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Preface

The exercises of this textbook, fully worked, can be a useful complement to the
Lessons and are suitable to accustom the students to perform the calculations
applied to situations of technical interest. In some exercises, we propose two dif-
ferent methods of solving, to highlight that the level of complexity of the calcu-
lations is often related to the choice of method. In general, we have preferred the
simplest method. Chapters 1 and 2 deal with exercises on forces on flat and curved
surfaces and humps. Chapter 3 is entirely dedicated to floating bodies. Chapter 4
deals with some classic exercises that require the application of balance of linear
and angular momentum, in inertial and non-inertial references. Chapter 5 analyzes
pipeline systems, with particular applications to industrial plants in Chap. 6.
Chapter 7 deals with hydraulic systems with machines (pumps and turbines). This is
followed by Chap. 8, dedicated to transient phenomena in closed pipelines. Chapter
9 deals with flows in open channels. The Appendices contain some data and for-
mulas of practical interest.

The book is addressed to undergraduates and graduates in Engineering Sciences.
In many exercises, some parameters are given in terms of Cu and Cpu, that are, for
example, the last and second-last digit of the registration number. This diversifies
the calculations of the students during the written tests.

Parma, Italy Sandro Longo
Maria Giovanna TandaMarch 2020

Luca Chiapponi
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Introduction

Fluid Mechanics deals with the behaviour offluid under the action of forces, at rest or
in motion. Fluids are classified into liquids, gases and vapours. Liquids are difficult to
compress and generally the range of pressure is limited so as to consider them as
incompressible, although in some practical applications their compressibility is
invoked to explain the behaviour of elastic waves in water hammer. Gases can be
easily compressed, although the change of pressure duringflow is often somodest that
no significant change of volume takes place, and the motion is defined isochoric: in
isochoric flow, gases behave like liquids. Vapours are gases which can be condensed
by increasing the pressure without lowering temperature. Hence, in isothermal or
almost isothermal flows, vapours can afford to phase transition with the coexistence of
a liquid and a gas phase. Their analysis belongs to multi-phase systems.

Hydraulics deals with water, although concepts derived for water are broadly
adopted for the Fluid Dynamics of liquids similar to water, like oil and kerosene.

In a fluid at rest the internal stresses reduce to pressure, a normal force per unit
surface acting normally to any surface, and the shear stress is null. In a fluid in
motion the internal stresses include also shear stress, but no torque per unit surface
is considered. A special category of fluids, called polar fluids, is described by
including also torque per unit surface. A polar fluid is capable of transmitting stress
couples and being subjected to body torques.

Fluids are continua and differ from solid since in solids a stress determines a
strain proportional (linearly or not) to the stress, whereas in fluids a stress deter-
mines a rate of strain proportional (linearly or not) to the stress. Linear propor-
tionality between strain rate and stress is a characteristic of Newtonian fluids.
Non-Newtonian fluids show a more complex relation between strain rate and stress,
in some cases involving also stress varying with strain and in time.

The fundamental equations adopted for solving problems are mass conservation,
linear momentum and angular momentum balances, energy conservation. These
equations are the consequence of some principles (e.g. linear momentum balance
equation is derived from the hypothesis of homogeneity of space), and require
boundary and initial conditions. In several real cases, some material properties are
necessary to model, e.g. the reaction of a fluid to a stress state or the heat flux due to
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an imposed thermal field. These are described by constitutive equations, mechanical
and thermal, which contain some material parameters, like viscosity, which is
evaluated through experiments. The constitutive equations must have a
non-dimensional formulation, satisfy coordinate indifference (have a tensorial for-
mulation), frame-reference indifference (material indifference) and satisfy the sec-
ond principle of thermodynamics.

SI Units and Dimensions

The Système International d’Unités (SI) has been introduced with the aim of a
common language for units, although in several countries former systems are still
used. The SI is based on seven fundamental quantities: mass, length, time, electric
current, thermodynamic temperature, amount of substance and luminous intensity.
Fundamental quantities are independent and are sufficient to describe all other
quantities, defined as derived quantities. The fundamental units are listed in Table 1.

Table 1 Fundamental quantities and units of measurements in the SI

Fundamental quantities Symbol Denomination of the unit Symbol of the unit

Length L metre m

Mass M kilogram kg

Time T second s

Thermodynamic temperature H kelvin K

Electric current I ampere A

Luminous intensity C candela cd

Amount of substance mol mole mol

However, recently (in 2019), the fundamental units in SI have been defined in
terms of seven dimensional constants. The conversions have been introduced once
the required accuracy in measuring these constants has been achieved. Although the
seven dimensional constants could be adopted as fundamental, the past seven fun-
damental units are still in use, but they are now defined in terms of (1) the caesium
hyperfine frequency, DmCs; (2) the speed of light in vacuum, c; (3) the Planck con-
stant, h; (4) elementary charge, e; (5) Boltzmann constant, k; (6) Avogadro constant,
NA, and (7) the luminous efficacy of a defined visible radiation, Kcd .

For instance, the caesium-133 hyperfine frequency is equal to

DmCs ¼ Dmð133CsÞhfs ¼ 9 192 631 770 Hz;

and the time unit is expressed as
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1 s ¼ 9 192 631 770
DmCs

:

We could say that the time of rotation of the Earth about its axis is
0:79 � 1015Dm�1

Cs , but it is a lot more in everyday life to say that it is 86 400 s.
Figure 1 shows the logo used to disseminate the new way by the Bureau

International des Poids et Mesures (BIPM). The BIPM is an international orga-
nization established by the Metre Convention, through which Member States act
together on matters related to measurement science and measurement standards.

Units are necessary to express the size of a measured quantity with respect to a
known quantity: if a man is 1.75 m tall, we are simply saying that the ratio between
his height and the fundamental unit (metre) is 1.75. The use of a different system of
units can modify the number, but not the intrinsic height of the man, in the sense
that the same man is defined as 5 3/4 inches tall in the Imperial System, not being
different from the 1.75 m tall man in SI units.

In order to avoid misunderstanding, it is convenient to think in terms of mass,
length, time, force, etc., instead of thinking in terms of the units. The use of
dimensions instead of the units renders the analysis independent on the systems
used, and is helpful in checking the correctness of the equations. Thus

velocity ¼ distance
time

;

Fig. 1 Logo of the SI con-
stants (internal ring), in force
since 20 May 2019 to define
the fundamental units (exter-
nal ring)
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hence

dimensions of velocity ¼ dimension of distance
dimension of time

¼ L
T
:

In Fluid Mechanics and Hydraulics, all quantities are a monomial combination
of mass M, length L, time T and temperature H. This last dimension is typical of
Thermofluidynamics. In addition to the fundamental units, there are also some
derived units with a proper name and symbols. The most common derived units in
Fluid Mechanics and Hydraulics are listed in Table 2.

Table 2 Some derived units with name

Quantity Name Symbol Expression in derived
SI units

Expression in
fundamental SI units

Frequency hertz Hz s�1

Force newton N m kg s�2

Pressure pascal Pa N=m2 m�1 kg s�2

Energy, work joule J N m m2 kg s�2

Power,
energy flux

watt W J=s m2 kg s�3

A necessary but not sufficient condition for the correctness of the equations is the
dimensional homogeneity. For instance, the head is the sum of three terms, rep-
resentative of potential, pressure and kinetic energy, hence in its expression
H ¼ zþ p=cþV2=2g the dimension of all terms is a length (energy per unit
weight). Table 3 lists the most common and frequently used dimensions for the
quantities encountered in Fluid Dynamics and Hydraulics.

The dimensions are helpful in evaluating the coefficient of conversions between
different systems (which are still in use). In Hydraulics, some classical formulas,
where some coefficients are dimensional, are still common. The Chézy formula for
discharge in a channel, Q ¼ vX

ffiffiffiffiffiffiffiffiffi

Rhib
p

, adopts different formulations for the
dimensional coefficient v, which in SI units is defined, e.g. according to Bazin as
v ¼ 87=ð1þ c=

ffiffiffiffiffi

Rh
p Þ, where c is the Bazin coefficient of roughness which must be

expressed in m1=2.

The Scientific Notation with Physical Measurements

The expression of measurements (a ratio between the measured variable and the
unit of measurement for that variable) is a way to communicate also the uncertainty
of the value. The number of significant figures in a measurement is related to the
overall uncertainty of the entire procedure: the more accurate is the procedure to
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obtain a measure, the greater the number of significant figures it can report. Zeros
do not contribute to the number of significant figures, unless they are between
non-zero numbers or unless they are underlined. 0:000 123 and 452, and 121.0
have three significant figures, but 0:001 204 and 1201, and 303.1, and 862:000 0
have four significant figures. To avoid ambiguities, it is preferable to use the
scientific notation: the number 121.0, with three significant figures, can be written
as 1:21 � 102, 862:000 0 can be written as 8:620 � 102 and 0:001 204 can be written
as 1:204 � 10�3. The number before the power of ten should be preferably between
1 and 10 and should contain all the significant figures, without the need to underline
zeros which are significant.

In combining values of measurements or data with different uncertainties, (i) for
multiplication and division the number of significant digits in the result can be no
greater than the number of significant digits in the least-precise measured value;
(ii) for addition and subtractions the result should have the same number places
(tens place, ones place, tenths place, etc.) as the least-precise starting value: if you
have 1.012 kg of salt (uncertainty of 1 thousandths of kilogram), and then you buy
5.4 kg of salt (uncertainty 0.1 kg), you have 1.012 + 5.4 = 6.4 kg of salt.

Table 3 Dimensions of quantities commonly used in Fluid Mechanics and Hydraulics

Quantity Dimensions

Length all linear measurements L

Area length � length L2

Volume area � length L3

First moment of area area � length L3

Second moment of area area � length2 L4

Angle arc/radius 1

Strain a ratio 1

Head energy/weight L

Energy gradient head/length 1

Time T

Velocity distance/time LT�1

Angular velocity angle/time T�1

Acceleration velocity/time LT�2

Angular acceleration angular velocity/time T�2

Volume discharged volume/time L3T�1

Kinematic viscosity dynamic viscosity/mass density L2T�1

Mass M

Force mass � acceleration MLT�2

Weight force MLT�2

Mass density mass/volume ML�3

Specific weight weight/volume ML�2T�2

Mass discharged mass/time MT�3

Pressure (intensity) force/area ML�1T�2

(continued)
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Table 4 lists a series of number with different numbers of figures and notations.
Units derived by means of the basic units must have a numerical unit coefficient and
the multiples and submultiples of the units of measurement must be expressed as
integer exponent powers of ten (Table 5).

Writing Rules

In technical writing, in order to make it easier to understand and to avoid misin-
terpretation it is advisable to follow some basic rules.

Table 3 (continued)

Quantity Dimensions

Shear stress force/area ML�1T�2

Elastic modulus stress/strain ML�1T�2

Bulk modulus stress/strain ML�1T�2

Impulse force � time MLT�1

Momentum mass � velocity MLT�1

Work, energy force � distance ML2T�2

Power work/time ML2T�3

Moment of force force � distance ML2T�2

Dynamic viscosity shear stress/velocity gradient ML�1T�1

Surface tension energy/area MT�2

Table 4 Notations for significant figures

Number Significant
Figures

3.651 4 There are no zeros and all numbers are significant

1010.56 6 The two zeros are significant here because they occur between
other significant figures

0:219 8 4 The first zero is only a placeholder for the decimal point and
is not significant

0:000 044 2 3 The first five zeros are placeholders needed to report the data
to the hundred-thousandths place

33.100 3 With no underlines or scientific notation, the last two zeros
are placeholders and are not significant

11 891 000 7 The two underlined zeros are significant, while the last zero is
not, as it is not underlined

5:457 � 1013 4 In scientific notation, all numbers reported before the power
of ten are significant

(continued)
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Units of measurement expressed in symbolic form always begin with a lowercase
letter, unless they are derived from a name of person. For example, 1 s and not 1 S,
12 A (from the name of André-Marie Ampère) and not 12 a. In addition, a space
between the number and the symbol (23 m and not 23m) is always required and
symbols should never be indicated in italics or bold: 1 s and not 1 s or 1 s (the use of
units in bold in some results of the exercises of the present book is an exception
adopted to highlight the relevant values).

Table 5 Multiples and submultiples in SI

Coefficient Name Symbol Coefficient Name Symbol

101 deca da 10�1 deci d

102 etto h 10�2 centi c

103 kilo k 10�3 milli m

106 mega M 10�6 micro l

109 giga G 10�9 nano n

1012 tera T 10�12 pico p

1015 peta P 10�15 femto f

1018 exa E 10�18 atto a

1021 zetta Z 10�21 zepto z

1024 yotta Y 10�24 yocto y

Table 4 (continued)

Number Significant
Figures

6:520 � 10�23 4 In scientific notation, all numbers reported before the power
of ten, including zeros, are significant

0:320 � 10�2 3 In scientific notation, all numbers reported before the power
of ten, including zeros (but not before decimal point), are
significant

If you need to write the unit of measure in full in the text, you will always use
lowercase characters, even if the unit is derived from a person name: ampère and
not Ampère, newton and not Newton.

A unit of measure symbol consisting of the product of two or more units can be
written either by interposing a point or by leaving a space: 13:2 N �m or 13:2 N m.

In the case of the quotient between two units of measurement you can write, for
example, 3:8 m=s or 3:8 ms�1 or 3:8 m � s�1 or 3:8 m

s . The second form is the
advisable one.

For multiples or submultiples prefixes, only those greater than 106 are shown
with a capital letter; therefore, 1.5 MJ and not 1.5 mJ, 22 kg and not 22 Kg. Notice,
in this regard, that the prefix ‘m’ (milli-) indicates 10�3, while the prefix ‘M’
(Mega-) indicates 106. Again, the multiple or submultiple symbol is placed next to
the unit of measure symbol, without space: 13:2 mW and not 13:2 m W.
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In the scientific notation it is necessary that the units are the basic ones: write,
then, 3:2 � 105 m and not 3:2 � 102 km. In the notation with the prefixes it is also
advisable to choose the prefix so that the number is between 0:1 and 1000, then
7:8 MJ and not 7800 kJ. Double prefixes are not allowed, so 1:2 lF (microfarad)
and not 1:2 mmF (millimillifarad).

When writing numbers containing more than four digits in sequence, a spacing is
appropriate, grouping the digits in groups of three to the left and to the right of the
decimal point; therefore, 12 000 and not 12000, then 13:224 32 and not 13:22432.

Notice, finally, that the International Organization for Standardization
(ISO) suggests the comma as the decimal separator, while, in English-speaking
countries, the comma is the separator of the thousands and the point is the decimal
separator. Therefore, to avoid confusion between the SI notation and the
Anglo-Saxon notation, it is not advisable to use a point or comma to separate the
thousands. Since 2003, the use of the decimal point is also allowed in English texts.
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Chapter 1
Hydrostatic Forces on Submerged Plane
Surfaces

A fluid at rest in contact with a surface exerts only a normal force per unit area,
called pressure. The pressure is isotropic (at a given point it is the same regardless
of the orientation of the infinitesimal surface containing the point and on which it is
evaluated) and once the pressure field has been determined, it is possible to calculate
the total force acting on a surface of finite dimensions. For planar surfaces the analysis
is simplified because the direction of the hydrostatic force is normal to the surface,
and the force always enters the surface. The magnitude of the force can be calculated
by integration and, only for homogeneous fluids, also as a product of the pressure in
the centroid of the surface and the surface area. The force is applied to the pressure
centre, which generally differs from the centroid of the surface, and which can be
calculated by imposing the equivalence of the moments of the force and the vectorial
sum of the elementary moments of the elementary forces. Pressure centre is always
below the centroid, with respect to the water line, except for horizontal surfaces.

In this chapter there are some exercises for calculating the pressure distributions,
mainly referring to U-tube manometers. Then forces on surfaces in homogeneous
or stratified fluid are calculated, possibly with the calculation of the equilibrium
condition for isostatic system. The relevant geometric properties for some common
shapes of plane surfaces are listed in the Appendix.

Exercise 1.1 Consider a mercury (Hg) U-tube manometer used to measure the pres-
sure of a liquid in a sphere, see Fig. 1.1.

– Calculate the pressure in A, if h1 = (20 + Cu) cm and h2 = (10 + Cpu) cm.

Assume γw = 9806Nm−3, γHg/γw = 13.6.

Solution The pressure in B, in the left limb, is

Cu and Cpu , that are two integer numbers between 0 and 9, for example, the last and second-last
digit of the registration number.

