
IR U N e R
E Et — T — - [ -, N -

0

Doubly reinforced section Section Stress diagram

DOUBLY REINFORCED RECTANGULAR SECTION
Critical depth of Neutral axis, (X )

McC
{4+ mcC

X.. d

Actual depth of Neutral axis, (X))
| bx2

+(1.6m—-1) A (X, —d.)=mA_(d-X,)
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Moment of resistance (M)

Section otress diagram

M, = Cy(La) +Colas
U

+(1.56m—-1) A, - CI"(d —d,)

Xa
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Design Steps

Ny p—— o B P LA g e g AEYTS W Ry =

-\.,‘;r"ll --|l'._-—"qllq.--'lnll—-l|.-|I||l|-l|.--..J By,

e
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Special case:
(i) Balanced section

X =X

d C

Ga = Yebe

t =

d st

(iiiy Over reinforced section

O

I

Q
o
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SINGLY REINFORCED T-SECTION

(i)  Moment of resistance (M)

] .Qg_( _g)
M =BX, - 2| 0 3

N

) | | X, =X, Balanced section Ca =0gpc |ta = Oy
ange where, B,= Effective width of flange Xa < Xc {Under reinforced section|C, < 6, {t, = O

e b, = Width of web . .
Ehe w | | Xa > X | Over reinforcedsection |C, = 0. |1, < O
d = Effective depth |

.‘nl..ll. S
L _ -
e 5 ISR A
PR '
- L * I"L.
E r v
=e - .
S . "7

EaL Rt -
| FEE
Lol W A
l-——rr& -.-1.“*
" ar -

|
=
o

¢ When Neutral axis is in web area

L) - W
- - -
- - o
- - -k -
- a” H
-. - A
B
- - L}
. =7 -
n ; -
q_.r___'\-_.lrl_ St .- oL
e r

Effective width of flange

(a) For beam casted monolithic with slab

(‘{Q"+ bw +6df)
o

B = Minimum or

Section Stress diagram

b, + _g_ " %2 () Foractual depth of neutral axis
| d;

(b) For lsolated T-beam Bids - (Xa ~ "é“) =MAg(d-X,) By neglecting web area
3 Iy b Distance between points of zero >
f = | X, — By considerin
L w momer.rts inthe beam B.d. '(Xa df)_l_ oo Ka = dh)” _ mA..(d—X.) yb ing

B = Total width of flange 2 web area

b, = Width of web (i) Moment of resistance (M )

Critical depth of Neutral axis (X.) M, = B - d (Ca "2F 01] [d [Cé‘ ++2CC1) fgf] + by, (X, ~ df)- %[d _d (Xa:'; df)]
a 1

X =( me ]d
I+ mMmc s

e When Neutral axis is in flange area
(i) Actual depth of Neutral axis

'y

T
+ SaTa o TrEAETS
-
e T s TR S
R AL I T T U
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BX:
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Here, X, = Actual depth of Neutral axis
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Design stress strain curve at ultimate state

Stress 4 A
For ductile failure
0.45 Tg . : 0.87 f, -~
§ AN
’. . o1 /1
: | nh|[
0002 00035 Strain "
Strain Fe 250
e Design value of strength
For concrete
f 0.67 f_,

where, v .
f

For steel

d

Y e 1.5

Partial factor of safety for concrete = 1.5
design value of strength

f, = l =0.87f
a7 445 T Y

Singly Reinforced Beam

0.0035

Section

0
( ——Y 0.002)
-5

Strain Diagram

Stress Diagram

AR T el
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1. Limiting depth of neutral axis (x

for

u.Iim)

700

X =
vim = 0.87F, + 1100~ °

oteel | Xy im

Fe 250 { 0.53d
Fe 415 1 0.48d
Fe 500 | 0.46d

Here d = effective depth of beam
2. Actual depth of neutral axis (X)

C=T =

X =
YT T0.361,.b

T 0.87T,Aq

3. Lever arm = d - 0.42 X,
4. Ultimate moment of resistance

M, = 0.36 fbX, (d-0.42X,) ]| or |M, = 0.87f,A, (d — 0.42X,)

In LoM, actual depth of NA is found by equating total compressive
and tensile force.

N

e Some special cases

1. When X, <X

u,lim

It is an under-reinforced section

M, = 0.36f,bX, (d - 0.42X,)

and | M, = 0.87f,Aq, (d - 0.42X,,)

2. When X, =X

u,lim

It is balanced section

3. When X, > X

M, = 0.3614bX,im (d — O.42Xu,,im)

M, = 0.87 f,Aq (- 0.42X )

u,lim
It Is over reinforced section. In this case, keep X limited to X

u,lim

ana moment of resistance of the section shall be limited to limiting

moment of resistance, (M

u,ffm)'
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Doubly Reinforced Section

0.87f T = 0.87f. A
( - Y 4 0.002) y st
5

Section Strain Diagram

Stress Diagram

1. Limiting depth of neutral axis

700
0.87f, + 1100

Xu,lim — d

2. For actual depth of neutral axis (X )

)
0.36fybX, + (foo — 0.45fy ) Age = 0.871,A

3. Ultimate moment of resistance

M, = 0.’3»(31‘Gkb>_(LI (d — 0.42Xu) + (fSC —0.45 fck) Ao (d — dc)
where f

.. = Stress in compression steel and it is calculated by

strain at the location of compression steel (i)

T-Beam

1. Effective width of flange

Discussed in WSM
2. Limiting depth of neutral axis

700 .
0.871, + 1100

Xu,lim =

d

e Singlyreinforced 1-Beam
Case-1: When NA is in flange area

.., xu < Df

ag—""0

MADE EASY E RCC & Prestressed Concrete
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(@) forX,

0.871,A
_ Ty At
4= 0.361,b, <

(b) Ultimate moment of resistance

M, = 0.36f,b:X, (d - 0.42X,)

or |M, =0.87f,A, (d-0.42X,)
Case-2: When NA is in web area (X, > D,)

Section

Strain Diagram

Stress Diagram

Case (a) when X, > Dyand D; < “B‘Xu

.e., depth of flange is less than the depth of rectangular portion of
stress diagram.