© Springer Nature Switzerland AG 2021
S. Longo et al., Problems in Hydraulics and Fluid Mechanics, Springer Tracts
in Civil Engineering, https://doi.org/10.1007/978-3-030-51387-0_1
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2 1 Hydrostatic Forces on Submerged Plane Surfaces

Fig. 1.1 Mercury U-tube
manometer

mercurywater h1

A

h2

B C

D

pB ≡ pC = pD + γHg(h1 + h2),

where C, in the right limb, is at the same level of B. The pressure in A is

pA = pB − γwh1.

Hence,
pA = pD + γHg(h1 + h2) − γwh1.

For Cu = Cpu = 0 it results h1 = 20cm, h2 = 10cm. Assuming that in D the
pressure equals the atmospheric pressure (the zero is the value of the average atmo-
spheric relative pressure at the sea level), results

∴ pA = pD + γHg(h1 + h2) − γwh1 =
0 + 13.6 9806 (0.2 + 0.1) − 9806 0.2 = 38050 Pa (gage).

Exercise 1.2 Consider a differential inverted U-tube manometer used to measure
the difference of pressure between two taps A and B, see Fig. 1.2.

– Calculate the difference of pressure pA − pB if the valve in C is open and the tube
is at contact with the atmosphere.

– Calculate the new values of h1 and h2 if the valve in C is open and the tube is at
contact with an ambient where pC = −102 Pa.

Assume γw = 9806Nm−3, h1 = (15 + Cu) cm and h2 = (10 + Cpu) cm.

Solution The pressure in A, in the left limb, is

pA = pD + γwh1,
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Fig. 1.2 Differential
inverted U-tube manometer

Valve

h1

h2

air

A B

C

D

E

and the pressure in B is
pB = pE + γwh2.

Since pD = pE = pC , results

pA − pB = γw(h1 − h2).

If the pressure in C is reduced, the difference of levels between D and E does
not change, and both levels change of pC/γw, hence h′

1 = h1 − pC/γw and h′
2 =

h2 − pC/γw. Decreasing/increasing pC , both levels move up/down. The pressure in
C can be used to fit the two menisci D and E within the length of the U-tube.

For Cu = Cpu = 0 it results h1 = 15cm, h2 = 10cm.
If pC = 0 (gage), then

∴ pA − pB = γw(h1 − h2) = 9806 (0.15 − 0.10) = 490Pa.

If pC = −102 Pa,

∴ h′
1 = h1 − pC/γw = 0.15 + 102

9806
= 16cm,

∴ h′
2 = h2 + pC/γw = 0.10 + 102

9806
= 11cm,

and
pA − pB = γw(h′

1 − h′
2) = 9806 (0.16 − 0.11) = 490Pa.
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Exercise 1.3 Consider a differential U-tube manometer with enlarged ends and
water and oil in the left and right limb, respectively, see Fig. 1.3. If p1 = p2 the
levels in the two ends are different. In a second step, impose p′

1 = (30 + Cpu)Pa
and p2 = 0 (gage), see Fig. 1.4.

– Calculate the new level of the interface between water and oil.

Assume γw = 9806Nm−3, so ≡ γo/γw = 0.95, A1 = 2A2 = 50a.

Solution If p1 = p2 results also γwh1 = γoh2. Imposing a new value of pressure
p′
1 on the left end, requires a new equilibrium condition. If p′

1 > p1 the air-water
interface, at the left end, shifts downwards by a Δ1 distance; the water-oil and oil-air
interfaces, at the right end, shift upwards. The pressure in A on the left limb is

pA = p′
1 + γw(h1 − Δ1),

and, on the right limb,

pA = p2 + γo(h2 − δ + Δ2) + γwδ.

Fig. 1.3 Differential U-tube
manometer with enlarged
ends and p1 = p2 = 0

p1

p2

water

h1

h2

oil

area A1 area A2

area a
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Fig. 1.4 Differential U-tube
manometer with enlarged
ends and p′

1 > p2

water

h1

h2

oil
p1

p2

area A1 area A2

area a

2

1

A A

B

Hence
p′
1 − p2 = γo(h2 − δ + Δ2) + γwδ − γw(h1 − Δ1),

or
p′
1 − p2 = γo(−δ + Δ2) + γwδ + γwΔ1,

since γwh1 = γoh2 from the initial condition. Mass conservation also requires that
Δ1A1 = Δ2A2 = δa. In terms of δ it results

δ = p′
1 − p2

γw

[(
1 + a

A1

)
− s0

(
1 − a

A2

)] ,

where s0 = γo/γw.

For Cu = Cpu = 0 it results p′
1 = 30 Pa,

∴ δ = p′
1 − p2

γw

[(
1 + a

A1

)
− s0

(
1 − a

A2

)] =

30

9806

[(
1 + 1

50

)
− 0.95

(
1 − 1

25

)] = 2.83 cm.
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Notice that a differential pressure of 30Pa is equivalent to a head of 30/9806 ≈
0.3 cm of water. The gain due to the enlarged ends and to the use of a second lighter
fluid is 2.83/0.3 ≈ 9.

Exercise 1.4 Consider the inclined manometer in Fig. 1.5, realized with a circu-
lar cross-section pipe with diameter d = 0.5 cm. The manometer is connected to
a circular cross-section tank with diameter D = 20 cm. The dashed horizontal line
represents the zero for pa = pb.

– Calculate the reading on the inclined scale if pa − pb = 100 Pa.

Assume γm = 8200Nm−3, α = 10◦.

Solution Increasing pa with respect to pb, forces the manometric fluid to rise in
the inclined pipe. As a consequence, the level in the left tank drops with a reduction
equal to ha . The balance equation is

pa = pb + γm(hb + ha) ≡ pb + γm(h′
b sin α + ha),

where h′
b is the reading on the inclined scale.

Mass conservation requires that

πD2

4
ha = πd2

4
h′
b → ha = h′

b

d2

D2
,

hence

pa = pb + γmh
′
b

(
sin α + d2

D2

)
→ h′

b = pa − pb
γm

(
sin α + d2/D2

) .

Inserting the numerical values, yields

∴ h′
b = pa − pb

γm
(
sin α + d2/D2

) = 100

8200
(
sin 10◦ + 0.52/202

) = 7cm.

m

pa

pb

0

hbha

0 h'b

zero
D d

Fig. 1.5 Inclined manometer
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Notice that the vertical reading is hb = h′
b sin α = 7 sin 10◦ = 1.2 cm. The gain

due to the inclination is 7/1.2 ≈ 6. If D � d, the reading on the inclined scale
is h′

b ≈ (pa − pb)/(γm sin α) and the gain could be increased with a reduction of
α. However, meniscus errors become dominant for very small angles. In practical
applications the angle is seldom less than 10◦.

Exercise 1.5 Consider the differential manometer with multiple U-tubes in Fig. 1.6.
The manometric fluid is mercury, all other limbs are filled with air.

– Calculate the sum of the readings Δh1 and Δh2 if pa − pb = 15 000 Pa.

Assume γm = 133 400Nm−3.

Solution The balance equation is

pA = pB + γmΔh1,

and
pC = pD + γmΔh2.

Neglecting the specific weight of the air, yields

pA = pb, pB = pC , pD = pb,

Fig. 1.6 Multiple U-tubes
manometer

h2

h1

pa

m

pb

m

A

B

C

D
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hence
pa − pb = γm(Δh1 + Δh2) → (Δh1 + Δh2) = pa − pb

γm
.

Inserting the numerical values, yields

∴ (Δh1 + Δh2) = pa − pb
γm

= 15 000

133 400
= 11.2 cm.

With this pressure gauge it is possible to measure large differences in pressure,
appropriately increasing the number of limbs: the air simply transfers the pressure
between the menisci. However, the accuracy of the measurement is reduced as it is
necessary to read separately the difference in level for each branch and to add them
up, with uncertainties that add up.

Exercise 1.6 An isosceles triangle-shaped plate is pivoted on the horizontal top side,
see Fig. 1.7. The tank contains fluid concrete, with specific gravity s = 2.4.

– Calculate the force on the plate and the point of application of the force.
– Calculate the minimum horizontal force, orthogonal to the plate, applied in D,
required to prevent the plate from rotating and opening.

axis of the hinges

D

b = 0.3 m

a
= 

0.
4 

m

c
= 

0.
25

 m

Fig. 1.7 Schematic of the triangular plate
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x

z

D

G

C

b = 0.3 m

a
= 

0.
4 

m

c
= 

0.
25

 m
b'

zG
zC

axis of the hinges

Fig. 1.8 Coordinate system adopted for the calculation

Solution The magnitude of the force is equal to the product of the pressure in
the centroid of the submerged surface by the area of the submerged surface. In the
coordinate system shown in Fig. 1.8, the position of the centroid is zG = c/3. The
force is

∴ F = γc
c

3

b′c
2

= 2.4 9806
0.25

3

0.1875 0.25

2
= 46N,

where b′ is the base of the triangle at z = 0, calculated with similarity of triangles:

b′ = bc

a
= 0.3 0.25

0.4
= 0.1875m.

The point of application of the force (center of pressure) has a coordinate equal to:

∴ zC = Ixx
Sx

=
b′c3

12
b′c2

6

= c

2
= 0.125m,

where Sx and Ixx are the first moment of area and the second moment of area (area
moment of inertia) of the submerged surface with respect to the x−axis, respectively.
The values of the two moments of area are given in Appendix.



10 1 Hydrostatic Forces on Submerged Plane Surfaces

By equating the moments about the axis of the hinges, yields:

∴ R = F (a − c/2)

a
= 46 (0.4 − 0.125)

0.4
= 31.625N.

Exercise 1.7 The tank in Fig. 1.9 contains kerosene at the top, watermixedwithmud
at the bottom. The tank is closed by a flat sluice gate AB, pivoted in A, with a unitary
depth and a height of H = (2 + Cu/2)m. The specific weight of the kerosene is
equal to γker = 0.81 γw, the specific weight of the water mixed with mud increases
linearly towards the bottom, according to the following relation:

γ
(
z′) = γw + (1 + Cu)

γw

49

z′

h2
.

The fluids depths are equal to h1 = (2 + Cpu/2)m, h2 = (8 + Cpu/2)m.

– Calculate the force exerted on the sluice gate.
– Calculate the position of the centre of pressure.

Assume γw = 9800Nm−3.

Fig. 1.9 Schematic of the
tank containing stratified
fluids

h2

H

z

h1 z
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Solution The pressure in the kerosene, for 0 < z < h1, varies linearly and is equal
to p(z) = γker z ≡ 0.81 γwz. At the interface between kerosene and water mixed
with mud, the pressure is equal to:

p(h1) = γker h1.

The pressure in the water mixed withmud, for h1 < z < h1 + h2, i.e. between z′ = 0
and z′ = h2, is calculated by using the indefinite form of hydrostatic equation written
in the z′ coordinate system:

dp

dz′ = γ
(
z′) ≡ γw + (1 + Cu)

γw

49

z′

h2
→

p(z′)∫
p(0)

dp =
z′∫

0

[
γw + (1 + Cu)

γw

49

z′

h2

]
dz′.

Hence

p
(
z′) = p(0) + γwz

′ + (1 + Cu)
γw

98

z′2

h2
= γker h1 + γwz

′ + (1 + Cu)
γw

98

z′2

h2
.

The force exerted on the sluice gate is calculated by integrating the elementary forces
associated with the pressure in the fluid on the surface of the gate, of unitary depth:

F =
h2∫

h2−H

[
γker h1 + γwz

′ + (1 + Cu)
γw

98

z′2

h2

]
dz′

= γker h1z
′∣∣h2
h2−H + γw

z′2

2

∣∣∣∣
h2

h2−H

+ (1 + Cu)
γw

294

z′3

h2

∣∣∣∣
h2

h2−H

= γker h1H + γw
h22 − (h2 − H)2

2
+ (1 + Cu)

γw

294

[
h32
h2

− (h2 − H)3

h2

]
.

The centre of pressure is calculated by imposing that the moment about an axis (for
example, the trace of the interface between the two liquids) due to the distribution
of elementary forces, equates the moment of the resultant of these forces calculated
about the same axis:

F z′
C =

h2∫
h2−H

[
γker h1 + γwz

′ + (1 + Cu)
γw

98

z′2

h2

]
z′ dz′ →
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z′
C =

[
γker h1

z′2

2
+ γw

z′3

3
+ (1 + Cu)

γw

392

z′4

h2

]∣∣∣∣
h2

h2−H

F

=
γker h1

h2
2

2
+ γw

h2
3

3
+ (1 + Cu)

γw

392

h2
4

h2
F

−
γker h1

(h2 − H)2

2
+ γw

(h2 − H)3

3
+ (1 + Cu)

γw

392

(h2 − H)4

h2
F

.

For Cu = Cpu = 0 it results γ = 9800 + 200(z′/h)Nm−3, h1 = 2m, h2 = 8m,
H = 2m.

p
(
z′) = 15 876 + 9800z′ + 100

z′2

h2
Pa (z′, h2 in metres).

F = γker h1H + γw
h2

2 − (h2 − H)2

2
+ γw

294

[
h2

3

h2
− (h2 − H)3

h2

]
→

∴ F = 0.81 9800 2 2 + 9800
82 − (8 − 2)2

2

+ 9800

294

[
83

8
− (8 − 2)3

8

]
= 170.2 kN.

z′
C =

γker h1
h2

2

2
+ γw

h2
3

3
+ γw

392

h2
4

h2
F

−
γker h1

(h2 − H)2

2
+ γw

(h2 − H)3

3
+ γw

392

(h2 − H)4

h2
F

→

∴ z′
C =

0.81 9800 2
82

2
+ 9800

83

3
+ 9800

392

84

8
170 200

−
0.81 9800 2

(8 − 2)2

2
+ 9800

(8 − 2)3

3
+ 9800

392

(8 − 2)4

8
170 200

= 7.05 m.
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Fig. 1.10 Pressure diagram

h2

zh1

z C

p z( )

F H

z

Figure1.10 shows the pressure diagram along the vertical. In this case, if the fluid
had been of uniform density, the centre of pressure would have been closer to the
free surface.

Exercise 1.8 The tank in Fig. 1.11 is separated in two tanks by an inclined septum
with a circular opening of diameter D = (0.50 + Cpu/20)m closed by a sluice gate.
The differential manometer shows a difference in level of Δh = (0.10 + Cu/10)m.
The manometric fluid is mercury (Hg).

– Calculate the direction and magnitude of the force exerted on the circular gate.
– Calculate the centre of pressure.

Assume γw = 9800Nm−3, γHg/γw = 13.6.

Solution The pressure head for the left tank is higher than the pressure head for
the right tank (Fig. 1.12), with a difference equal to

δ =
(
γHg − γw

)
Δh

γw
.

The force exerted on the gate by the fluid in the left tank is orthogonal to the plane
of the gate and is equal to
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Fig. 1.11 Schematic of the
tank

D

h

mercury

waterwater

Fl = γwzGlx
πD2

4
,

and the force exerted by the fluid in the right tank, also orthogonal to the plane of
the gate, is equal to

Fr = γwz
′
Gr x

πD2

4
,

where zGlx and z′
Gr x are the coordinates of the centroid of the gate with respect to

the piezometric level of the fluid in the left and in the right tank, respectively. The
total force is

F = Fl − Fr = γw
(
zGlx − z′

Gr x

) πD2

4
= γwδ

πD2

4
= (

γHg − γw
)
Δh

πD2

4
,

is orthogonal to the circular gate and is applied in the centroid, F being due to the
action of a uniform pressure originating from the difference between two trapezoidal
pressure diagrams with equal inclination (see Fig. 1.12). Therefore, the centre of
pressure and the centroid coincide.

For Cu = Cpu = 0 it results D = 0.50m, h = 0.10m and

∴ F = (
γHg − γw

)
Δh

πD2

4

= (13.6 − 1) 9800 0.10
π 0.52

4
= 2424N.
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D

h

mercury

water

zGrx

zGlx

piezometric level for the left tank

piezometric level for the right tank

G

w

Hg w h

F p

water

Fig. 1.12 Piezometric levels (gage pressure) for the left and the right tanks, respectively, and
pressure diagram

Exercise 1.9 In the system in Fig. 1.13 the sluice gate, of depth L = (2 + Cu/2)m,
is pivoted in A, at a height of a = (4 + Cpu)m from the horizontal flat bottom.
The two liquids have specific weight γ1 = 10 000Nm−3 and γ2 = 12 000Nm−3,
respectively. The level of the liquid on the left is h1 = (3 + Cpu/2)m.

– Calculate the force exerted by the liquid on the left.
– Calculate the centre of pressure.
– Calculate the h2 level corresponding to an incipient opening of the gate.

Neglect the weight of the gate.

Solution As shown in the diagram in Fig. 1.14, the force exerted on the flat sluice
gate by the liquid on the left is orthogonal to the surface and has a magnitude equal
to:

S1 = γ1
h1
2
Lh1

√
2,

and is applied at a distance (parallel to the gate) equal to h1
√
2/3 from the bottom.

The arm of this force with respect to the pivot in A is equal to
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Fig. 1.13 Schematic of the
sluice gate pivoted in A

h1

h2

a

45°

1

2

A

Fig. 1.14 System of forces
acting on the gate

h1

h2

a

Ab1

S1

S2

b2

1

2

b1 =
(
a − h1

3

) √
2.

The liquid on the right exerts a force orthogonal to the surface of the gate with a
magnitude equal to:

S2 = γ2
h2
2
Lh2

√
2 if h2 ≤ a,

applied at a distance (parallel to the gate) equal to h2
√
2/3 from the bottom. The arm

of this force with respect to the pivot in A is

b2 =
(
a − h2

3

)√
2.

By imposing the balance of moments about the axis trough A, in conditions of
incipient rotation yields

S1b1 = S2b2 → γ1
h1
2
Lh1

√
2

(
a − h1

3

) √
2 = γ2

h2
2
Lh2

√
2

(
a − h2

3

) √
2,

equivalent to the following 3rd order equation in the unknown h2,

h32 − 3ah22 + 3
γ1

γ2
h21

(
a − h1

3

)
= 0.
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This equation admits at least one real solution. It can be demonstrated that if h1 < a
and γ1 < γ2, it also results h2 < h1 < a.

For Cu = Cpu = 0 it results L = 2m, a = 4m, h1 = 3m,

∴ S1 = γ1
h1
2
Lh1

√
2 = 10 000

3

2
2 3

√
2 = 127.3 kN,

∴ b1 =
(
a − h1

3

) √
2 =

(
4 − 3

3

) √
2 = 4.24 m.

The computation of the value of h2 requires the solution of the following equation:

h32 − 3ah22 + 3
γ1

γ2
h21

(
a − h1

3

)
= 0 →

h32 − 3 4h22 + 3
10 000

12 000
32

(
4 − 3

3

)
= 0 →

h32 − 12h22 + 67.5 = 0.

The solutions can be obtainedwith a numerical procedure or by applying the complex
analytical formula due to Cardano (1501–1576), resulting in:

∴ h2 = 2.69m,

h2 = 11.49m,

h2 = −2.19m,

of which only the first one is acceptable.

Exercise 1.10 In the system in Fig. 1.15 a rectangular sluice gate of length L and
depth b = 3m (the latter dimension is orthogonal to the drawing plane) is pivoted at
the top side and separates two tanks containingwater. Thewater level in the left tank is
h = (2 + Cu/20)m and the weight of the sluice gate is P = (6 + Cpu/20) 104 N.

– Calculate the force exerted on the sluice gate by the water in the tank on the left,
and its centre of pressure.

– Calculate the maximum level of the water in the right tank to prevent the sluice
gate from opening.

Assume γw = 9800 Nm−3.
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Fig. 1.15 Schematic of the
tank and of the upper pivoted
sluice gate

L

x

water

45°
h

Fig. 1.16 System of forces
acting on the sluice gate and
pressure diagram

h
water

F

P

plx

prx

p prx lx

x

Fl

C

Solution The force exerted on the sluice gate by the water in the left tank is
orthogonal to the sluice gate and has a magnitude equal to:

Fl = γw
h

2
bL ,

where L is the length of the sluice gate, equal to

L = h
√
2.

This force is applied at a distance ςC = 2L/3 from the free surface level of the water,
measured parallel to the sluice gate.

The system of acting forces is shown in Fig. 1.16.
Considering the hydrostatic forces due to the water in the left and right tanks, we

can see that two different pressure distributions act on the sluice gate:

– from left, a pressure with triangular diagram;
– from right, a pressure with trapezoidal diagram.

Since the liquid is the same for the two tanks, the slope of the two diagrams is the same
and since the elementary forces due to the pressure on the two sides have opposing
direction, only the rectangular part of the pressure diagram acts on the sluice gate,
from right to left. The sluice gate is ultimately subjected to the action of a uniform
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pressure equal to γwx , exerting a clockwise torque about the pivot. Imposing the
balance equation of moments of forces yields:

γwxbL
L

2
= P

h

2
,

where h/2 is the arm of the weight. The condition that prevents the sluice gate from
opening is

x ≤ Ph

γwbL2
.

For Cu = Cpu = 0 it results b = 3m, h = 2m, P = 6 104 N, and

L = h
√
2 = 2

√
2 = 2.83 m,

∴ Fl = γw
h

2
bL = 9800

2

2
3 2.83 = 83.2 kN,

∴ ςC = 2

3
L = 2

3
2.83 = 1.89 m,

∴ x ≤ Ph

γwbL2
≡ 6 104 2

9800 3 2.822
= 0.51m.

Exercise 1.11 In the system in Fig. 1.17 a sluice gate pivoted at the top side, b =
2.0m width orthogonal to the drawing, separates two tanks, containing water in the
left and oil in the right. The oil level in the right tank is h2 = (2 + Cu/20)m, the
weight of the sluice gate is P = (6 + Cpu/20) 104 N, and a = (1 + Cu/10)m.

– Calculate the force exerted on the sluice gate by the oil in the right tank.
– Calculate the centre of pressure of the force.
– Calculate theminimum value for the water depth in the left tank to prevent opening
of the gate.

Assume γw = 9806Nm−3, γo = 0.8 9806Nm−3.

Solution Considering the schematic in Fig. 1.18, the force exerted by the oil in
the right tank is normal to the plane of the gate and has a magnitude equal to

Fo = γo (h2 − a/2) bL (we assume that h2 > a is always satisfied), (1.1)
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Fig. 1.17 Schematic of the
sluice gate and of the tanks

h1

h2

oil

water

a
L

45°

Fig. 1.18 System of forces
acting on the gate

h1

oil

water

Fo

Fw

P

b o

b w Co

Cw

A

B

where L = a
√
2 is the length of the gate.

The centre of pressure of Fo, measured along the sluice gate from the free surface
level of the oil, is calculated as follows:

ξCo = ξGo + IGxx
Sx

≡
(
h2

√
2 − L/2

)
+

1

12
bL3

bL
(
h2

√
2 − L/2

) ,

where IGxx is second moment of inertia of the sluice gate with respect to its centroid
and Sx is the moment of inertia of the sluice gate with respect to A. If the torque
due to the force exerted by the oil and to the weight of the gate, calculated about the
pivot, is counter-clockwise, the gate will not rotate even if it is h1 = 0.

This condition of stability of the gate (independent from the value of h1) is

Fobo − P
a

2
< 0, (1.2)

where bo is the arm of the force due to the oil with respect to the pivot, equal to:

bo = ξCo − (h2
√
2 − L) ≡

⎡
⎢⎣

1

12
bL3

bL
(
h2

√
2 − L/2

) + L

2

⎤
⎥⎦, (1.3)
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and a/2 is the arm of the weight of the gate. Substituting Eqs. (1.1–1.3) into Eq. (1.2),
yields:

γo (h2 − a/2) bL

⎡
⎢⎣

1

12
bL3

bL
(
h2

√
2 − L/2

) + L

2

⎤
⎥⎦ − P

a

2
< 0.

If this latter condition is not met, the minimum water level required to prevent the
gate from opening shall be calculated by requiring that the moment of all forces
about the pivot be zero. Choosing a coordinate system with a positive moment in the
clockwise direction, the condition for rotational equilibrium is:

Fobo − Fwbw − P
a

2
= 0.

The force exerted by the water in the left tank is orthogonal to the sluice gate and
has a magnitude equal to:

⎧⎪⎪⎨
⎪⎪⎩

Fw = γw (h1 − a/2) bL ≡ γw

√
2

2

(
h1

√
2 − L/2

)
bL, if h1 ≥ a,

Fw = γw
h21

√
2

2
b, if h1 < a.

This force is applied at a distance from the free surface level of the water, measured
parallel to the sluice gate, equal to:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ ′
Cw = ξ ′

Gw + I ′
Gxx

S′
x

≡
(
h1

√
2 − L/2

)
+

1

12
bL3

bL
(
h1

√
2 − L/2

) , if h1 ≥ a,

ξ ′
Cw = 2

3
h1

√
2, if h1 < a,

where I ′
Gxx is the second moment of inertia of the sluice gate with respect to its

centroid G, and S′
x is the moment of inertia of the sluice gate with respect to the

water line. The arm of the force exerted by the water, with respect to the pivot, is
equal to: ⎧⎨

⎩
bw = ξ ′

Cw − (h1
√
2 − L), if h1 ≥ a,

bw = 2

3
h1

√
2 + (L − h1

√
2), if h1 < a.

The torque equilibrium condition is
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γo (h2 − a/2) bL

⎡
⎢⎣

1

12
bL3

bL
(
h2

√
2 − L/2

) + L

2

⎤
⎥⎦ −

γw

√
2

2

(
h1

√
2 − L/2

)
bL

⎡
⎢⎣

1

12
bL3

bL
(
h1

√
2 − L/2

) + L

2

⎤
⎥⎦ − P

a

2
≤ 0, if h1 ≥ a,

γo (h2 − a/2) bL

⎡
⎢⎣

1

12
bL3

bL
(
h2

√
2 − L/2

) + L

2

⎤
⎥⎦−

γw
h21

√
2

2
b

[
2

3
h1

√
2 + (L − h1

√
2)

]
− P

a

2
≤ 0, if h1 < a.

In the first case (h1 ≥ a), substituting
(
h1

√
2 − L/2

)
= x yields

γo (h2 − a/2) bL

⎡
⎢⎣

1

12
bL3

bL
(
h2

√
2 − L/2

) + L

2

⎤
⎥⎦

︸ ︷︷ ︸
Mo

−

γw

√
2

24
bL3 − γw

√
2

4
xbL2 − P

a

2
≤ 0, if h1 ≥ a,

hence

x ≥
Mo − P

a

2
− γw

√
2

24
bL3

γw

√
2

4
bL2

,

or

h1 ≥ L

2
√
2

+
Mo − P

a

2
− γw

√
2

24
bL3

γw
1

2
bL2

.

In the second case (h1 < a), a third degree equation is obtained which always
allows a real positive solution, provided that

Fobo − P
a

2
≥ 0.
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We notice that this last condition is the same condition stated at the beginning of the
exercise and related to the dependence of the torque balance on the water level h1.

For Cu = Cpu = 0 it results b = 2.0m, h2 = 2m, P = 6 104 N, a = 1m,
γw = 9806Nm−3, γo = 7845Nm−3. Hence

∴ L = a
√
2 = 1

√
2 = 1.41 m,

∴ Fo = γo (h2 − a/2) bL = 7845 (2 − 1/2) 2 1
√
2 = 33.28 kN,

∴ bo =
1

12
bL3

bL
(
h2

√
2 − L/2

) + L

2

=
1

12
2

(
1

√
2
)3

2 1
√
2

(
2

√
2 − 1

√
2/2

) + 1
√
2

2
= 0.78 m,

∴ Fobo − P
a

2
→ 33 280 0.78 − 6 104

1

2
< 0.

Hence, the gate is always closed, even for h1 = 0.

Exercise 1.12 In the tank in Fig. 1.19, a rectangular gate AB separates two fluids
of specific weight γ1 = 8000Nm−3 and γ2 = 9800Nm−3, respectively. The fluid
depths are h1 = 3.5m and h2 = 4.5m and the height of the rectangular gate is H =
1.5m.

– Calculate the force per unit depth acting on the gate.
– Calculate the direction and the pressure centre of the force.

Solution By considering the schematic shown in Fig. 1.20, the fluid 1 exerts a
horizontal force (per unit depth), pointing to the right equal to

F1 = γ1

(
h1 − H

2

)
H = 8000

(
3.5 − 1.5

2

)
1.5 = 33.0 kN,

applied at a distance from the free surface of fluid 1 equal to
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Fig. 1.19 Schematic of the
tank with the flat sluice gate
pivoted in A

Fig. 1.20 Schematic for the
calculation of forces and
centres of pressure

h1

h2

C1

zC1

F1

C2

F2

zC2

C F

2

1

zC1 = zG1 + IG1xx
Sx

=
(
h1 − H

2

)
+

1

12
H 3

H (h1 − H/2)
=

(
3.5 − 1.5

2

)
+

1

12
1.53

1.5 (3.5 − 1.5/2)
= 2.82 m.

Fluid 2 exerts a horizontal force (per unit depth) pointing to the left equal to
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F2 = −γ2

(
h2 − H

2

)
H = −9800

(
4.5 − 1.5

2

)
1.5 = −55.1kN,

applied at a distance from the free surface of fluid 2 equal to

zC2 = zG2 + IG2x ′x ′

Sx ′
=

(
h2 − H

2

)
+

1

12
H 3

H (h2 − H/2)
=

(
4.5 − 1.5

2

)
+

1

12
1.53

1.5 (4.5 − 1.5/2)
= 3.80 m.

The resulting force is pointing to the left and is equal to

∴ F = F1 + F2 = 33 000 − 55 125 = − 22.1kN.

The balance of moment of forces about the axis A yields

F1 AC1 + F2 AC2 = F AC → AC = F1 AC1 + F2 AC2

F
,

where AC1 = zC1 − (h1 − H), AC2 = zC2 − (h2 − H), and AC are the arms of the
forces exerted by the two fluids and of the resulting force with respect to the pivot
in A, see Fig. 1.20. Hence,

∴ AC = 33.0 (2.82 − 3.5 + 1.5) − 55.1 (3.80 − 4.5 + 1.5)

−22.1
= 0.77 m.

Exercise 1.13 In the system in Fig. 1.21 the flat sluice gate, of unitary depth, is
pivoted in A and is inclined at an angle to the horizontal α = (45 + Cpu)

◦. The
upper fluid is oil, the lower fluid, consisting of water and mud, has specific weight
increasing downwards according to the following equation:

γ = γw + γw

98

z′

b
.

– Calculate the total force exerted by water and mud and oil on the gate.
– Calculate the centre of pressure of the force.
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water + mud

A

B

aoilho

hw+m
b

z

z

Fig. 1.21 Schematic of the gate with a stratified fluid

Assume a = (2 + Cu/10)m, b = (4 + Cpu/10)m, ho = (2.5 + Cu/10)m, γw =
9800Nm−3, γo = 0.8γw. Notice that the pivot in A is at a higher level than the
separation plane between oil and water plus mud.

Solution It is convenient to introduce the two newOx and Ox ′ coordinate systems
shown in Fig. 1.22, in addition to the z and z′ coordinate systems. The pressure in
the oil, for 0 < z < ho, varies linearly and, in the coordinate system z, it is equal to
p = γoz ≡ 0.8γwz. In the Ox coordinate system, in the oil (0 < x < ho/ sin α), it
results:

p(x) = (γo sin α) x .

The pressure in the fluid water plus mud, for ho < z < ho + z′, is calculated by
integrating the hydrostatic equation. In the z′ coordinate system, it results:

dp

dz′ = γ
(
z′) ≡ γw + γw

98

z′

b
→

p(z′)∫
p(0)

dp =
z′∫

0

(
γw + γw

98

z′

b

)
dz′ →

p
(
z′) = p(0) + γwz

′ + γw

98

z′2

2b
= γoho + γwz

′ + γw

98

z′2

2b
.

In the O′x ′ coordinate system and in the domain occupied by the mixture of water
and mud, it results:

p
(
x ′) = γoho + (γw sin α) x ′ +

(γw

98
sin2α

) x ′2

2b
.

The qualitative diagram of the pressure acting on the flat gate is shown in Fig. 1.23.
The force is calculated by integrating the elementary forces associated with the
pressure on the surface of the gate, (the domain of integration is the shaded grey area
in Fig. 1.23), separating the integral in the two contributions due to the oil and to the
mixture of water and mud, respectively:
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x

O

x

Owater + mud

A

B

oilho

hw+m

z

z

Fig. 1.22 Coordinate systems used for the calculation of forces

xc

pF F1 2+

O

water + mud
A

B

oilho

hw+m

z

z

Fig. 1.23 Diagram of the pressure acting on the flat gate

F1 =
ho/ sin α∫
a

(γo sin α) x dx = γo

2
sin α

(
h2o

sin2α
− a2

)
(integration in Ox),

F2 =
c∫

0

[
γoho + (γw sin α) x ′ +

(γw

98
sin2α

) x ′2

2b

]
dx ′

= γohoc +
(γw

2
sin α

)
c2 +

( γw

98b
sin2α

) c3

6
(integration in O′x ′),

where c = b − (ho/ sin α) represents the length of the gate at contactwith themixture
of water plus mud.