1. For actual depth of neutral ais

0.36fsby X, +0.45f,, (b ~b,, )Dy = 0.871, A,

2. Ultimate moment_ of resistance



-

3

90 A Handbook on Civil Engineering E MADEEASY ¢ MADE EASY B RCC & Prestressed Concrete

re :
i
L -
A _
—— -

or | 0.36f by Xy +0.451, (br —by ) ¥s = 0.871,Aq

0.45 fgy (o~ bw) ; 0.45 Tei

. T e '
. — i a T, ll-ll."ll:\-: "1"‘:::}{'{‘-;'.- . l._\. -\.l:_l B :
et "-H.""..- e PR e '..':"l_' -] r'.-'-.f{_:"lr'{"lf__:-.-._"‘-\._.-,-- AL ": M
-, 1-5 v met s \.'-'“ LT r"':‘l-"'_..'- B e e T
-'.'"1".I;IH-L'-‘.'. -\.-Il.{'li "-l“"% "'-"-h'lhu "--I"' 1‘1'“"""':*-.:_#: m_.""l“... r'\{- “-r-\.;h-tr'-"-\. "
B R\ PRy B B PR LT N T
. . TR L A ge wi-ndgm T L T i e T - o .
B L - A P B "‘\.'.. i Sl R _|,_'l,\..l:;..‘.r_4'rI .:I;I'- -
S oW T T e e 3 e o oA D e
. ____p'_:-l-::'-' .-'_:I I-'E.l-..-E_I': YRS - - - a R A - ;
LI At 2 T . AL L] -
- - - I, -
LSRRI i e R 1 I 1 :
e g = L I
A Sy LA o ! ) .
""ll-.-"""I o oerd L '-n-.‘".'_:"{l'-u.;]-'-" e
] L i, TR a - - I I
e T R e W 1 , —
L T T T L L Al ¥ I
S I = Pt T L I.
YRR IR '\'l-"""'ﬁE"" T AR I
- W - p e T T et ., I
s T IR .ﬂ-l_"' L el I I : l
N -
i i AR e e | w G
ra :,"‘ - ..""\-l'_.':'; T -_’:l-'r" - e e mmmlk B G e W I
el e £y - ! :-':'qﬁ' oA ..-'— I I [ NI . P
- B T - " = . . . < - - = | ey ama o
] _..""-'J".‘," 1"-\.-. ipn v Ak g et I ' LY EYF I L L. P TR Akt oo LI A - mhaa, w
- L T R Pl 1 2t T g a.l . 4 i LI [
- LA . LT Il n* - gk T . ' srale - ' b | LI i ] r
DR e eyl p 20N I I : ST M T BT P Lk pw
L e e R, "-."'.\_--...-'\-'_}"_:.br:l"\-:..ﬁ I I L N L R AL e L. "j"x*'l-' . l“:_.-}'“h""
- [ L A I i, LS S S K w S LT ] -" -2 - -
I N L Ty T W "'1." i W h..-'i'-:-y-‘ T A e R T T TE AL L SR IR
e - - b - -
J"I:'-'_h_- _"" - l.ht{ :_._-r'ﬁ\"'\-n'_.":in.\_"":-n.\,'_:' - l ' '.I_ ..\_'.‘E '!E""'t.'.“‘? g-\..'_F"'l-d-Fi::‘ -.-1}‘:?‘ o ;’" LS H"E‘ e I|_-.“-':'
ER - s Tpnde- g & ™ I 2L LC [Ea . A ] L £ Tt e i A .
P -~ "-;-g . At T e l I A AT L T :,‘.-_‘f o _.-\.-\.-H-'l: B LR [ EEr L
L B v oy r e Bl -5. bl _.___-'.'.\_u - P Al PR =
L y o I - igtn R Lot Yot n :.-J
R o P s | R T R
- L Tl .= L TS [IRLACE L0 [N };;-E_:r-'- REL LY
- . o L Xte - TR L G . Yy b For
A D T2 i 7 ML I " Ry .‘N,.:' LN PR
a0 PR - I i R L n - it marpn DD R
. AR e ':""-\.ch' - [ I "-"'--'.-"-.'n:."r' R B T L -
. Fremir .j o ..E_: ] - - y Atk -"\-1""':,_.;'\-{”""-
. M. . et — B biE D Do TR
"__ s ,.-...,'\" .E-\.:}L?’q‘. ’ . I l '\-;F.'\-r:h. Wi - "\._u;-_"r_ﬂ_ll:] -
- -'ll,'l..rl.r-"'""|'\"\-;~.. L = l
, Nad .m e -k k- Telh LR I -
i - - -

| T, = 0.87 1 Ag, S

Section Stress Diagram Section Stress Diagram
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D -é T T =0876A, T, = 0.87 f A
— 0.36f,b,, X, (d—0.42X,) +0.45f, (b; by )D¢{ d = — ;-. 1 yAsto

> ; Section Stress Diagram Section otress Diagram

M

U

Dy

2 M, = 0.36fyb, X, (d-0.42X,) + 0.45f, (b; ~b,,) y;| d - %

M, = 0.87f, A, (d—0.42X,) + 0.87f,Aq, |

[ L
-

036f0kwau A . O45fck (bf — bw Df

Asty = 0.871, | %2 0.871, M, = 0.871 Ag, d- 0.42X, +0.871 A, [ éf

3 '-
‘e Special Case (2): When X, > D;and D; > ?Xu A, — 0.361 by X, _ 0.451;, (bf —by, ) Vi

| ~ " og7f, | and |Mee* 0.871,

i.e., depth of flange is more than depth of rectangular portion of stress

diagram.
(b¢ — Dy) (b — by,) i
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As per IS 456: 2000 | : -
(bs—b,,)D; portion of flange is converted into (b;—b,, )y; section for which
stress is taken constant throughout the section is 0.45 1, .