The centre of pressure is calculated by imposing that themoment about an axis (for
example, the axis orthogonal to the sheet and passing through O) of the distribution
of forces, coincides with the moment (calculated with respect to the same axis) of
the resultant of these forces. The two forces exert, with respect to the axis previously
defined, two counter-clockwise moments equal to:
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M1 =
ho/ sin α∫
a

(γo sin α) x2 dx = γo

3
sin α

(
h3o

sin3α
− a3

)
(integration in Ox),

and

M2 =
c∫

0

[
γoho + (γw sin α) x ′ +

(γw

98
sin2α

) x ′2

2b

] (
ho

sin α
+ x ′

)
dx ′ →

M2 =
[
(γoho) c +

(γw

2
sin α

)
c2 +

(
γw

98

1

6b
sin2α

)
c3

]
ho

sin α
+

(γo

2
ho

)
c2 +

(γw

3
sin α

)
c3 +

(
γw

98

1

8b
sin2α

)
c4

= F2
ho

sin α
+

(γo

2
ho

)
c2 +

(γw

3
sin α

)
c3 +

(
γw

98

1

8b
sin2α

)
c4 (integration in O′x ′).

By imposing the balance of moments, yields

(F1 + F2) xC = M1 + M2 → xC = M1 + M2

F1 + F2
.

For Cu = Cpu = 0 it results α = 45◦, a = 2m, b = 4m, ho = 2.5m, γo =
7840Nm−3,

∴ c = b − ho
sin α

= 4 − 2.5

sin 45◦ = 0.46m,

γ = 9800 + 25z′ Nm−3 (z′ in metres),

p(x) = (γo sin α) x = 5543.7x Pa (x in metres),

p
(
x ′) = 7840ho + (9800 sin α)x ′ + (

100sin2α
) x ′2

2b
=

19 600 + 6930x ′ + 6.25x ′2 Pa (x ′ in metres),

∴ F1 = γo

2
sin α

(
h2o

sin2α
− a2

)

= 7840

2
sin 45◦

(
2.52

sin245◦ − 22
)

= 23 560N,
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∴ F2 = (γoho) c+
(γw

2
sin α

)
c2 +

( γw

98b
sin2α

) c3

6

= 7840 2.5 0.46 +
(
9800

2
sin 45◦

)
0.462

+
(
9800

98 4
sin245◦

)
0.463

6
= 9749 N,

∴ M1 = γo

3
sin α

(
h3o

sin3α
− a3

)

= 7840

3
sin 45◦

(
2.53

sin345◦ − 23
)

= 66 883 Nm,

∴ M2 = F2
ho

sin α
+

(γo

2
ho

)
c2 +

(γw

3
sin α

)
c3 +

(
γw

98

1

8b
sin2α

)
c4

= 9749
2.5

sin 45◦ +
(
7840

2
2.5

)
0.462 +

(
9800

3
sin 45◦

)
0.463

+
(
9800

98

1

8 4
sin245◦

)
0.464 = 36 768 Nm,

∴ xC = M1 + M2

F1 + F2
= 66 883 + 36 768

23 560 + 9749
= 3.11 m.

Exercise 1.14 A flat sluice gate of mass M = 2000 kg is pivoted along the lower
side, pivot in A in Fig. 1.24. The length of the gate in the direction orthogonal to the
drawing is l = 8m.

– Calculate the size b of the gate if the system is in equilibrium in the configuration
shown in Fig. 1.24.

The liquid is water of specific weight γw = 9800Nm−3.

Solution As shown in Fig. 1.25, the forces acting on the gate are the weight P
and the force S of the fluid. If the system is in equilibrium, the resulting torque with
respect to the pivot A is null, i.e.

MS + MP = 0.

The torque MS is clockwise and has a magnitude equal to:
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Fig. 1.24 Schematic of the
flat sluice gate pivoted in A

A

h = 1 m

b

30°

Fig. 1.25 Schematic of the
forces and the torques acting
on the gate

A

h = 1 m

b

bP

MS

MP

P

bS

S

bi

|MS| = Sbs,

where S is the force exerted by water, bs is the action arm.
The torqueMP is counter-clockwise and is due to the weight P = Mg acting with

an arm equal to bP = (b/2) cos 30◦. In equilibrium condition, it results:

SbS = MgbP → SbS = Mg
b

2
cos 30◦ → b = 2SbS

cos 30◦Mg
.

The portion of the gate at contact with water has length:

bi = h/ sin 30◦ = 2m.

The magnitude of the force exerted by the water is equal to:

S = γwzGbi l = 9806 0.5 2 8 = 78 448N,
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where zG is the depth of the centroid of the immersed portion of the gate. The action
arm with respect to the pivot is equal to

bS = bi/3 ≈ 0.66m.

Hence

∴ b = 2SbS
cos 30◦Mg

= 2 78 448 0.66

cos 30◦ 2000 9.806
= 6.15m.

Exercise 1.15 Thewooden shuttering for concrete constructionalwork of a staircase
in Fig. 1.26 is filled with fluid concrete with γc/γw = 2.4, where γw = 9806Nm−3

is the specific weight of water. The weight of the shuttering is Psh = 370N and the
step of the staircase is l = 0.90m wide.

– Calculate the ballast required to hold the shuttering in place, assuming that the
rotational equilibrium is always guaranteed.

Solution The vertical force on the shuttering is calculated as the product of the
pressure acting on the shuttering that delimits the treads of the steps by the area of the
surface of the treads themselves. With reference to the diagram in Fig. 1.27, results:

p1 = γc2h, p2 = γch.

Hence,
F1z = −p1bl = −γc2hbl,

Fig. 1.26 schematic of the
shuttering containing fluid
concrete

ballast

open top

shuttering

b = 0.25 m h
= 

0.
20

 m
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Fig. 1.27 Diagram of the
pressures and vertical forces
acting on the shuttering

Pbt

Psh

b = 0.25 m h
= 

0.
20

 m

z

p1

p2

F1

F2

ballast

open top

shuttering

and
F2z = −p2bl = −γchbl.

The equilibrium condition in the vertical, yields

Pbt + Psh + F1z + F2z = 0 → Pbt = −F1z − F2z − Psh .

Inserting the values of the variables, yields

Psh = 370 N,

F1z = −γc2hbl = −2.4 9806 2 0.2 0.25 0.9 = −2118 N,

F2z = −γchbl = −2.4 9806 0.2 0.25 0.9 = −1059 N,

∴ Pbt = −F1z − F2z − Psh = 2118 + 1059 − 370 = 2807 N.

Alternatively, we can apply a global method, valid for surfaces that are not nec-
essarily flat. The equilibrium equation of the dashed control volume in Fig. 1.28,
is

G + Π0 + Π1 + Π2 = 0.

The physical meaning of the various forces is clarified in Fig. 1.29. In terms of
relative pressure, results Π1 = 0. Also:

Π2z = −3p f bl,
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Fig. 1.28 Control volume
for the application of a
global method

2

1

0

G

Fig. 1.29 Schematic of the
forces described in the global
method

Pbt

P Pc sh+
b = 0.25 m h

= 
0.

20
 m

z

pf

ballast

open top

shuttering

where p f is the pressure at the bottom, and l is the step width. The other forces are

G = Pc = γc6bhl

and
Π0z = Pbt + Psh .

Hence:
Pc + Pbt + Psh − 3p f bl = 0 → Pbt = −Pc − Psh + 3p f bl.
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Inserting the numerical values yields

Pc = γc6bhl = 2.4 9806 6 0.25 0.20 0.9 = 6354 N,

p f = 3γch = 3 2.4 9806 0.20 = 14 120 Pa,

∴ Pbt = −Pc − Psh + 3p f bl

= −6354 − 370 + 3 14 120 0.25 0.9 = 2807 N.

Obviously, the results obtained with the two methods are the same. Notice that
Π0 has only a vertical component, since there is no horizontal force to balance.

Exercise 1.16 The tilting gate in Fig. 1.30 is pivoted at the edge, with b = (2 +
Cpu/10)m.

– Calculate the depth D required for opening the gate.

Neglect the weight of the gate. The fluid is water with γw = 9806Nm−3.

Solution In the coordinate system shown in Fig. 1.31, the fluid exerts a horizontal
force per unit length of magnitude

Fx = 1

2
γwD

2,

applied at a distance of D/3 from the pivot. The moment of this force (positive if
clockwise) is equal to

Fig. 1.30 Tilting gate

gate
D

b

pivot
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Fig. 1.31 Schematic for the
calculation of the forces

D/3

b/2

Fx

Fy

gate

pivot

x

y

MFx = 1

6
γwD

3.

The vertical force per unit length is equal to

Fy = γwDb,

and is applied at a distance b/2 from the pivot.
The moment of this force (negative, since it is counter-clockwise) is equal to

MFy = −γwD
b2

2
.

Neglecting themoment of theweight of the gate, the gate opens if the totalmoment
is positive (clockwise):

MFx + MFy > 0 → 1

6
γwD

3 − γwD
b2

2
≡ γwD

2

(
1

3
D2 − b2

)
> 0,

i.e. if D > b
√
3.

For Cu = Cpu = 0 it results b = 2m,

∴ D > b
√
3 = 2

√
3 = 3.46m.



Chapter 2
Hydrostatic Forces on Submerged
Curved Surfaces

If the surface at contactwith the fluid is curved, the action of the fluid can be computed
by integrating the elementary forces due to the local pressure multiplied by the
infinitesimal area of the surface. In practice, it is convenient to adopt integral balance
equation for a control volume partly (or completely) delimited by the surface, and
then to balance the forces acting on the external surface and body forces. It is also
convenient to resolve the total force acting on the surface into horizontal and vertical
components. A horizontal component of the force passes through the centroid of
the vertical projection of the surface on a plane normal to the horizontal direction
considered. By considering two directions in the horizontal plane, the corresponding
two horizontal components can be determined and vector composed to calculate
the total horizontal force acting on the surface, resulting, in general, in a single
horizontal vector plus a moment which is required to render them coplanar. The
vertical force passes through the centroid of the vertical (axis) cylinder of fluid with
director represented by the contour of the surface. The horizontal and vertical force
components can be vector composed, giving in general a single vector plus amoment.

Some complex computations are required in specific cases where part of the
volume delimited by the surface is subject to the force of Archimedes.

Specific attention should be paid for multi-layered fluid of different densities and
for stratified fluids.

Exercise 2.1 The cylindrical gate
︷ ︷

AC in Fig. 2.1, that is a semicircle of diameter D
and length L orthogonal to the sheet, is pivoted in C and is in equilibrium due to the
horizontal force S applied in A, which contrasts the pressure action of water and oil
on the left. The specific weight of the liquids, the size of the gate and the depths of
the water and oil (equal to D/2) are known.

– Calculate the magnitude of the horizontal force S to be applied in A to maintain
the gate in equilibrium.

Cu and Cpu , that are two integer numbers between 0 and 9, for example, the last and second-last
digit of the registration number.

© Springer Nature Switzerland AG 2021
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in Civil Engineering, https://doi.org/10.1007/978-3-030-51387-0_2
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Fig. 2.1 Cylindrical gate
pivoted in C and subject to
oil and water pressure on the
left side

S

D

water

C

A

D/2

O

oil

Fig. 2.2 Pressure diagram
and virtual volume for the
application of the global
method of equilibrium

S

D

water

C

A

oil

Fy

Fx Ftot

β

b

y

x

D/2

Numerical data: D = (3 + 0.2 Cu)m, L = (4 + 0.1 Cpu)m, γw = 9806Nm−3,
γo = 0.8γw.

Solution The cylindrical pivot is capable of developing any constraining reaction
through the trace axis C (orthogonal to the sheet), but is not capable of developing
resistant torques parallel to its axis. Therefore, the systemof acting forces (hydrostatic
and external) must have zero moment with respect to the pivot.

The cylindrical gate is a curved surface with a contour line contained in a plane.
Applying the global equation of static equilibrium to the fluid volume enclosed
between the curved surface and the vertical plane AC (Fig. 2.2), a horizontal force
is calculated equal to the sum of the horizontal force of the oil, pointing to the right
and with magnitude

Fxo = γo
D2

8
L ,

and the horizontal force of the water, pointing to the right and with magnitude:
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Fxw = (2γo + γw)
D2

8
L .

The resulting horizontal force has magnitude:

Fx = γo
D2

8
L + (2γo + γw)

D2

8
L .

The vertical force is a vector with magnitude equal to the weight of fluid contained in
the volume delimited by the curved surface and the vertical surface of the AC trace,
but with the opposite orientation:

Fy = γo
πD2

16
L + γw

πD2

16
L .

The total force, which has a magnitude equal to

Ftot =
√

F2
x + F2

y ,

crosses the axis O of the gate (since it is the sum of elementary forces all acting
normally to the surface, hence pointing to O), and forms an angle to the horizontal
equal to:

β = tan−1

(

Fy

Fx

)

.

The arm with respect to C is equal to b = (D/2) cosβ. By imposing the equilibrium
of the moment of forces about the axis C, S is calculated as:

S = Ftotb

D
≡ Fx

2
.

For Cu = Cpu = 0 it results D = 3m, L = 4m, γw = 9806Nm−3, γo = 7840
Nm−3.

Fxo = γo
D2

8
L = 7840

32

8
4 = 35 280N,

Fxw = (2γo + γw)
D2

8
L = (2 7840 + 9806)

32

8
4 = 114690N,

Fx = Fxo + Fxw = 35 280 + 114 690 = 149 970N,

Fy = γo
πD2

16
L + γw

πD2

16
L =

7840
π 32

16
4 + 9806

π 32

16
4 = 124 730N,
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Ftot =
√

F2
x + F2

y =
√

149 9702 + 124 7302 = 195 060N,

β = tan−1

(

Fy

Fx

)

= tan−1

(

124 730

149 970

)

= 39◦ 45′,

b = D

2
cosβ = 3

2
cos 39◦ 45′ = 1.153m,

∴ S = Ftotb

D
≡ Fx

2
= 149 970

2
= 74 985N.

Exercise 2.2 The hemispherical cup in Fig. 2.3 is held in position by an external
force F.

– Calculate the magnitude, the direction and the centre of pressure of the force F.

Data: γw = 9806Nm−3, R = (0.10 + Cu/100)m, H1 = R/3, H2 = R/4.

Solution The external force F must balance the forces due to the fluids inside
and outside the cup. For the symmetry of the configuration, the force will not have
horizontal component but only vertical component. Moreover, on the curved surface
ADCB (see Fig. 2.4) the force is null due to the presence of water inside and outside
the surface (the cup has null thickness by hypothesis) since, point by point, the
elementary forces are equal and opposite.

It remains the force on the inner side of the surface DEVFC due to the air trapped
in the cup, and the force on the curved outer surface DE-FC due to the water. The
external surface EVF is in contact with the air at gage pressure and, therefore, the
acting force is null. Applying the global equilibrium equation to the DEVFC volume
filled with air, we observe that the force Sair (neglecting the weight G of the air
contained) is equal to the force on the flat surface DC with a pressure equal to:

C

V

R
H2 H1

F

γw

Rh

H H1 2

h
r

h

21 33V h r h

spherical cap

Fig. 2.3 Hemispherical cup in water
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H2
H1

γw

V

F

pair

V

control volume

A

D

B

C
F

V
y

G

E

D C

F

H2

E

Fig. 2.4 Control volume and schematic of the acting forces

pair = γwH2.

Hence,

Sair = pairπ
DC

2

4
= γwH2π

DC
2

4
, (2.1)

pointing upwards, positive in the coordinate system fixed in Fig. 2.4.
The force of the water outside the cup can be evaluated very simply: it is equal to

the weight of the dashed volume V in Fig. 2.4 and is pointing downwards:

Sw = −γwV .

The resulting force is

Stot = Sair + Sw = γwH2π
DC

2

4
− γwV . (2.2)

The Equation (2.2) has an effective geometric interpretation since the first term (coin-
cident with 2.1) corresponds to the weight of liquid contained within a cylindrical
volume of circular base of diameter DC and height equal to H2. Therefore, Eq. (2.2)
is equivalent to the calculation of the weight of the volume of liquid DE-FC obtained
by subtracting the volume V from the former cylindrical volume.

The volume of the solid of revolution DEFC, called spherical segment, can be
calculated by subtracting the volume of the small height cap EVF, with height h =
R − H1, from the volumeof the spherical capDVC,with height h = R − (H1 − H2):
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VEVF = 1

3
π(R − H1)

2 [3R − (R − H1)] ≡ 1

3
π(R − H1)

2 (2R + H1),

VDVC = 1

3
π [R − (H1 − H2)]

2 {3R − [R − (H1 − H2)]} ≡
1

3
π(R − H1 + H2)

2 (2R + H1 − H2),

Stot = γwV
′ = γw (VDVC − VEVF) .

The required force F that balances Stot is vertical and pointing downwards, with the
same magnitude of Stot .

For Cu = Cpu = 0 it results R = 0.10m, H1 = 0.033m, H2 = 0.025m.

V ′ =
[

1

3
π(R − H1 + H2)

2 (2R + H1 − H2) − 1

3
π(R − H1)

2 (2R + H1)

]

=
1

3
π

[

(0.10 − 0.033 + 0.025)2 (2 0.10 + 0.033 − 0.025)−
(0.10 − 0.033)2 (2 0.10 + 0.033)

]

=
7.483 10–4 m3.

∴ F = −Stot = −γwV
′ = −9806 7.483 10−4 = − 7.34N.

Exercise 2.3 Figure2.5 shows a cylindrical sluice gate of unit length and radius
R = (0.50 + Cpu/20)m, pivoted in A, which opens rotating about A when the level
in the tank is equal to hw = (3.50 + Cu/10)m.

– Determine the magnitude, the direction and the line of application of the force
exerted by the water, for incipient opening condition.

– Determine the weight of the sluice gate.

Assume γw = 9.8 kNm−3.

Solution Fixing the coordinate system shown in Fig. 2.6, the water exerts a hori-
zontal force pointing to the right equal to

Fx = γw

(

hw − R

2

)

R,

and a vertical upward-pointing force of magnitude equal to the weight of the dashed
volume in Fig. 2.6:
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water

hw

R
A

Fig. 2.5 Cylindrical sluice gate pivoted in A

water

hw

A

Fx

Fy

F

β

b

x

y

P

Fig. 2.6 Coordinate system and schematic of the acting forces

Fy = γw

[

(hw − R) R + πR2

4

]

.

The resulting force has magnitude

|F| =
√

F2
x + F2

y ,

and crosses the axis of the cylindrical circular gate at an angle to the horizontal equal
to

β = tan−1

(

Fy

Fx

)

.

The arm with respect to the rotation axis A is equal to
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b = R sin β.

The moment of the water force is counter-clockwise and is equal to

M = |F| b.

The stabilizing moment of the weight of the gate is clockwise and is equal to PR.
In limiting condition of incipient rotation, it results

PR = |F| b → P = |F| b
R

≡ |F| sin β.

|F| sin β is equal to Fy , hence the weight of the sluice gate must be equal to the
vertical component of the water force.

This solution could be achieved directly in another way. In fact, the moment
with respect to the axis A of the force F does not change if you move the point of
application of F along its line of action. If you move the force F to the axis of the
cylinder and decompose the force into the x− and y− components, it is immediate
to check that x−component does not have moment with respect to A, while the
y−component has counter-clockwise destabilising moment with an arm equal to R.
This moment, in limiting conditions, is balanced by the moment of the weight of the
gate P, which acts with an arm still equal to R. Therefore, it results

Fy R = PR → P = Fy .

For Cu = Cpu = 0 it results R = 0.50m, hw = 3.50m.

Fx = γw

(

hw − R

2

)

R = 9800

(

3.50 − 0.50

2

)

0.50 = 15 925N,

Fy = γw

[

(hw − R) R + πR2

4

]

=

9800

[

(3.50 − 0.50) 0.50 + π 0.502

4

]

= 16 625N,

∴ |F| =
√

F2
x + F2

y =
√

15 9252 + 16 6252 = 23 020N,

∴ β = tan−1

(

Fy

Fx

)

= tan−1

(

16 625

15 925

)

= 46◦ 14′,
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b = R sin β = 0.5 sin 46◦ 14′ = 0.36m,

∴ P = |F| sin β ≡ Fy = 23 020 sin 46◦ 14′ = 16625N.

Exercise 2.4 The hemispherical cup in Fig. 2.7 contains partly air, partly oil and
partly water, and is held in position by an external force F acting on it. Given the
geometric dimensions listed below and the characteristics of the fluids, calculate:

– the magnitude, the direction and the line of application of the force F;
– the pressure of the air inside the cup.

Data: γw = 9800Nm−3, γo = 0.8γw, R = (0.10 + Cu/100)m, h1 = R/3, h2 =
R/4, h3 = R/2.

Solution The external force Fmust balance the hydrostatic force due to the fluids
inside andoutside the cup.By symmetry, the hydrostatic forcewill not havehorizontal
component but only a vertical component. On the curved surface DA-CB (Fig. 2.8)
the force is null because the internal and external forces exerted by the water are
balanced (the thickness of the cup is negligible). It is necessary to calculate the force
due to the water pressing on the external surface DE-FC and the force due to the
air and oil on the internal side DEGVHFC. The external surface DE-FC receives a
vertical force, downwards (as is evident, given the direction of the elementary force)
and equal to theweight of the dashed volume in Fig. 2.8 filledwithwater. This volume
can be calculated as the difference between the cylindrical volume having a circular
base with radius r2 (Fig. 2.7) and the spherical segment with bases of radius r2 and
r3:

Sext = −γwV = −γw

[

πr22 (h3 − h2) − π (h3 − h2)

2

(

r22 + r23
)− π(h3 − h2)

3

6

]

.

V

Rh3

h1

F

γw

γo h2

air r1

r2

r3

r2

h

r1

3
2 2

1 22 6
h h

V r r

Fig. 2.7 Hemispherical cup subject to pressure of water, oil and air
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Fig. 2.8 Control volume and schematic of forces

Fig. 2.9 Schematic for the
calculation of the forces
acting on the internal surface
of the cup

Π

Π

Goil

α

dα

The force acting on the internal side DEGVHFC, due to air and oil, can be calculated
with different methodologies, but the most convenient is based on the method of the
global static equilibrium.

Isolating the volume of interest (see Fig. 2.9), which is partially filled with oil
and air, considering all surface and mass forces acting on the control volume, and
neglecting the air weight, it results:

Π0+Π1+Goil = 0,

in which Π0 is the force on the curved surface due to the surrounding fluids, Π1 is
the force on the circular flat surface of radius r2,Goil is the weight of the oil that fills
the spherical segment with radii r2 and r1. The force of the internal fluids Sint on the
curved surface is equal to and opposed to Π0. Hence,

Sint ≡ −Π0 = Π1+Goil .

Since Π1 and Goil are vertical, also Sint is vertical. The calculus indicates that:
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Π1 = pA = γw (h3 − h2) πr22 ,

Goil = −γoVoil = −γo

[

πh3
2

(

r21 + r22
)+ πh33

6

]

.

Hence,

Sint = Π1 + Goil = γw (h3 − h2) πr22 − γo

[

πh3
2

(

r21 + r22
)+ πh33

6

]

.

Finally, the total force is equal to the algebraic sum of the internal and external forces:

Stot = Sint + Sext , F = −Stot .

The air pressure is calculated by applying the hydrostatic equation:

pa = γw (h3 − h2) − γoh3.

Alternatively, it is possible to perform the calculation by integrating the elemen-
tary forces due to the pressure acting inside and outside the cup. Figure2.10 shows
the pressure diagram and the radial coordinate system R − α chosen for an easy
calculation. The relative air pressure in the cap is uniform and acts on the spherical
cap GVH; acting on the elementary surface of area

dA = 2πR2 cosα dα,

it generates an elementary vertical (only) force equal to

dFya = pa2πR2 cosα sin α dα.

The horizontal component is self-balanced and has the only effect of modifying the
tensional state of the cup material. The vertical force of the air in the shell is obtained
by integration:

Fya =
π/2
∫

α0

pa2πR2 sin α cosα dα = paπR2 cos2α
∣

∣
α0

π/2 = paπR2cos2α0.

The initial angle of integration is equal to:

α0 = sin−1

(

h1 + h2
R

)

.

Notice that the R cosα0 coincides with the radius r1. Therefore, ignoring the
weight of the air, the vertical force of the air on the shell is equal to the force of the
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C
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h1

h2

pa

po
pw

α

Rh3

Fig. 2.10 Radial distribution of internal and external pressure

air on the circular base surface of the shell. The oil pressure is increasing downwards,
according to the following relationship:

po = pa + γo (h1 + h2 − R sin α) ,

and generates only an elementary vertical force equal to:

dFyo = po2πR2 cosα sin αdα.

The vertical force of the oil is obtained by integration:

Fyo =
α0∫

α1

[

pa + γo (h1 + h2 − R sin α)
]

2πR2 sin α cosα dα =
[

−paπR2cos2α − γo (h1 + h2) πR2cos2α − 2

3
πR3γosin

3α

]∣

∣

∣

∣

α0

α1

=

− π pah3(h3 − 2h1 − 2h2) − πγo
h23
3

(2h3 − 3h1 − 3h2).

The limits of integration are equal to:

α1 = sin−1

(

h1 + h2 − h3
R

)

, α0.

Notice that, with the values fixed for h1, h2 and h3 and for the predetermined ratio
between the specific weight of the oil and water, by mere coincidence the vertical
force of the oil is zero. The water pressure outside, acting on the surface ED and
FC, generates a self-balanced horizontal force and a vertical force downwards. The
water pressure increases downwards according to the following relationship:

pw = γw (h1 − R sin α) ,
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and generates a vertical (only) force equal to:

Fyw =
α1∫

0

pw2πR2 sin α cosα dα =
[

−γwh1πR2cos2α − 2

3
πR3γwsin

3α

]∣

∣

∣

∣

α1

0

=

− γwπ
(h2 − h3)

2

3
(3h1 − 2h3 + 2h2).

In summary, the calculations performed by integrating elementary forces are much
more complex than those required by using the global equation of statics.

For Cu = Cpu = 0 it results R = 0.10m, h1 = 0.033m, h2 = 0.025m, h3 =
0.05m, γw = 9800Nm−3, γo = 7840Nm−3.

r1 =
√

R2 − (h1 + h2)
2 =

√

0.102 − (0.033 + 0.025)2 = 0.0815m,

r2 =
√

R2 − (h1 + h2 − h3)
2 =
√

0.102 − (0.033 + 0.025 − 0.05)2 = 0.0997m,

r3 =
√

R2 − h21 =
√

0.102 − 0.0332 = 0.0944m,

V = πr22 (h3 − h2) − π (h3 − h2)

2

(

r22 + r23
)− π (h3 − h2)

3

6
=

π 0.09972 (0.05 − 0.025) − π (0.05 − 0.025)

2

(

0.09972 + 0.09442
)

− π (0.05 − 0.025)3

6
= 3.2217 10−5 m3,

Voil = πh3
2

(

r21 + r22
)+ πh33

6
=

π 0.05

2

(

0.08152 + 0.09972
)+ π 0.053

6
= 1.3678 10−3 m3,

∴ F = − [γw (h3 − h2) πr22 − γoVoil − γwV
]

= −
⎡

⎣

9800 (0.05 − 0.025) π 0.09972

−7840 1.3678 10−3

−9800 4.0393 10−5

⎤

⎦ = 3.47N.
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This force is directed upwards. The air pressure is

∴ pa = γw (h3 − h2) − γoh3 =
9800 (0.05 − 0.025) − 7840 0.05 = − 147Pa.

Exercise 2.5 The structure in Fig. 2.11 is supported by an internal pressure equal to
the atmospheric pressure. It has a hemispherical dome ABD whose diametral plane
is inclined at an angle α to the horizontal.

– Determine the magnitude and the horizontal inclination of the total hydrostatic
force (due to internal air and external liquids) on the hemispherical shell.

The geometrical data and other useful values are H1 = (10 + Cpu)m, H2 = (5 +
Cpu)m, h = (3 + Cu/20)m, α = (60 + Cu)

◦, γ 1 = 10 100Nm−3, γ 2 = 6500
Nm−3.

Solution The net force due to the air at atmospheric pressure inside the dome is
zero because the atmospheric pressure also acts on the surface of the oil and therefore,
on thewhole, the effect on the surface of interest is null. Applying the global equation
of static equilibrium to the ideal-minded hemispherical volume filled with liquid
(global equation method, Fig. 2.12), yields

Π0 + Π1 + Gs = 0,

Fig. 2.11 Schematic of the
structure

H1

h

α

C

A

B

D

sea water

air at
atmospheric

pressure

R

H2 γ2

γ1

gas oil
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Fig. 2.12 Schematic for the
application of the method of
the global equilibrium
equation
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x

y
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γ1

where Π1 is the force on the flat circular surface and centre C, Gs is the weight
of seawater that ideally fills the volume of the hemisphere, Π0 is the force on the
lateral surface of the hemisphere. The hemisphere has a radius R, obtained from the
trigonometric relation:

R = h

2 sin α
.

Since the hydrostatic force coincides with Π0, it results:

F ≡ Π0 = −Π1 − Gs.

The force Π1 is calculated as the product of the pressure in C and the area of the
maximum circle of the hemisphere:

|Π1| =
[

γ2H2 + γ1

(

H1 + h

2

)]

πR2,

while the weight of the liquid in the hemisphere is equal to:

|Gs| = γ1
2

3
πR3.

Since the vectors Gs and Π1 are vertical and inclined at an angle α, respectively,
it is easy to deduce that the hydrostatic force on the hemisphere has a component Fx

equal to the x-component of the vector −Π1, hence
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Fx = −πR2 sin α

[

γ2H2 + γ1

(

H1 + h

2

)]

.

The horizontal force is pointing from right to left, opposite to the positive direction
of the x-axis. The vertical component Fy is equal to:

Fy ≡ Π0y = −Π1y − Gsy,

that is

Fy = −πR2 cosα

[

γ2H2 + γ1

(

H1 + h

2

)]

+ γ1
2

3
πR3.

The vertical force is upward-pointing if

Fy > 0 → α > cos−1

⎡

⎢

⎢

⎣

2R

3

(

γ2H2

γ1
+ H1 + h

2

)

⎤

⎥

⎥

⎦

.

The resulting force has a magnitude equal to:

|F| =
√

F2
x + F2

y ,

it has direction through the centre of the sphere (since it is the composition of elemen-
tary forces due to pressure, all orthogonal to the surface and, therefore, concurrent
in the centre of the sphere), it is contained in the vertical plane x − y by symmetry,
and it has an inclination to the horizontal equal to:

β = tan−1

(

Fy

Fx

)

.

To better understand these results, see the schematic in Fig. 2.13, where on the
left there is the section of the volumes obtained with a vertical plane passing through
the centre of the hemisphere, on the right there is an assonometric view. The vertical
force acting on the surface is equal to the weight of the volume of fluid (two-layer)
V1 + V2 above the cap, downwards directed, and to the buoyancy force relative to
the volume V3, upwards directed.

The exploded view in Fig. 2.14 shows the volumes required for the calculation of
the two forces. The two forces are applied in the centre of gravity of the fluid masses
contained in V1 and V2, and in the centre of the hull of volume V3, respectively.
However, calculations with this scheme introduce some analytical complexities, due
to the presence of an intersection volume between an elliptical base cylinder with
vertical axis, and a spherical surface (volume V2). It is convenient to add and subtract
the volume V ′ which simplifies the calculus to the volume of a cylinder intersected
by a plane, and of a hemisphere, according to the scheme shown in Fig. 2.15.
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Fig. 2.13 Section and assonometric view of the volumes defined for the calculation of the forces

Fig. 2.14 Exploded in
assonometry of the volumes
defined for the calculation of
the vertical forces

V1

V2

V3

x

y

z

V

G

FA
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Fig. 2.16 Exploded in
assonometry of the volumes
defined for the calculation of
the horizontal forces

Abx

Fx

x

y

z

The area of the elliptical base surface of the cylinder is equal to the area of the
projection along the y-axis of the maximum circle of the hemisphere:

Aby = πR2 cosα,

with R = h/(2 sin α). Hence

G ′ = −γ2H2πR2 cosα − γ1

(

H1 + h

2

)

πR2 cosα.

The buoyancy force on the hemisphere is equal to:

F ′
A = γ1

2

3
πR3.

The vertical force is equal to:

Fy = −γ2H2πR2 cosα − γ1

(

H1 + h

2

)

πR2 cosα + γ1
2

3
πR3.