As per IS 456: 2000 |
yf — 015Xu + 065Df < Df |

- =— map oy oW
- v

L

-
"y ]

1. For actual depth of neutral axis

LD R YT

0.36f,.b, X, + 0.45fy (bs ~ by, ) y; = 0.871,Ag, + 0.871,Ast,
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) vV
()  Shear stress below NA | 4= bid
As per IS 456 : 2000
. V
Shear stress Nominal shear stress, | T, = bd
(a) For Homogeneous beam :
-~
| oV
q = The maximum shear stress | 4 = bid obtained from elastic
.~ b — theory, is greater than the nominal shear stress (or Average
e : ; shear stress) 1, suggested by IS 456: 2000.
D X : ll : E .’ -
NA-——— b Y L4 | } Design shear strength of concrete (’cc) without shear
; i i reinforcement as per IS 456: 2000
Y i T depends on |
Section Shear siress | () Grade of concrete
distribution | (i) Percentage of steel,
where, q = shear stress at any section . E A . where, A_, =Area of steel
: : —_— S .
V = shear force at any section E P = bd x 100 b =Width of the Beam
AY = Moment of area of section above the point of E d =Effect|ve depth of the beam
consideration ;?““l M 55
D3 - 0<0.15| 0.18 | 0.19 "0.28 0.29
| = Moment of inertia of section = 5 025 {022 | 0.23|0.361{0.36
0.50 | 0.30 | 0.31 | 0.48 | 0.49
(b) For Reinforced concrete beam 0.75 | 0.35] 036 | 0.56 | 0.57
1.00 | 0.39 | 040 0.62 | 0.64
Parabolic e Maximum shear st ith sh
X As per IS 456: 2000 ress fcc . With shear reinforcement is
N S Y 2 As per elastic theory LISM 125128131135 |3.7 4.0
Bl Bt bl e ' , Tv # Tomax
Section ear stress -y : |
distribution . * Minimum shear reinforcement (As per IS 456: 2000)
* A 0.4
| hear stress above NA - SV~ ; | . ,
(i) She . bS, ~ 0.87f, | Thisis valid for both WSM and LSM
q = VvV (X2 = y2) | | Qs = v X2 |aty =0 or 21751, Ay, where, A_, = Area of shear reinforcement
— =] max ‘ :
| 21 21 Sy < ™ - S, = Spacing of shear reinforcement

T



Ty

Y
- A Handbook on Civil Engineering B MADEEASY
TR e
e Spacing of shear reinforcement

Maximum spacing is minimum of (i), (ii) and (iii)

0|, = 2.1 75bfy Agy

(i) 300 mm

(iii) 0.75d — For vertical stirrups
d — For inclined stirrups

where, d = effective depth of the section

Critical section for design shear

| X :X : X :)(
Diagonal E E i |
crack < E — i ; <
Ex Ex E—-t— d —» ~— +;E<
S ‘ A —» -— O —» X
Wall <« RCC Column /\/
() (1) (1)

(a) Critical section X-X at d from the face of the support

J\/

\

' X
ta«——Tank wall :

JR

X ! A
'L " ¢ J' * ” S!econdary
i A < . beam
| |
Ex Floor slab , — Main beam
of water tank (i
1

Heavy

<

X

Bracket
X

load
X

-

g wpey ewr W

X
- 20 -

/\/‘r\ RC Column

(iii)

/\/

(iv)

(b) Critical section X-X at the face of the support

The above provisions are applicable for beams generally carrying
uniformly distributed load or where the principal load is located beyona

2d from the face of the support.

ST ST A .

MADE EASY B RCC & Prestressed Concrete 3 T

Vertical stirrups:

(d-d)=d / Holding bars -

%%ﬁ Ver’iical stirrups Tension reinforcement
Shear force V_ will be
Resisted by shear
Reinforcement provided in ‘d’ length of the beam,

d
Ve = (_S_) Asv *Osv | for WSM
V

where, A , = Cross-sectional area of stirrups
S, = Centre to centre spacing of stirrups

d _
Veu = (g—) Asv(0-87 1) | for LsM
Vv

Inclined stirrups : or a series of bars bent-up at different cross-
section: |

. d
Vg =Agy - Oy, - (Sina + cos o) (é——] for WSM

V

Vou =Ag, - (0.871,)(sina + cos o) (—Sg—-) | | SM

\

Bent up Bars:

Single or a group of bent up bars are provided at distance /2 a = \/Ejd

from support in such a way that < ACB = 45°, < CAB = < CBA = 67—;-‘“ .

Generally bar should not be bent up beyond a distance /4 from the
support. Where I = length of span.
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where  V = Shear force at any section

d = Effective depth of the section
>p = Sum of all perimeter of reinforcement
= n-m(f)
n = Number of reinforcement

¢ = diameter of reinforcement

Permissible bond stress
As per IS 456 : 2000
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M15

MZ20

M25

M30

M35

M40

WSM

0.6

0.8

0.9

]

1.0

1.1

1.2

1.4

1.5

1.7

1.9

1

[SM]| — 1.2

These value of bond stress is for plain bar in tension.

For deformed bar the above value should be
For bar in compression the above value shou

Developmentlength (L )

I—d . q)GSt

For WSM

increased by 60%.

d be increased by 25%.

4 T,

90871,
- 4'de

L g For LSM

Equivalent shear force

16T
Veq =V + 5

For WSM

L 16T,
b

¢ Nominal shear stress

V
e;}'ccrmx

For LSM

Vi eq — Vi

Ty =

For WSM

V
T = t;lgq # Tc.max

For LSM

Equivalent moment

For WSM

For LSM

Transverse reinforcement
As per IS 456: 2000

S, [T V

b, " 25

Aa, =
v d-]()'sv b-]

Also,

wh Vs =+
.1 7S b, T 2.5

where

V = Shear force

T = Torsional moment
b = Width of the section

where, M = Bending moment

D =QOverall depth of
the section

d = Effective depth
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Here, T = Torsional moment
S, = Spacing of the stirrup reinforcement
D, = Centre to centre distance between corner bars in the
direction of width _
d, = Centre to centre distance between corner bars in the Effec.tlve span
direction of depth of member - A. Simply supported beams and slabs (/)
b = Breadth of member | |
c., = Permissible tensile stress in shear reinforcement ?- dl
Maximum spacing for Transverse reinforcement
0 x, i) o (i) 300 M it = minimum 40 * W riere, I = clear spar
Iy + d W = width of support
. \ d = depth of beam or slab

When a beam is subjected to torsion, if depth of the beam
is more than 450 mm or for beam not subjected to torsion if
the depth of web exceeds 750 mm then side face
Resmember reinforcement equal to 0.1% of cross-sectional area and Is
equally distributed on both faces of the beam.

B. For continuous beam

() If width of support < —1—12— of clear span

.. Iy +W
leff = minimum
Iy +d

b I

¥ T e i pqw.&ﬁt‘rFWr.w i e e e L L YL Ty

P e ey e A e e —

% i}

(i) If width of support > 1—12—- of clear span

(@) When one end fixed other end continuous or both end
continuous.

Lot = Iy

- -m,mﬁf.-ﬂf:"mm-wrn:..ﬁﬂmvumﬂ‘murﬁmmﬁ:ﬂqﬂm%— ey S
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C. Cantilever

d

1 d
l = . + —
eff 0O >

W
Lo =(lo | 2)

[ = Centre to centre distance

Control of deflection
(i) Thisis one of the most important check for limit state of serviceabllity.

(a) The final deflection due to all loads including the effect of
temperature, creep and shrinkage and measured from as cast
level of the support of floors, roofs and other horizontal

span
members should not normally exceed 20

(b)  The deflection including the effect of temperature, creep and |
shrinkage occurring after erection of partition and application §

>Par or 20 mm which

of finishes should not normaily exceed

ever Is less.
(i) The vertical deflection limit may generally be satisfied if
(a) Basic span to effective depth ratio for span upto 10 m s

| span
Types of Beams: effective depth
For cantilever — /

L e Sy - ey e p

Y™ ey o P— —.ﬂ"—hldql-li—:—-'-_-llll—r-—l'l-r Trmrtr s - =

MADE EASY

For simply supported
For continuous

(b) For span > 10 m effective depth =

RCC & Prestressed Concrete 1071
— 20
— 26
(span)®

10x A

where ‘A’ is span to effective depth ratio for span upto 10 m.

() Depending upon the tension reinforcement the vaiue ‘A’ can
be modify by multiplying a factor called modification factor

(MF ;)

where

effective depth =

span
A xX MF,

fs =0.58 f, x

Area of steel required

Area of steel provided

(d) Depending upon area of compression reinforcement, value
(A) can be further modified using a modification factor (MF,)

effective depth =

span

A x MF, x MF,

(e) Forflanged beam: A reduction factor is used.

(f) Deflectlon check for two way slab

C -:,_‘ i"— F'%
="1 ,r'g"
‘Q

= -ﬁ;-r\r
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e h,{
E amam B &Wﬂd theei "f: iﬁi 0 *f‘s; F
o SUOTUT Ly é,.z-u:;.?'~*f.=;=‘~.'~‘frﬁt:'-:; S S
Simply supported' 35 28
Continuous 40 32
Slenderness limit
1. For simply supported or continuous beams
60D where, I, = Clear span
| Iy ¥ minimum - 2 b = Width of the section
d and, d = Effective depth
25D
2. For cantilever beam | 15 ¥ minimum 100 e
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(1)

(i1)
(i)

(iv)

(V)
(Vi)
(Vii)

(viii)

Minimum tension reinforcement

Ast

0.85

ba

Ty

Maximum tensicon reinforcement = 0.04 bD

Maximum compression reinforcement = 0.04 bD

where,

Where. D > 750 mm, side face reinforcement is provided and
it is equal to 0.1% of gross cross-section area (bxD). It is

D =overall depth of the section

provided equally on both face.
Maximum spacing of side face reinforcement is 300 mm.

Nominal cover for different members
Beams — 25 mm
Slab — 20 to 30 mm
Column — 40 mm

Foundations — 50 mm
Moment and shear coefficient for beams/slabs

Maximum size of reinforcement for slab/beam is 1/8 of totaj
thickness of the member

cxpen
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i
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£ (DL !0 10 "0 *36 ""1_2}Wd’
Saf  pommmoeeees jmo o oo Ao T
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one way slab
(1) li > 2
IX

where, ly
] =

X

(i) Slab is supported only on two edges.

length of longer span
length of shorter span

Q= CuK
>

eps of design
St P 9 Calculation of effective
span (left)
Calculation of total
load w
0.148 1., — Fe 250 l
01381 s Foajs M| Caleulation of design | WSM_
| ck > E coefficient (Q)
0.133 f, — Fe 500 l
Y WSM Calculation of effective depth
Ast— : B r_l\—/l_
Ost ' ]'d d=,/—
Vab
Check lLSM
v for r
51 .
- :LSTC _shear Ay = O ?ck [1_ : 4 6MLZJ o
Two way slab
ly p
() | 7 " 2 (i) Slab is supported on all edges.
X

e Design of two way slab
1.  Grasoff Rankine method

* ltis used for corners not held down position.

e |tis purely simply supported case.
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(i) Moment in x-direction (M, ) M, = ——" 'f Working Stress Method
8 - :
e Slenderness ratio (A)
| | | w, 15 | _ effective length
Moment in y-direction (M,) | My = 3 | least lateral dimension
(iif) iheir fOfCed v) . y if | A >12 | then the column is long.
t shorter edge
S ; » Load carrying capacity for short column
1
Vx=—3—-Wlx y : P=06g.Age + Ooc Ag
At longer edge (Vy) * where, A_ = Area of concrete, Ag = Ag — Agc
Vv =( r ) w.l, " (Load Distribution) Oso = SIS In compression stee
Yoo\ 2+ c.. = Stressinconcrete
2. Design of slab with corner held down position ] .Ag = lotalgross cross—gectlonal ared
A_. . = Area of compression steel