With reference to Fig. 2.16, the horizontal force is equal to the hydrostatic force acting
on the x-projection of the maximum circle of the hemisphere, having a surface area
equal to

Abx = πR2 sin α.

Hence,

Fx = −πR2 sin α

[

γ2H2 + γ1

(

H1 + h

2

)]

,

pointing to the left, as previously obtained by applying the global equation of static
equilibrium.

For Cu = Cpu = 0 it results H1 = 10m, H2 = 5m, h = 3m, α = 60◦, γ 1 =
10 100Nm−3, γ 2 = 6500Nm−3,
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R = h

2 sin α
= 3

2 sin 60◦ = 1.73m,

Fy = −γ2H2πR2 cosα − γ1

(

H1 + h

2

)

πR2 cosα + γ1
2

3
πR3 =

− 6500 5 π 1.732 cos 60◦ − 10 100

(

10 + 3

2

)

π 1.732 cos 60◦

+ 10 100
2

3
π 1.733 = − 589.3kN,

downwards directed.

Fx =
[

−γ2H2 − γ1

(

H1 + h

2

)]

πR2 sin α =
[

−6500 5 − 10 100

(

10 + 3

2

)]

π 1.732 sin 60◦ = − 1210.4kN,

∴ F =
√

F2
x + F2

y =
√

1210.42 + 589.32 = 1346.2kN,

∴ β = tan−1

(

Fy

Fx

)

= tan−1

( −589.3

−1210.4

)

= 26◦.

Exercise 2.6 The tank in Fig. 2.17 has a hemisphere inserted in the wall and is
only partially filled with water. The relative air pressure is indicated by the pressure
gauge and is negative. Determine the magnitude and horizontal inclination of the
hydrostatic force on the hemisphere in the two cases:

– water level at a distance h above point C (situation illustrated in Fig. 2.17);
– water level passing through point C.

The numerical values are pm = −(0.49 + Cu/20) 105 Pa, R = (0.25 +
Cu/100)m, h = (1 + Cpu/10)m, γw = 9806Nm−3.

Solution Case (a): Water level at a distance h from C.
Applying the global equation of static equilibrium to the ideal-minded hemispher-

ical volume filled with liquid (global equation method, Fig. 2.18), yields

Π0 + Π1 + Gw = 0,
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Fig. 2.17 Schematic of the
tank with hemispherical
surface

C

pm

h

R

water
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Fig. 2.18 Control volume
and schematic of the forces
for the application of the
global equation method in
the case of a hemisphere
completely immersed in
water
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Π1

Gw

Π0

where Π1 is the force on the flat circular surface, Gw is the weight of water that
ideally fills the volume of the hemisphere, Π0 is the force on the lateral surface of
the hemisphere. The unknown hydrostatic force F coincides with Π0, hence

F ≡ Π0 = −Π1 − Gw.

Since the vectorsGw and Π1 are vertical and horizontal, respectively, it follows that
the hydrostatic force on the hemisphere has component Fx equal to the magnitude
of Π1, i.e.

Fx = (γwh + pm)
πD2

4
,

where pm is the relative air pressure indicated by the pressure gauge. The direction
of the horizontal force depends on the sign of the relative pressure in the centroid of
the flat surface: if the pressure is negative, the force is pointing to the left (towards
the negative of the x-axis). The vertical component Fy is pointing upwards and has
a magnitude equal to the magnitude of Gw:
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Fig. 2.19 Control volume
and schematic of the forces
for the application of the
global equation method in
the case of a hemisphere
partially immersed in water

Π1w

Π1a

x

yGw
Π0

Fy = γw
πD3

6

1

2
.

The magnitude of the force is equal to

|F| =
√

F2
x + F2

y ,

and the inclination to the horizontal is calculated as

α = tan−1

(

Fy

Fx

)

.

Case (b): Water level through C.
The analysis is identical to that carried out for case a), but the force is due both

to the water, which acts on the lower quarter, and to the air, which acts on the upper
quarter of the hemisphere. It is not required to separate the two forces, which can
therefore be evaluated by applying the global equation to the hemisphere filled with
liquid only in the lower quarter (Fig. 2.19).

By neglecting the weight of the air, the global equation can be written as:

Π0 + Gw + Π1a + Π1w = 0,

where Gw is the weight of the quarter of a sphere filled with liquid, Π1w is the force
due to the liquid that presses on the flat surface of semicircular shape, Π1a is the
force due to the air on the flat portion of the upper semicircular shape and Π0 is the
force on the lateral surface of the hemisphere. The unknown force F coincides with
Π0, hence

F = −Gw − Π1a − Π1w,

where

Gw = γw
πD3

6

1

4
,
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Π1a = pm
πD2

8
,

Π1w = pGw
πD2

8
=
(

γw
4

3π

D

2
+ pm

)

πD2

8
,

since the centroid of the semicircle is located at a distance 4D/(6π) from the centre
of the circle, see in Appendix. The horizontal component is still given by the force
on the flat surface. It turns out, then:

Fx = −Π1a − Π1w. (2.3)

The sign still depends on the value of the algebraic sum in Eq. (2.3).
The vertical component Fy is directed upwards and is equal to the magnitude of

Gw:

Fy = γw
πD3

6

1

4
.

For Cu = Cpu = 0 it results pm = −0.49 105 Pa, R = 0.25m, h = 1.0m.

Case (a): Water level at a distance h from C.

Fx = (γwh + pm)
πD2

4
= (

9806 1.0 − 0.49 105
) π 0.52

4
= − 7700N,

Fy = γw
πD3

6

1

2
= 9806

π 0.53

6

1

2
= 320N,

∴ |F| =
√

F2
x + F2

y =
√

77002 + 3202 = 7706N,

∴ α = tan−1

(

Fy

Fx

)

= tan−1

(

320

−7700

)

= − 2◦ 24′.

Case (b): Water level through C.

Fx =
(

γw
4

3π

D

2
+ 2pm

)

πD2

8
=

(

9806
4

3 π

0.5

2
− 2 0.49 105

)

π 0.52

8
= − 9525N,

Fy = γw
πD3

6

1

4
= 9806

π 0.53

6

1

4
= 160N,
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∴ |F| =
√

F2
x + F2

y =
√

95252 + 1602 = 9526N,

∴ α = tan−1

(

Fy

Fx

)

= tan−1

(

160

−9525

)

= −1◦.

Exercise 2.7 In the schematic in Fig. 2.20, the cylindrical circular gate, with a length
L = 2m and a radius R = (4 + Cpu/2)m, is pivoted in O. The gate is symmetrical
to the horizontal and α = (120 + 5 Cu)

◦.

– Calculate the force on the gate and its point of application, if the fluid is homoge-
neous with specific weight γ = 9800Nm−3.

– Perform the same calculations, if the fluid is stratified with variable specific weight
according to the following relationship:

γs =
(

γ0 + γ ′ z
R

)

Nm−3,

where γ0 = 9800Nm−3 and γ ′ = 1000Nm−3.

Solution The fluid level is equal to

h = 2R sin
α

2
.

In the coordinate system shown in Fig. 2.21, if the fluid is homogeneous, the hori-
zontal force is equal to

Fh,x = 1

2
γ h2L ,

Fig. 2.20 Cylindrical
circular gate pivoted in O

x

y

A

O

z

h
R

α
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β

Fh,x

Fh

V

Fh,y

x

y

A

O

z

h

Fig. 2.21 Pressure diagram and virtual volume V (dashed) for the application of the global equation
method in the case of homogeneous fluid

x

y

A

O

z

h

βFs,x

Fs

V dV

b
dz

Fs,y

Fig. 2.22 Pressure diagram and virtual volume V (dashed) for the application of the global equation
method in the case of variable density stratified fluid

and the vertical force is the buoyancy that acts on the dashed volume V in Fig. 2.21,
that is equal to

Fh,y = γ
(α

2
R2 − R2 sin

α

2
cos

α

2

)

L ≡ 1

2
γ R2L (α − sin α) ,

pointing upwards.
The resulting force crosses O at an angle to the horizontal equal to:

βh = tan−1

(

Fh,y

Fh,x

)

.

If the fluid is stratified, the pressure distribution increases more than linearly with
the depth, see Fig. 2.22. By adopting the indefinite equation of static equilibrium,
yields
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Fig. 2.23 Schematic for the
calculation of b

A

O

B C

D

E

OB OD= R
= zCD

= ROE FC cos( /2)α
sin( /2)ED = R α
= sin( /2)EC OF α zR

R R zBF2 2 2= ( sin( /2) )α
BC BF FCb =

α/2

F

p(z) =
z
∫

0

γs(z)dz =
z
∫

0

(

γ0 + γ ′ z
R

)

dz = γ0z + γ ′

2

z2

R
,

and the horizontal force is equal to

Fs,x =
h
∫

0

p(z) L dz ≡
h
∫

0

(

γ0z + γ ′

2

z2

R

)

L dz = γ0

2
h2L + γ ′

6

h3

R
L .

The vertical force is upward-pointing and has magnitude equal to the weight of the
fluid (stratified) contained in volume V in Fig. 2.22. This weight is calculated by
integration as follows.

The elementary volume dV per unit of depth is a parallelepiped with base equal
to

b =
√

R2 −
(

R sin
α

2
− z

)2 − R cos
α

2

(see Fig. 2.23) and height dz. Thus, the vertical force is equal to

Fs,y =
h
∫

0

(

γ0 + γ ′ z
R

)

L

[√

R2 −
(

R sin
α

2
− z

)2 − R cos
α

2

]

dz.

As an alternative, it is possible to calculate the forces by integrating the elementary
force acting on the infinitesimal surface R dθ of unit depth, see Fig. 2.24. As an
example, for the force in the vertical direction, results
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Fig. 2.24 Pressure diagram
and coordinate system for
the integration of elementary
forces acting on the gate

x

y

A

O

z

h
Rdθ

dFs,x

dFs,y

θ

R

d dF = pLR θ

p( )θ

Fs,y =
α/2
∫

−α/2

(

γ0z + γ ′

2

z2

R

)

LR sin θ dθ. (2.4)

The integral inEq. (2.4) can be calculated analytically by expressing z as a function
of R and θ . The definite integral, calculated between −α/2 and +α/2, has the
following value:

Fs,y

∣

∣
α/2
−α/2 = 1

2
γ0R

2L (α − sin α)
︸ ︷︷ ︸

basic term

+ 1

2
γ ′ sin

α

2
R2L (α − sin α)

︸ ︷︷ ︸

density variation contribution

≡

1

2
R2L

(

γ0 + γ ′ sin
α

2

)

(α − sin α) .

The force is pointing upwards.
The resulting force passes through O and forms an angle with respect to the

horizontal, equal to:

βs = tan−1

(

Fs,y

Fs,x

)

.

For Cu = Cpu = 0 it results L = 2m, R = 4m, α = 120◦.

Homogeneous Fluid:

Fh,x = 1

2
γ h2L = 1

2
9800 6.932 2 = 470.40 kN,

Fh,y =γ
(α

2
R2 − R2 sin

α

2
cos

α

2

)

L =

9800

(

120◦ π

2 180◦ 42 − 42 sin
120◦

2
cos

120◦

2

)

2 = 192.61kN,
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∴ |Fh | =
√

F2
h,x + F2

h,y =
√

470.402 + 192.612 = 508.31kN,

∴ βh = tan−1

(

Fh,y

Fh,x

)

= tan−1

(

192.61

470.40

)

= 22◦ 16′.

Stratified Fluid:

Fs,x = 9800

2
h2L + 1000

3

h3

R
L =
9800

2
6.932 2 + 1000

6

6.933

2
2 = 478.65kN,

Fs,y

∣

∣
α/2
−α/2 = 1

2
R2L

(

γ0 + γ ′ sin
α

2

)

(α − sin α) =
1

2
42 2

(

9800 + 1000 sin
120◦

2

) (

120◦

180◦ π − sin 120◦
)

= 209.63kN,

∴ |Fs | =
√

F2
s,x + F2

s,y =
√

478.652 + 209.632 = 522.54kN,

∴ βs = tan−1

(

Fs,y

Fs,x

)

= tan−1

(

209.63

478.65

)

= 23◦ 39′.

Exercise 2.8 The cylinder in Fig. 2.25 is immersed inwater and has a length, orthog-
onally to the drawing, equal to L = 1.50m.

– Calculate the horizontal and the vertical components of the force on the cylinder.
– Calculate the direction of force.

Assume γw = 9800Nm−3, R = (0.50 + Cu/10)m, α = (45 + Cpu)
◦.

Solution The horizontal component of the force is equal to the force on the curved

surface
︷ ︷

AC, which delimits the portion of the dashed cylinder in Fig. 2.26:

Fx = γw
R2

2
(1 + cosα)2L ,

since the forces acting on the symmetric curved surface
︷ ︷

AEB are self-balanced.
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Fig. 2.25 Schematic of the
cylinder in water

α

B

O

R

Fig. 2.26 Coordinate
system and schematics for
calculating the horizontal
force component

B

O

A

C

D

Fx

E

x

y

α

α

Fig. 2.27 Coordinate system
and schematic for calculating
the vertical force component

Fy

B

O

C

E

x

y

α

A

The vertical component of the force is pointing upwards and is equal to the weight
of the yellow dashed volume in Fig. 2.27. This volume may be decomposed into the

volume of the semi-cylinder
︷ ︷

CAE and the vertical solid delimited below by the arc
︷ ︷

EB. It results

Fy = γw
πR2

2
L + γw

[

R2

(

2 + cosα

2

)

sin α + α

2
R2

]

L .

The resultant of the forces crosses the axis of the cylinder, trace O, and is inclined
to the horizontal at an angle β = tan−1

(

Fy/Fx
)

.

For Cu = Cpu = 0 it results R = 0.50m, α = 45◦, L = 1.50m.
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∴ Fx = γw
R2

2
(1 + cosα)2L = 9800

0.52

2
(1 + cos 45◦)2 1.50 = 5.35kN,

∴ Fy = γw
πR2

2
L + γw

[

R2

(

2 + cosα

2

)

sin α + α

2
R2

]

L =

9800
π 0.52

2
1.50

+ 9800

[

0.52
(

2 + cos 45◦

2

)

sin 45◦ + π

8
0.52

]

1.50

= 10.73kN,

∴ β = tan−1

(

Fy

Fx

)

= tan−1

(

10.73

5.35

)

= 63◦30′.

Exercise 2.9 In the system shown in Fig. 2.28, the sealed tank has a unitary depth
and contains pressurized air.

– Determine the magnitude, direction and line of application of the force exerted by
air, oil and water on the quarter-cylinder surface.

Assume γo = 8000Nm−3, γw = 9800Nm−3, γa = 0, h1 = (3.00 + Cu/10)m,
h2 = (2.00 + Cu/10)m, R = 1.50m, pm = (0.20 + Cpu/20) 105 Pa.

SolutionThe force exerted by the oil in the containermust account for the presence
of the air under pressure above it; as a consequence, the isobaric plane at atmospheric
pressure for the oil is above the interface air-oil by the quantity:

Fig. 2.28 Schematic of the
pressurized tank

h1

R

A

B

air
manometer

tank

O

oil

h2

water

pm

x

y
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Fig. 2.29 Schematic for the
calculation of the internal
forces

A

h3

Fxo

Fyo

h1

A

B

air
manometer

tank

O

oil

h2

water

x

y

pm

h3 = pm
γo

,

as shown in Fig. 2.29. The oil force on the curved surface (per unit length) can be
calculated, for example, by using the componentsmethod. The horizontal component
is equal to:

Fxo = −γo

[

h3 +
(

h2 − R

2

)]

R,

and is negative in the adopted coordinate system.
The vertical component is equal to the weight of the volume (dashed in Fig. 2.29)

between the curved surface and the plane of the hydrostatic oil loads. Therefore:

Fyo = −γo

[

R (h2 + h3) − πR2

4

]

.

The resultant of the forces exerted by the oil intersects the axis O at an angle to the
horizontal equal to:

αo = tan−1

(

Fyo

Fxo

)

.

The water on the left side exerts a horizontal force equal to

Fxw = γw

(

h1 + R

2

)

R,

pointing to the right, and a vertical force equal to

Fyw = γw

[

(h1 + R) R − πR2

4

]

,
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Fig. 2.30 Schematic for the
calculation of the external
forces

h1

R

A

B

manometer

tank

O

water

Fxw

Fyw

x

y

pm

pointing upwards. This vertical force coincides, in magnitude, with the weight of the
dashed virtual volume in Fig. 2.30. The resultant of the forces exerted by the water
intersects the axis O at an angle to the horizontal equal to

αw = tan−1

(

Fyw

Fxw

)

.