5C
e Load carrying capacity for long column

P = Cr(cscAsc + GCCAC)I

(a) Pigeauds method:

, Wi
Yy 8

=T

where, C = Reduction factor

where, the values of r; and 1y are read from table

C, =1.25 Lot

(c) 1|.S. code method 48 B
.szaxwﬁ MY=aYWlf !
The values of o, and o, read from table (page 91, IS : 456-2000) 'r‘r_'ﬂn
where, [ = Effective length of column
nam B = Least lateral dimension
. . _ . |
.., = Least radius of gyration and | Imin = N

where | = Moment of inertia and A = Cross-sectional area
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e FEffective length of column

Effective Length of Compression Members

: |

-

¥ —___ with helical reinforcement
o Column . 4 by 5%
strength of the column is increased by 5%
o [P =1.05(0¢. A + Occ Ac) | for short column

egree of End Symbol Theoretical Recommended
Restraint of value of value of
-~ 1.05C.(6.. A.. + .- A.) | forlong column

compression Effective Effective __ [P (Os0 Asc == J
members Length Length | » iy ‘ )
—_— : ' ' v Tor circular columns.

(i) (ii) (iii) (iv) F Heltcal reinforcement is provided only 10 )

Tk [ et -

Cffectively held in y . - '

clively | 050 ] 0.65 7 ', Longitudinal reinforcement
Position and restrained ' i 0.8% of the gross area of column
against rotation in (2) Minimum area of steel = 0.8% o the g
both ends (p) Maximum area of steel |

(i) when bars are not lapped A__ = 6% of the gross area of

Effectively held in ) l- |
position at both ends, ST 3 column
restrained against / 0.70 I 0.80 1 : (iiy when bars are lapped A __. = 4% of the gross area of
rotation at one end \ column |
Effectively held in - f bars for reinforcement

% ., m number ot pars 1or ref
position at both ends, : ° Minimu
but not restrained ~or rectangular column — 4
against rotation 1.00 I 1.00 1 “or circular column — 6
Effectively held in ‘*; !+ Minimum diameter of bar = 12 mm
position and restrained R : , : FUpL ar = 300 mm
against rotation at one e Maximum distance be’Fween Iongltudlngl b . _
end, and at the other N 00 7 : b « Pedestal: Itis a short length whose effective length is not more than 3
restrained against | = times of least lateral dimension.
rotation but not held _ _
in position e Transverse reinforcement (Ties)
—ffectively held in position 1 ~
and restrained against | - —* Omain | where = dia of main logitudnal bar
rotation in one end, and at ¢ = maximum, 4 - Prair
the other  partially - 1501 6 mm ¢ = dia of bar for transverse
restrained against rotation f t
but not held in position reiniorceme

B :

Effectively neld in position Pitch (p) :
at one end but not least lateral dimension
restrained against rotation, . - q o
and at the other end L 200 | 2 00 | ¢ = Mminimum 16 Omin
restrained against rotation A 300 mm
but not held in position
“ffectively held in position where, ¢_.. = minimum dia of main longitudnal bar
and restrained against * Helical reinforcement
otation at one end but not =00 =00 (i) Diameters of helical reinforcement is selected such that

neld In position nor
restrained against rotation
at the other end.

L
L)
-
P e
W in
I.-'--
e
-
u
ey

A f V
0.36 —= —1] ek < h
[AC £, Ve
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(i) Pitch of helical reinforcement: (p) z iimit state method -
(@ p*r75mm (b)pP* —2;)— dC (c)p«3¢, (d)p<25mm 1. Slenderness ratio (A)
where, d; = Core diameter = d, — 2 xclear cover to helical reinforcement y 2 — __ eftective length
A = Gross area = Z(dg)z , | __least lateral dimension
d, = Gross diameter | A <12 | Short column

V,, = Volume of helical reinforcement in unit length of column

¢, = Diameter of steel bar forming the helix 2. Eccentricity

T . / B orD
1000 i ] - +
i =( )(ndh)z(%)g El I ] Cmin = | MUM 500 20
D pI E i 30 mm
- T - | o .
A, = h (dc)2 V. = A, x 1 g If | Cmin < 0.05D | thenitis a short axlally loaded column.
d,, = centre to centre dia of helix i P =0.41, A, +0.67 f, Age

= d, — 2 clear cover — ¢,

¢, = diameter of the steel bar forming the helix 3. Short axially loaded column with helical reinforcement

Py =1.05(0.4 , A, +0.67F A_)

4. Some others IS code Recommendations
(a) Slenderness limit

(i) Unsupp_orted length between end restrains ¥ 60 times least
Iater_al aimension.

(i) Ifin any given plane one end of column is unrestrained than

.. where, P = axialload on the column

&
g
f
|
E
i

ﬁ Its unsupported length » 10087 ,
e Some others IS recommendations - D
(@) Slenderness limit (b) All column should be designed for a minimum eccentricity of
(i) Unsupported length between end restrains » 60 times least 7 B
lateral dimension. Cmin = Maximum-< 500 i 30
(i) Ifinany given plane one end of column is unrestrained than 20 mm

ts unsupported length 10382_ ¢ Convi:g:rically L'oaded Columr?s
(b) All column should be designed for a minimum eccentricity of ° € =016, the columniis truly axially loaded,
I B orD Py = 0.451, A_ +0.75f, Ag,
€min = Maximum S(())O | 30 This formula is also used for member subjected to combinéd axial load
mm and bi-axial bending and also used when e > 0.05D.
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Isclated Footings

~ootings are structural elements that transfer loads coming from the
superstructure to the earth. If these loads are to be properly transmitted,
foundations must provide adeqguate safety against stiaing and

overturning.

Theoretically speaking, isolated footings must be designed for both
axial load and moment but practically isolated footings are designed

only for axial loads.

Foundations may be broadly classified under two heads: shallow
foundation and deep foundation. |
According to Terzaghi, a foundation is shallow if its depth Is equal to or
less than it width. In the case of deep foundation, the depth is greater

;

|

E
than the width. Apart from deep strip, rectangular or square foundations, f
other common forms of deep foundations are; pier foundations, pile 5
E:

|

|
i
E_:
5
8

foundation and well foundation. The shallow foundations are of the
following types: Spread footing, strap footing, combined tfooting and

mat or-raft footing.

Spread footings: A spread footing or simple footing, is a type of shallow
foundation used to transmit the load of an isolated column, or that ofa }
wall, on the subsoil. In the case of wall, the footing is continuous while

in the case of column, it is isolated.

Combined footings: A spread footing which supports two or more |
columns is termed as a combined footing. Such a footing is provided §
when the individual footings are either very near to each other, or overtap.

Combined footings may either be rectangular or trapezoidal.

Strap or Cantilever footings: A strap footing consists of spread footings §
of two columns connected by a strap beam. The strap beam does not §
remain in contact with soil, and thus does not transfer any pressure 0 §

the soil.

Mat or Raft foundation: A mat or raft is a combined footing that covers
the entire area beneath a structure and supports all the walls and §
columns. When the available soil pressure is low or the building loads §

!VIADE EASY W RCC & Prestressed Concrete g

are heavy, thg use of spread footings would cover more than one-half of
the area and it may prove more economical to use mat or raft foundation.

Pile fqu_ndatio_n: Pile foundation is a deep foundation used where the
top soll is relatively weak. Piles transfer the load to a iower stratum of

gr_eater bearin_g cgpgcity, by way of end bearing, or to the intermediate
soll though skin friction. This is more common type of deep foundation

generally used for buildings where a group of piles transfer the load of
the super-structure to the sub-soil

Design of Isolated Footing

Rectangular footing
Given values

1. Load =P or P

2. Bearing capacit i —
3. Size of column g capacity of soil = q,

4. Grade of concrete and steel
Design Steps

(i) Size of foundation
- Load from column = P

Add weight of foundation (Pe) =0.1P

+ Iotalload P =1.1P (even for limit state methog use unfactored load
for calculation of area)

AP Total load

q, Bearing capacity of soil

Choose L and B such that A — L x B
Net soil pressure.

. Area of footing,

w = & _ Load from column without self weight
A Area provided
Net soil pressure over foundation /\[
W = PT ‘_ PF . E_ -
A o A _ GL VZ-SNNPZZ\N P RN RN
For L. SM ' ¢
Net soil pressure (w,) = 1.5P Pr/A
} A
HEH
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Similarly Shear force at y-y
Overhang,

(i) Check for bending moment
Critical section for bending moment is at the face of the column

Consider 1 m strip of foundation Y,
Bending about x-X R . X o y = W IXL, =W o
BE T P 2 2
, _B-b R f Find out maximum of V,_ and V
Y 2 i e l : ” 4
| | [ T: | V
. Maximum bending moment® ™~ i X Nominal shear stress | Ty = Bmg <T.
e :5 .
W (B — b)z _ w(B - b)* X 5 | where, 1, IS permissible ' T
2 2 8 f design shear strength of
. . 1 m I LR WL ; concrete in N/mm? as given I
Similarly bending about y-y E.- .
E | N 1S 456 : 2000
| = L —a yi “‘[ Footing should be always o+d | B
> 2 = L > safe in shear. No shear
reinforcement is provided.
| w (L-a) w(L-a)? X
Maximum BM | M, = —X = (v) Check for two-way
2 2 8 . Y
(Punching Shear). _‘ ] !

Critical section for punching
shear also called two-way shear is at distance ‘d/2’ from face of the

column all around.

~

Usew=w,=10w for Limit State Method.

M Net hing f
(ii) Depthrequired d= \ Qb Where, b = 1000 mm et PUnCINg 1oree
P.=P-w(a+d)(b+d)
M| ax | Net punching force
ForLsM | @ = Y Q Punching shear stress developed = cross-section area of resisting
section

Cross-section area = perimeter x depth
Now perimeter = 2[(a+ d) + (b+ d)], Depth =20

(iv) Check for single shear (one-way shear)
Critical section for one-way shear is at distance ‘d’ from the face of

the column. : 1m
Shear at x-X T = P-w (a+d) (b + d)
Overhang, UNEning > 2| (a+d)+(b+ d) ] x d ,
8.5 e X Above developed stress should be less than the permissible
L, = [( 5 ) — d] ""Lx_"'" punching shear stress
Imy Dermissible punching shear stress
Shear torce, T, = K, x0.16 .. T, = Ko x 0.25. it
- working stress method Limit state method
VK=W.1><LY=W B-D - d | ( J ) ( | | ) |
2 ; ks = (0.5 + B,) but not greater than 1, B, being the ratio of short side

to long side of the column
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(vi) Area of steel for longer span |
The area of steel A, of long bars parallel to direction L is calculated

as under
For M, moment
My Muy prestress Concrete is one in which there have been introduced. internal
Ast = e Aot = 0.87f,(d-0.42x,) stresses of such magnitude and distribution that stresses resulting from
- - y - - given external loading is counter balanced to a desired degree.
(Working stress method) (Limit state method) . | | —
This reinforcement is equally distributed over entire width B. {%’i In case of prestress concrete very high strain steel and high strain
N 4" concreteis used. )
Area of steel calculated above is for 1 m, width. Calculate this : Nt
area for width B and distribute uniformly over entire width ) f Analysis of prestress and Bending stress

e Assumptions
(i) Concrete is homogeneous elastic material.

(i) Within the range of working stresses, both concrete and steel
behave elastically and Hooke’s law is valid.