The total force has a horizontal component equal to

Fx = Fxo + Fxw,

and a vertical component equal to

Fy = Fyo + Fyw.

The total force crosses the centre O at an angle to the horizontal equal to

α = tan−1

(

Fy

Fx

)

.

For Cu = Cpu = 0 it results γo = 8000Nm−3, γw = 9800Nm−3, γa = 0, h1 =
3.00m, h2 = 2.00m, R = 1.50m, pm = 0.20 105 Pa.

h3 = pm
γo

= 0.20 105

8000
= 2.5m,
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Fxo = −γo

[

h3 +
(

h2 − R

2

)]

R =

− 8000

[

2.5 +
(

2 − 1.5

2

)]

1.5 = −45.0kN,

Fyo = − γo

[

R (h2 + h3) − πR2

4

]

=

− 8000

[

1.5 (2 + 2.5) − π 1.52

4

]

= −39.9kN,

Fxw = γw

(

h1 + R

2

)

R = 9800

(

3 + 1.5

2

)

1.5 = 55.1kN,

Fyw = γw

[

(h1 + R) R − πR2

4

]

=

9800

[

(3 + 1.5) 1.5 − π 1.52

4

]

= 48.8kN,

∴ Fx = Fxo + Fxw = −45.0 + 55.1 = 100.1kN,

∴ Fy = Fyo + Fyw = −39.9 + 48.8 = 88.7kN,

∴ α = tan−1

(

Fy

Fx

)

= tan−1

(

88.7

100.1

)

= 41◦ 32′.

Exercise 2.10 In the system in Fig. 2.31 the cylindrical gate, of depth L = (2 +
Cu/2)m and of radius R = (4 + Cpu/2)m, with axis of cylindrical symmetry in C,
is pivoted in O. The angle ÔCA = 45◦ and the distance OC = R/2. The pivot does
not coincide with the axis of cylindrical symmetry, and the gate has a sealing in A.

– Calculate the water force on the gate.
– Calculate the horizontal force F that must be applied in B to open the gate.

Neglect the weight of the gate. Assume γw = 9806Nm−3.
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water

R

A

B
F

O

CR/2
α = 45°

Fig. 2.31 Cylindrical gate subject to water pressure

water

R

A

B
F

O

C

Sx

Sy

b

b

S

αR/2

x

y

Fig. 2.32 Schematic for calculating the forces acting on the cylindrical gate

Solution In the coordinate system in Fig. 2.32, the water exerts a horizontal force
to the right equal to

Sx = 1

2
γwR

2L ,

and a vertical downward force equal to the weight of the volume of fluid above the
gate,

Sy = γwR
2
(

1 − π

4

)

L .

The magnitude of the total force is equal to

|S| =
√

S2x + S2y = γwR
2L

√

1

4
+
(

4 − π

4

)2

.

The force exerted by the water crosses C at an angle to the horizontal equal to
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α = tan−1

(

Sy
Sx

)

= tan−1

⎡

⎢

⎣

γwR2
(

1 − π

4

)

L

1

2
γwR2L

⎤

⎥

⎦ = tan−1

(

4 − π

2

)

= 23◦ 13′.

The arm of the force exerted by the water, for rotation about O, is equal to

b = R

2
sin
(π

4
− α

)

≈ 0.185 R,

The moment is counter-clockwise and has a magnitude equal to

MS = |S| b =
(√

S2x + S2y
)

b ≈ γwR
2L

⎡

⎣

√

1

4
+
(

4 − π

4

)2
⎤

⎦ 0.185R.

The arm of force F is equal to

b′ = R − R

2
cos

π

4
= R

(

4 − √
2

4

)

,

and themoment about O is clockwise ifF is pointing to the right, and has amagnitude
equal to

MF = |F| b′ = |F| R
(

4 − √
2

4

)

.

Imposing the balance of moments about O yields

MS = MF → |F| ≈
γwR2L

√

1

4
+
(

4 − π

4

)2

0.185R

R

(

4 − √
2

4

) .

For Cu = Cpu = 0 it results L = 2m, R = 4m.

Sx = 1

2
γwR

2L = 1

2
9806 42 2 = 156.90kN,

Sy = γwR
2
(

1 − π

4

)

L = 9806 42
(

1 − π

4

)

2 = 67.34kN,

|S| =
√

S2x + S2y =
√

156.902 + 67.342 = 170.74kN,
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∴ |F| ≈ 170.74 0.185 4

4

(

4 − √
2

4

) = 49kN.

Exercise 2.11 In the system in Fig. 2.33 the cylindrical gate, of depth L = (2 +
Cu/2)m and of radius R = (4 + Cpu/2)m, with axis of cylindrical symmetry of
trace C, is pivoted in A. The two liquids on the left have specific weight γ 1 =
11 000Nm−3 and γ 2 = 10 000Nm−3, and their depths are h1 = (1 + Cpu/4)m
and h2 = (3 + Cpu/4)m, respectively.

– Calculate the total force exerted by the liquids on the gate.
– Calculate the inclination to the horizontal of the force.
– Calculate the horizontal force F that must be applied in B to keep the gate in place.

Neglect the weight of the gate.

Solution In the coordinate system shown in Fig. 2.34, the upper layer liquid exerts
a horizontal force equal to

S2x = 1

2
γ2h

2
2L ,

and a vertical force equal to the weight of volume V2:

S2y = γ2V2 = γ2

[

Rh2 sin α2 − R2

2
α2 + R (R − h2)

2
sin α2

]

L ,

where

α2 = π

2
− α = cos−1

(

R − h2
R

)

.

R

B F

C
h1

h2

γ

γ

A

Fig. 2.33 Cylindrical gate subject to stratified fluids pressure
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β
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x

y
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γ

γ

Fig. 2.34 Schematic for calculating the forces

The resulting force has magnitude

|S2| =
√

S22x + S22y,

and crosses the centre of curvature C at an angle to the horizontal equal to

β2 = tan−1

(

S2y
S2x

)

.

The arm with respect to the pivot in A is equal to

b2 = R sin β2,

and the clockwise moment has magnitude |M2| = b2 |S2|.
The lower layer liquid exerts a horizontal force equal to

S1x = 1

2
(γ1h1 + 2γ2h2) h1L ,

and a vertical force equal to the weight of the volume V ′
2 + V1:

S1y = γ2V
′
2+γ1V1 =

γ2h2R (1 − cosα) L + γ1

[

R (1 − cosα) h1 − α

2
R2 + R

2
h1 cosα

]

L ,

where

α = sin−1

(

h1
R

)

.
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The resulting force has magnitude |S1| =
√

S21x + S21y and crosses the centre of

curvature C, at an angle to the horizontal equal to

β1 = tan−1

(

S1y
S1x

)

.

The arm with respect to the pivot in A is equal to b1 = R sin β1 and the clockwise
moment has magnitude |M1| = b1 |S1|.

The total force has magnitude

|S| =
√

(S1x + S2x )
2 + (

S1y + S2y
)2

and still crosses the centre of curvature C, at an angle to the horizontal equal to

β = tan−1

(

S1y + S2y
S1x + S2x

)

.

The magnitude of force F is obtained by imposing the balance of moments about
the pivot A:

RF + b1S1 + b2S2 = 0 → F = −b1S1 + b2S2
R

.

For Cu = Cpu = 0 it results L = 2m, R = 4m, h1 = 1m, h2 = 3m,

S2x = 1

2
γ2h

2
2L = 1

2
10 000 32 2 = 90.00kN,

α2 = cos−1

(

R − h2
R

)

= cos−1

(

4 − 3

4

)

= 75◦ 31′,

S2y = γ2V2 = γ2

[

Rh2 sin α2 − R2

2
α2 + R (R − h2)

2
sin α2

]

L =

10 000

⎡

⎢

⎣

4.0 3.0 sin 75◦31′ − 4.02

2

75◦31′

180◦ π+
4.0 (4.0 − 3.0)

2
sin 75◦31′

⎤

⎥

⎦ 2.0

= 60.21kN,

|S2| =
√

S22x + S22y =
√

90.002 + 60.212 = 108.28kN,

β2 = tan−1

(

S2y
S2x

)

= tan−1

(

60.21

90.00

)

= 33◦ 47′,
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b2 = R sin β2 = 4.0 sin 33◦ 47′ = 2.22m,

S1x = 1

2
(γ1h1 + 2γ2h2) h1L =

1

2
(11 000 1 + 2 10 000 3) 1.0 2.0

= 71.00kN,

α = sin−1

(

h1
R

)

= sin−1

(

1.0

4.0

)

= 14◦ 28′,

S1y = γ2h2R (1 − cosα) L + γ1

[

R (1 − cosα) h1 − α1

2
R2 + R

2
h1 cosα

]

L =
10 000 3.0 4.0

(

1 − cos 14◦28′) 2.0+

11 000

⎡

⎣

4.0
(

1 − cos 14◦28′) 1.0−
14◦28′

180◦ π
4.02

2
+ 4.0

2
1.0 cos 14◦28′

⎤

⎦ 2.0 = 8.55kN,

|S1| =
√

S21x + S21y =
√

71.002 + 8.552 = 71.50kN,

β1 = tan−1

(

S1y
S1x

)

= tan−1

(

8.55

71.00

)

= 6◦ 52′,

b1 = R sin β1 = 4.0 sin 6◦52′ = 0.48m.

The total force has components

Sx = S1x + S2x = 71.00 + 90.00 = 161.00kN,

Sy = S1y + S2y = 8.55 + 60.21 = 68.76kN,

it has magnitude

∴ |S| =
√

S2x + S2y =
√

161.002 + 68.762 = 175.10kN,

and it is inclined at an angle to the horizontal equal to

∴ β = tan−1

(

Sy
Sx

)

= tan−1

(

68.76

161.00

)

= 23◦ 8′.
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The horizontal force required for equilibrium has magnitude equal to

∴ F = −b1S1 + b2S2
R

. = −0.48 71.5 + 2.22 108.28

4.0
= −68.80kN.

This force must be pointing to the left in the schematic in Fig. 2.34.

Exercise 2.12 In the system in Fig. 2.35 the cylindrical gate, with depth L = (2 +
Cu/2)m and radius R = (4 + Cpu/2)m, is pivoted in A.

– Calculate the horizontal force P required to keep the gate in the position.
– Calculate the force if the gate was pivoted in B.

Neglect the weight of the gate, assume γw = 9806Nm−3.

Solution In the coordinate system shown in Fig. 2.36, the horizontal component
of the water force is equal to

Fx = 1

2
γwR

2L ,

and the vertical component of the force is equal to

Fy = γw
πR2

4
L .

The force magnitude is equal to

|F| =
√

F2
x + F2

y .

Since the elementary forces are normal to the surface and cross B, the integral
force also crosses B at an angle to the horizontal equal to

α = tan−1

(

Fy

Fx

)

.

P

water
R

A

B

Fig. 2.35 Cylindrical gate pivoted in A
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water

A
b

α

F

Fx

Fy

PB

x

y

Fig. 2.36 Schematic for calculating the forces

The arm with respect to the pivot in A has the following expression:

b = R sin
(π

2
− α

)

.

The magnitude of the force P is calculated by imposing the balance of moment
about the pivot A:

PR + Fb = 0 → P = − Fb

R
.

If the gate was pivoted in B, the force required to keep the gate in the position is
zero, since the force exerted by the water on the sluice gate has no arm with respect
to the new centre of rotation B.We can add that any value of P is admissible, because
it has no moment about B.

For Cu = Cpu = 0 it results L = 2m, R = 4m,

Fx = 1

2
γwR

2L = 1

2
9806 42 2 = 156 896N,

Fy = γw
πR2

4
L = 9806

π 42

4
2 = 246 452N,

|F| =
√

F2
x + F2

y =
√

156 8962 + 246 4522 = 292 156N,

α = tan−1

(

Fy

Fx

)

= tan−1

(

246 452

156 896

)

= 57◦ 31′,

b = R sin
(π

2
− α

)

= 4 sin
(π

2
− α

)

= 2.15m,

∴ P = − Fb

R
= −292 156 2.15

4
= −157kN.
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The force P must be pointing to the left.

Exercise 2.13 The pressurized tank in Fig. 2.37 contains water and air in its upper
part; on the wall of the tank there is an indentation of conical shape, with height b
and diameter of the base D. The depth of the cone tip with respect to the air-water
interface is h. The air above has a pressuremeasured by the pressure gauge connected
to the upper part of the tank.

– Determine the magnitude and the horizontal inclination of the hydrostatic force
on the conical surface.

Numerical data: γw = 9806Nm−3, pair = (3 + 0.1 Cu) 105 Pa (gage), h =
(1 + Cpu 0.5)m, b = (0.5 + Cpu 0.5)m, D = 0.30m.

SolutionWe select the coordinate system shown in Fig. 2.38. Applying the global
equation of static equilibrium to the conical volume ideally filled with liquid (global
equation method), yields

Π0 + Π1 + G = 0,

where Π1 is the force on the flat surface of circular shape, G is the weight of the
water that ideally fills the conical volume, Π0 is the force on the lateral surface of
the cone. The required hydrostatic force F coincides with Π0, hence

F ≡ Π0 = −Π1 − G.

Since the vectorsG and Π1 are vertical and horizontal, respectively, it yields that
the hydrostatic force on the cone has component Fx equal to the magnitude of Π1,
i.e.

Fx = (γwh + pair )
πD2

4
,

Fig. 2.37 Pressurized tank
with a conical indentation

D

h

air

water

b

manometer

pair
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Fig. 2.38 Schematic for the
computation of the forces
acting on the conical surface

x

y

h

Fy

Fx

air

water
manometer

pair

and it is pointing to the left.
The vertical component Fy is pointing upwards and is equal to the magnitude of

G:

Fy = γw
πD2

4

b

3
.

The magnitude of the total force is equal to

|F| =
√

F2
x + F2

y ,

and the force is at an angle to the horizontal equal to

α = tan−1

(

Fy

Fx

)

.

For Cu = Cpu = 0 it results pair = 3 105 Pa, h = 1m, b = 0.5m, D = 0.30m,

Fx = (γwh + pair )
πD2

4
= (

9806 1.0 + 3 105
) π 0.32

4
= 21.90kN,

Fy = γw
πD2

4

b

3
= 9806

π 0.32

4

0.5

3
= 0.11kN,

∴ |F| =
√

F2
x + F2

y =
√

21.902 + 0.112 = 21.90kN,

∴ α = tan−1

(

Fy

Fx

)

= tan−1

(

0.11

21.90

)

≈ 17′.
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Exercise 2.14 The cylindrical gate in Fig. 2.39 is b = 2m long and is pivoted in O.

– Calculate the total force exerted by the water on the gate.
– Calculate the action line of the force.
– Calculate the force S required to open the gate.

Neglect the weight of the gate and friction. Assume γw = 9806Nm−3.

Solution In the coordinate system shown in Fig. 2.40, the horizontal component
of the force is equal to

Fx = γw

(

h + r

2

)

rb = 9806

(

3 + 2

2

)

2 2 = 156.9kN,

and the vertical component is equal to the opposite of the weight of the hatched
volume filled with water:

Fy = γwhrb + γw
π

4
r2b =γwb

(

hr + π

4
r2
)

=
9806 2

(

3 2 + π

4
22
)

= 179.3kN.

Total force has magnitude

∴ |F| =
√

F2
x + F2

y =
√

156.92 + 179.32 = 238.3kN,

passes through the axis O at an angle to the horizontal

Fig. 2.39 Cylindrical gate
closing the tank

water

h = 3 m

r = 2 m

A

C

O
S
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Fig. 2.40 Schematic for the
calculation of the forces
acting on the gate

water

h = 3 m

r = 2 m

A

C

O

S

Fx

Fy

F

x

y

α

∴ α = tan−1

(

Fy

Fx

)

= tan−1

(

179.3

156.9

)

≈ 49◦.

The force S necessary to open the gate is null, if one neglects friction and weight
of the gate, because the total force F has zero moment about the pivot of the gate.

Exercise 2.15 The gate in Fig. 2.41 is 3/8 of a cylindrical shell with a circular base;
it is l = 3m long in a direction perpendicular to the sheet, it is pivoted in B and rests
without friction in A.

– Calculate the constraining reactions in A and B, if the fluid is seawater with a
specific weight of γ = 10 050Nm−3.