For total width B of footing, total area of steel = B x A

(vii) Area of steel for shorter span
The area of steel A, of short bars parallel to direction B is calculated

as under
A — M, _ M, (i) A trapsverse plane section before bending remain plain after
* o,jd 0.87f (d-0.42x,) | for 1m bending. - o
. e Following are the three concepts of analysis
-or total length L of footing, total area of steel = |_ x A (a) Stress concept analysis

This area is provided in two distinct band widths:
* [he central band B of width B, and

;
e [he endbands A, each of width E(L — -3)

The reinforcement in central band width = e X total reinforcement

----Long bars

(b) Strength concept analysis
(c) Load balancing method

Stress concept Method
Following are the two cases for analysis.

Case-(i) Beam provided with a concentric tendon:

INn short direction.

Where, B = ratio . @ equal spacing
of long sidetothe —
short side of th ; Short bars
| € or ihe - Iy F—T=—=4}-- in central
footing ; ! band B ang
o ' end bands A

The remainder of
reinforcement
shall be uniformly | BN Y A I __
distributed in

£1E?{.5_£‘.;;_;Eg_:E;§ 35- ks ";. ﬁ

Let, P prestressing force applied by the tendon. Due to -this
orestressing force, the direct compressive force induced Is given

outer portions of }‘E_(L_B;{* B/2 - B/2 .I*L(L—B;{ P
the footing. 2 2 DY, f,=—
- - - - A
sand A Pand B sand A f due to dead load & external loads, the bending moment at the
it - T - section is M. then the extreme siresses at the section due to bending
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moment aloneis f, =%

Hence final stress at the extreme top edge =

and stress at the extreme bottom edge =

NI >

P
A

Case-(ii): Beams with eccentrics tendon:

+

M
Z

P iEa

v 'I_.'-,"'-.}
'

4 -
2o

‘‘‘‘‘‘‘‘‘‘‘‘‘‘
-._'ﬂ.\:ﬁ-r-_p'h-.ll—-h . _— T B sy ey

P +P9_M_

A Z Z
Stress Due

to External
Bending
Moment

P

A

Cross Section - re
of Beam A 4
Direct Stress Pue Stress Due
Stress to Eccentricity  to External
Due to of the Bending
Prestress Prestress Moment
(i) Direct stresses due to prestressing force = +—
(i) Extreme stresses due to eccentricity of the prestressing force =
_Pe
/

(i) Extreme stresses due to bending moment =

Final stresses

P
Stress at top fibre = ° = I\ZA

P .
A Z

M
zZ’

o B 1mﬁ“‘ﬂﬁ*m=TMfmmw;Tmmwﬂwm e i P L N
' b
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P Pe M
ress at bottom fibre = —+ —< — —
ot bre = ++— >

By providing an eccentricity to the tendon, a hogging moment (P.e.)
s developed which will produce stresses, which will counteract the
stresses due to external bending moment.

Sstrength Concept method

Consider a beam of length 7 provided with a tendon at an eccentricity e.

suppose the beam is lying on the ground i.e. the beam is not subjected

to any external load. Hence there is no external bending moment on the
pbeam.

C-Force acting on Concrete

The following equal forces are existing. |
() The P-force which is the tension in the tendon.

(i)  The C-force which is the compressive force acting on the concrete.
otresses in concrete are produced entirely due to C-force.

In the absence of any external bending moment the C-force and P-
force act at the same level. Line of action of P-force is called the P-/ine.
The P-line is nothing but the tendon line itself. The line of action of the
C-tforce is called the C-line or Pressure line. Hence in the absence of
any external bending moment the P-/ine and the C-/ine coincide.
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| i bending moment M, thenthe C- Pcos6 P
Suppose the beam is subjected to a | " ; Direct stress on the section — _P
line will be shifted from the P-line by a distance ‘a’ called lever arm, | A A
/] A W ~2Psing)! w}?
8=-I|\5,A-=—6 Net BM, M-‘“—( y ) +—
“vtreme stresses in concrete are given by Where, w = dead load per unit length of the beam. Extreme fibre
] — P M
C . Cxeccentricityof C stress = — 4+
| = —A_ -+ 7 A Z

it may be realized that the profile of the tendon should follow the
shape of the bending moment diagram for the given external loads in
order it may offer considerable and effective U pward forces. For e.qg.,
T the loading on the beam is a uniformly distributed load. the tendon
may be provided along a parabolic profile.

Load Balancing Concept
° Prestressed Beam with Bent Tendon

LT e, e T T | il S T e T P T A S ) g e

K Tendon with Parabolic Profile

W#mmwwmm-ﬂ_!&:ﬁh L e o T ol .

Ry
..1__———--——-—--hl-—_——-————_-I-l—-_———._——l-——-——-—l-__—-——-_*-_—~i¢

<N I L D R R R B O+

W, per unit run
Loads Transmitted to Beam

| T2P sind

P

By providing bent tendons, the tendons will exert an upward pressure f | R . ST =
on the concrete beam and will therefore counter act a part of the / ST LL——
external downward loading. E W per unit run

. i ce | c
Considering the concrete as a free body. We find an upward for ,‘ Loads Transmitted to Tendon
2P sin @. o will b6 (W-2P sine) : Let 7 be the span of the beam and h be the dip of the cable.
The net downward load at the centre wi | - '- The cable will exert an upward udl = w_/m on the beam, but the cable
The axial longitudinal force provided by the tendon = P C0OSO = will be subjected to downward ud! of W_ per unit run.

[since 8 is small] Let V and H are vertical and horizontal components of P




¥

A Handbook on Civil Engineering B MADE EASY MADE EASY B RCC & Prestressed Concrete 12T
\ - W/
2
The cable is an absolutely flexible member, therefore BM at every . 1. ;?ﬁisngo‘ctef_lr;ztr:?s;
section of cable is zero. Hence BM at the centre of the cable is ; orocess due
friction.
2 o
W/ % i_ W . l _ ; Hh = o L — We! (a) Loss due to length m
2 2 C 2 4 8h ' eﬁ:eCt
Since dip of the cable is very small, we can make approximation (B) éﬁiif“e tocurvature —
cosoa=1and Pcosa="F c) Loss due to both | I P, (kx + pot) |
Now consider the beam, it is subjected to . length and curvature —
(i) External load w per unit length efiect Here
(i) Upward ud! transmitted by the cable = w_per unit length. | p s Prestressing force
Net UDL = w - w_ | atthe jacking end. _
| K = Wobble friction
; factor
W —W.1} 5 i
NetBM at the centre = ( C)l '* 15 % 10" per meter < K <
50 >-<10_4 permeter.
| | . oo = Cumulative anglein
P NetBM | radians through which
Extreme stresses = “A* > : tangent to the cable
| profile has turned
beéween any two points
under consideration.
Losses of Prestress o L = Coefficient of
The steel wires of a prestressed concrete member do not retain alt the frictionin curves
= 0.25t00.55.

oreliminary prestress. A certain amount of loss of prestress always

- takes place.
| osses may be classified as follows:

Loss of prestress at Y
the anchoring stage. I No Loss l T.ES'

2.

Here

Al = effective slip of the
wire.

! = Length of the
tendon

Es = Young's modulus

fortendon wires.

3.

L oss of prestress
occuring Sub-
sequently.
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(a) Ls;olfs; ?leirzs; cejuec;m:‘ E—(3E10'4)Es I | | 2 X ;.S 42) E. A Ha n d bOO k O n
OG4ol! + | - @ @ @ o
Civil Engineering

concrete. tare

—. = Youngs moduius for | Here

—5
tendon wire. T = Age of concrete at
the time of transier

of stress (in days).

(b) Loss of stress due to o.m £, o.m.f,
creep to concrete

m = Modularratio ;
Es/E ;
fo = QOriginal prestress
in concrete at the ...
level of steel.

(c) Loss of stress due to m.f, it all the bars are

elastic shortening of tensioned at
concrete. - | same time

Here Al for subseqguent
f. = Initial stress in T-Es tensioning

concrete at the
level of steel.
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o Types of Riveted and Bolted Joints
There are two types of riveted or bolted joints.

(i). Lap joint
* Thelap jointis thatin which the plates to be connected overlap

Structural Fasteners _

each other.
Riveting * The lap joint may have single-row, staggered or chain riveting.
The size of the rivet is the diameter of the shank. € P
(a) Gross dia of rivet or dia of hole T T
d=d+1.5mm | ford <25 mm Lap joint
(ii) Butt Joint
;7 ; . : : : -
and |d"=d+2.0mm | for d > 25 mm | * -The butt joint is that in which the plates to be connected butt

f against each other and the connection is made by providing a

where d = Nominal dia of rivet cover plate on one or both sides of joint.

d” = Gross dia of rivet or dia of hole.

4 N
lFor strength calculation effective diameter is taken into account.

This is based on the assumption that rivet filis the hole
completely. | |

(b) Unwins formuia

A = 6'05\/tmm ~where, d, . = dia of rivet in mm

L., = thickness of plate in mm.

Double-cover butt joint -
* The buttjoint may have a single row or staggered or chain riveting.

Bolted Joints

Bolts may be used in place of rivets for structure not subjected to
vibrations. The following types of bolts are used in structures:

(i) Black bolts

* Hexagonal black bolts are commonly used in steel works.
e Theyare made from tow or medium carbon steels.
e They are desighated as black bolts M x d x /

where d = diameter, and / = length of the bolts.

_"l

(i) Nominal diameter (d): The diameter of the shank of a
rivet before riveting, is called the nominal diameter. For a bolt,
the diameter of the unthreaded portion of the shank is called
Its nominal diameter.

(i) Effective diameter or gross diameter: The effective or gross
diameter of a rivet is equal to the diameter of the hole it fills after
riveting. For a bolt, the nominal diameter is same as the gross
diameter.

(iii) Net area: The net area of a bolt is the area at the root of the thread.

(iv) Gauge: A row of rivets paraliel to the direction of force is called a
gauge line. The normal distance between two adjacent gauge lineis |
called the gauge.

Rewembor

(ii) Precision and Semi Precision Bolts -
e Jhey are also known as close tolerance bolts.
® Sometimes to prevent excessive slip, close tolerance bolts
are provided in holes of 0.15 to 0.2 mm oversize. This may
cause difficulty in alignment and delay in the progress of work.
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" (v) Edge distance: itis the distance between the edge of a member or s Shearing strength of joint is simply the sum of shearing strength
cover plate and the centre of the nearest rivet hole. of individual rivets. |
(vi) Proof load : Initial tension in HSFG bolts is known as proof load of Bearing strength of joint is simply sum of bearing strength of
the bolt. | k individual rivets in the joints. | )

(vii)Slip Factor: Coefficient of friction in friction type joint is known as

slip factor.
(viii)Pitch : The distance between centres of any two adjacent rivets i — Minimum {P,,P,,P,} where, P_ = Strength of joint in shear

Efficielicy of Joints (1)

parallel to the direction of force is called pitch. Diagonal pitch is the T = 5 — P, = Strength of joint in bearing
distance between centres of any two adjacent rivets in the diagonal P, = Strength of joint in tearing

direction is called diagonal pitch. P = Strength of plate in tearing when no deduction has been
made for rivet holes

Pitch
el = p.t.1,
® 000 >
: . — mini s
o ® 000 P e Rivetvalue |Rv = mlnlmum{
®ooeo i.e |
Edge }_..E. ® i ' _Force
distance !' t e Number of rivet, |1 = R
4 —»] |l [ Y
End distance -
..._ ) ¢ 15800 : 1984 Recommendation
Failure of Riveted/Bolted Joints Maxlmum permlss1ble stress |n rwets & bolts
(i) By Tearing of Plate between rivets . iy
Sirength of tearing per pitch length ' ' (r) E&Eérdfioén T
P, — (p - d’)t 1, (a)SbOpI:IVETS 100 | 100 300 |
(b)Fieldrivets a0 0 | 270
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