Fig. 2.41 Pivoted
cylindrical shell

H
= 

4 
m

A

B

r = 2 m
h

45°

sea water, = 10 050 N/mγ 3



2 Hydrostatic Forces on Submerged Curved Surfaces 81

Fig. 2.42 Schematic for the
calculation of the forces

H
= 

4 
m

A

B

r
h

45°

Fx

FyF

β

RAy

RAx

R By

R Bx

b

r + h

sea water, = 10 050 N/mγ 3

x

y

Solution We select the coordinate system shown in Fig. 2.42. The force of the

fluid on the curved surface
︷ ︷

AB can be calculated as the composition of the vertical
and of the horizontal forces.

The vertical force is equal to the weight of the volume above the gate, and is equal
to

Fy = −γ V = −γ l

[

(r + h) H − 3

8
πr2 − h2

2

]

,

where V is the volume delimited by vertical planes throughA andB, by the horizontal
free surface and by the cylindrical shell, with l being the length of the shell. Since it
results

h = r

√
2

2
= 2

√
2

2
= √

2m,

by substituting the numerical values, the vertical force is equal to

Fy = −γ V =

− 10 050 3

⎡

⎢

⎣

(

2 + √
2
)

4 − 3

8
π 22 −

(√
2
)2

2

⎤

⎥

⎦

= −240kN.

The horizontal force is pointing to the right and is equal to

Fx = γ

(

H − h

2

)

hl = 10 050

(

4 −
√
2

2

) √
2 3 = 140kN.

Total force has magnitude
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|F| =
√

|Fx |2 + ∣

∣Fy

∣

∣
2 =

√

2402 + 1402 = 278kN,

crosses the axis of the cylinder (it is a resultant of elementary vectors all concurrent
towards the axis) at an angle to the horizontal equal to

β = tan−1

(

Fy

Fx

)

= tan−1

(−240

140

)

= −59◦ 44′.

The reaction in A is orthogonal to the bearing and, for the geometry of the system,
has x- and y-components with the same magnitude. The reaction in B has two
independent components along x and y.

Imposing the moment equilibrium about the pivot in B, yields

− |F| b + RAy (r + h) − RAxh = 0.

The arm b is
b = r sin β = 2 sin 59◦ 44′ = 1.73m,

hence

∴ RAy = −RAx = |F| b
(r + 2h)

= 278 1.73

2 + 2
√
2

= 99kN.

Imposing the equilibrium of the forces along x yields

RBx + Fx + RAx = 0,

hence

∴ RBx = −Fx − RAx = −140 + 99 = −41kN.

Imposing the equilibrium of the forces along y yields

RBy + Fy + RAy = 0,

hence

∴ RBy = −Fy − RAy = 240 − 99 = 141kN.

Exercise 2.16 Water fills the cylindrical tank in Fig. 2.43 up to the top end of the
inlet pipe. The tank is 1.0m long and is obtained by means of two semi-cylindrical



2 Hydrostatic Forces on Submerged Curved Surfaces 83

bottom
r = 2 m

h = 2 mbottom

bolts each
24 cm

fluid level

Fig. 2.43 Bolted cylindrical tank

Fig. 2.44 Control volume
and schematic of the forces

r = 2 m

h = 2 m

S

G

5T 5T

Pp
y

shells each weighing 4.5 kN, with a radius r = 2m and bolted along two generatrices
with bolts every 24cm. If the tank is resting on a horizontal plane, calculate:

– the stress in the bolts while neglecting the contribution of the two end walls;
– the force orthogonal to the two end walls.

Assume a specific weight of water γw = 9806Nm−3.

Solution We consider the balance of the control volume of length l in Fig. 2.44.
The acting forces are (1) the weight of the fluid, downwards, equal to

G = γw
πr2

2
l.

(We have neglected the weight of the volume of fluid contained in the feed tube.)
(2) The own weight of the semi-cylindrical shell, downwards, equal to
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Pp = 4500N.

(3) The force due to the pressure distribution on the horizontal meridian plane,
upwards, equal to

S = −γw(r + h)2rl,

where h is the height of the inlet pipe.
(4) The resultant tensile force in the 10 bolts, unknown, positive downwards and

equal to 10 |T|.
By imposing the balance, yields

Pp + G + 10T + S = 0,

and substituting, yields

Pp + γw
πr2

2
l + 10T − γw(r + h)2rl = 0,

from which it is derived

∴ T =
γw(r + h)2rl − Pp − γw

πr2

2
l

10
=

9806 (2 + 2) 2 2 1 − 4500 − 9806
π 22

2
1

10
= 9078N.

Fig. 2.45 Pascal’s barrel
experiment, from The forces
of nature by Amédée
Guillemin, 1872
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We notice that the traction in the bolts increases linearly with h, independent of
the diameter of the feed tube. A sufficiently long vertical tube, even with a very small
diameter, could break the bolts and the tank. Figure2.45 shows the socalled Pascal’s
barrel experiment in 1646 (although it is not documented and the experiment could
have been performed by another scientist).

The force orthogonal to each of the two end walls has a magnitude equal to

∴ So = γw (r + h) πr2 = 9806 (2 + 2) π 22 = 493kN,

and it is pointing outwards.

Exercise 2.17 A wooden ball with specific gravity equal to 0.6 separates the two
tanks in Fig. 2.46. The two tanks are pressurized and the difference in pressure is
indicated by a column of 150mm of mercury in the U-tube (specific gravity of
mercury equal to 13.6). In the tank on the left there is water and in the tank on the
right there is oil, with a specific weight relative to water of 0.8.

– Calculate the forces acting on the sphere.

Assume a specific weight of water γw = 9806Nm−3.

Solution In the coordinate system shown in Fig. 2.46, the horizontal force exerted
by the water is equal to

Fxw =
[

γw

(

h1 + D

2

)

+ p1

]

πD2

4
,

Fig. 2.46 Tanks with
spherical plug in the
separating vertical wall

h2 = 2.7 m
h1 = 4.3 m

D = 600 mm

water

mercury

= 
15

0 
m

m

oil

p1

p2

x

y
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where γw is the specific weight of water, and the horizontal force exerted by the oil
is equal to

Fxo = −
[

γo

(

h2 + D

2

)

+ p2

]

πD2

4
,

where γo = 0.8γw is the specific weight of oil.
The resulting horizontal force is equal to

Fx = Fxw + Fxo =
[

γw

(

h1 + D

2

)

− γo

(

h2 + D

2

)

+ p1 − p2

]

πD2

4
.

The difference in pressure between the two tanks, ignoring the specific weight of
the air, is equal to

p1 − p2 = γHgΔ,

where γHg = 13.6γw is the specific weight of mercury.
Substituting the numerical values, yields

∴ Fx =
[

γw

(

h1 + D

2

)

− γo

(

h2 + D

2

)

+ γHgΔ

]

πD2

4
=

[

9806

(

4.3 + 0.6

2

)

− 0.8 9806

(

2.7 + 0.6

2

)

+13.6 9806 0.15

]

π 0.62

4
= 11.76kN.

The vertical component of the force acting on the sphere, including the sphere
own weight, is equal to

∴ Fy = γw
πD3

12
︸ ︷︷ ︸

buoyancy

in water

+ γo
πD3

12
︸ ︷︷ ︸

buoyancy

in oil

− γwood
πD3

6
︸ ︷︷ ︸

own weight

=

(9806 + 0.8 9806 − 2 0.6 9806)
π 0.63

12
= 332N,

where γwood = 0.6γw is the specific weight of wood.

Exercise 2.18 Pressurized water fills the container in Fig. 2.47.
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Fig. 2.47 Pressurized tank
with conical indented surface

manometer

pm = 150 kPa

D = 2 m

h1 = 4 m

h2 = 7 m

C

B

A

water

Fig. 2.48 Schematic for the
calculation of the forces
acting on the conical surface

D = 2 m

h1 = 4 m

h2 = 7 m

CA

water

y

G

Π1

Π

manometer

pm = 150 kPa

– Calculate the total force on the conical surface if the pressure gauge indicates a
relative pressure of pm = 150 kPa.

Assume a specific weight of water γw = 9806Nm−3.

Solution After selecting the dashed control volume in Fig. 2.48, the vertical force
component is computed by imposing the balance (along y only):

G + Π1 + Π0 = 0.

Π0 is the force exerted by the conical surface on the control volume, F = −Π0 is
the force exerted by the control volume on the conical surface,G is the weight of the
fluid contained in the volume, Π1 is the force exerted by the pressure acting on the
base of the cylinder of height h2, which is equal to the base of the cone.

The forces have the following expressions:



88 2 Hydrostatic Forces on Submerged Curved Surfaces

Fig. 2.49 Alternative
schematic for the calculation
of the forces acting on the
conical surface

h1 = 4 m

h2 = 7 m

CA

water

y

Π

manometer

pm = 150 kPa

h3G2

D = 2 m
ED

G = −γw
πD2

4

(

h2 − h1
3

)

= −9806
π 22

4

(

7 − 4

3

)

= −174.57kN,

Π1 = pm
πD2

4
= 150 000

π 22

4
= 471.24kN.

Hence,

∴ Π0 = −G − Π1 = 174.57 − 471.24 = −296.67kN →
F ≡ −Π0 = 296.67kN.

The force on the conical surface is pointing upwards and is only vertical, because
the horizontal force is null by symmetry.

An alternative choice of the control volume is shown in Fig. 2.49,where the dashed
line represents the trace of the plane where pressure equals the atmospheric pressure,
i.e. the rising level of a piezometer with one end at contact with the atmosphere. The
control volume, a cylinder plus a cone, is dashed.

The force acting on the base of the cylinder DE is null, since it is at contact with
the atmospheric pressure; the vertical force exerted by the conical surface on the
control volume balances the weight of the fluid:

G2 + Π0 = 0.

The value of h3 is
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γw(h2 + h3) = pm → h3 = pm
γw

− h2 = 150 000

9806
− 7 = 8.30m,

and

G2 = −γw
πD2

4

(

h3 + h1
3

)

= −9806
π 22

4

(

8.30 + 4

3

)

= −296.67kN,

hence,

∴ Π0 = −G = 296.67kN → F ≡ Π0 = 296.67kN.

Fig. 2.50 Cylindrical
floodgate

h1 = 3 m

h2 = 1.5 m

Exercise 2.19 A cylindrical gate has a diameter D = 3m and a length, measured in
the direction orthogonal to the drawing in Fig. 2.50, equal to l = 6m.

– Calculate the magnitude and direction of the total force exerted by the water on
the gate.

Assume a specific weight of water γw = 9806Nm−3.

SolutionObserving the schematic in Fig. 2.51, water on the left exerts a horizontal
force S1x pointing to the right and equal to

S1x = 1

2
γwh

2
1l = 0.5 9806 32 6 = 265kN.

It also exerts an upward vertical force S1y equal to the Archimedes’ force of half
the floodgate:

S1y = 1

2
γwπ

D2

4
l = 1

8
9806 π 32 6 = 208kN.
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Fig. 2.51 System of forces
acting on the cylindrical
floodgate

h1 = 3 m

h2 = 1.5 m
S1x

S1 S2

S2x

S1y

S
S2y

x

y

The resulting force S1 will be radial and inclined at an angle to the horizontal
equal to

α1 = tan−1

(

S1y
S1x

)

= tan−1

(

208

265

)

= 38◦ 6′.

Water on the right exerts a horizontal force S2x pointing to the left and equal to

S2x = −1

2
γwh

2
2l = −0.5 9806 1.52 6 = −66kN.

It also exerts an upward vertical force S2y equal to the Archimedes’ force of a
quarter of a floodgate:

S2y = 1

4
γwπ

D2

4
l = 1

16
9806 π 32 6 = 104kN.

The resulting force S2 will be radial and inclined at an angle to the horizontal
equal to

α2 = tan−1

(

S2y
S2x

)

= tan−1

(

104

66

)

= 57◦ 36′.

The sum of the horizontal components results in a positive force Sx equal to

Sx = S1x + S2x = 199kN,

and the sum of the vertical components results in a positive (upward) Sy force, with
magnitude

Sy = S1y + S2y = 312kN.

Total force has magnitude

∴ |S| =
√

S2x + S2y =
√

1992 + 3122 = 370kN,

crosses the axis of the cylinder at an angle to the horizontal equal to
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∴ α = tan−1

(

Sy
Sx

)

= tan−1

(

312

199

)

= 57◦ 28′,

and it is directed as shown in the schematic in Fig. 2.51.

Fig. 2.52 Sealing sphere at
the bottom of a tank

a = 2 mm

H
= 

0.
8 

m R = 20 mm

Exercise 2.20 A sphere of radius R, made of material of specific gravity s, is
immersed in a water tank, see Fig. 2.52. The sphere occludes a hole of radius a
at the bottom of the tank.

– Calculate the general expression of the specific gravity s, as a function of H , R
and a, necessary for the sphere to float.

– Calculate the minimum value of s necessary for the sphere to remain in position
occluding the hole.

Assume a specific weight of water γw = 9806Nm−3.

Solution The sphere is subject to the weight of the fluid cylinder V1 shown in
Fig. 2.53, to the ownweight and to the buoyancy force acting to the portion of volume
immersed in the fluid.

To simplify the calculation, the volume V2 is added both to the volume of fluid
above the sphere and to the volume for the calculation of the buoyancy (the overall
effect is null, since the weight of the fluid above the sphere and the buoyancy have
the same direction, have centre of pressure aligned along the vertical but are pointing
in the opposite side). Hence,

Sy + G(V1+V2) + P + SA = 0,
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Fig. 2.53 Schematic for
computing the forces acting
on the sphere

a = 2 mm

H
= 

0.
8 

m

V1

V2

GV1

SA SA

y

GV2

G(V1+V2) = γwπa2H,

P = γm
4πR3

3
,

SA = −γw
4πR3

3
,

where γm = sγw. We have assumed that the radius a of the hole is much smaller than
R.

In the selected coordinate system, it results

Sy = γwπa2H + γm
4πR3

3
− γw

4πR3

3
.

For buoyancy, it is necessary that Sy < 0, i.e.,

πa2H + γm

γw

4πR3

3
− 4πR3

3
< 0 →

γm

γw
≡ s <

4πR3

3
− πa2H

4πR3

3

→ s < smin ≡ 1 − 3a2H

4R3
.

Substituting the numerical data shown in Fig. 2.53, the limit equilibrium condition
yields
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∴ smin = 1 − 3
(

2 10−3
)2

0.8

4
(

20 10−3
)3 = 0.7.

Fig. 2.54 Cork at the
bottom of a tank

r = 15 mm

H
= 

10
 c

m

Vimm = 3600 mm3

Exercise 2.21 The cork in Fig. 2.54, of irregular shape and specific gravity s = 0.45,
closes a circular hole of radius r = 15mm at the bottom of a water-filled tank. The
volume of the cork immersed in water, dashed in the figure, is equal to Vimm =
3600mm3, the total volume of the cork is equal to V = 4200mm3.

– Calculate the total force acting on the cork.

Assume a specific weight of water γw = 9806Nm−3.

Solution The horizontal forces acting on the cork are balanced, while in the
vertical direction the cork is subject to buoyancy (upward) for the volumeV ′ dashed in
Fig. 2.55, to theweight of the overlyingwater contained in the volumeV ′′ (downward)
and to its own weight (downward).

Total force acting is equal to

Fz = sγwV − γwV
′ + γwV

′′.

Adding and subtracting V ′′′, yields

Fz = sγwV − γw
(

V ′ + V ′′′)
︸ ︷︷ ︸

Vimm

+γw
(

V ′′ + V ′′′) .
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Fig. 2.55 Schematic for the
calculation of the forces
acting on the cork

r = 15 mm
H

= 
10

 c
m

V

z

VV

V

The second contribution is buoyancy relative to the entire volume of the immersed
cork, while the third contribution coincides with the weight of the cylindrical volume
of height H and circular base of radius r filledwithwater, and is calculated as follows:

γw
(

V ′′ + V ′′′) = γwHπr2.

Hence,
Fz = sγwV − γwVimm + γwHπr2.

Notice that for the calculation of the magnitude of the hydrostatic force, it is
sufficient to know only the volume of the immersed body and the area of the cross-
section of the occluded hole (which does not necessarily has to be circular), regardless
of the shape of the cork and its possible asymmetry. The information on the shape
of the immersed body is, however, necessary if you also want to calculate the point
of application of the force.

Substituting the numerical values, yields

∴ Fz = sγwV − γwVimm + γwHπr2 = γw(sV − Vimm + Hπr2) =
9806

(

0.45 4200 10−9 − 3600 10−9 + 0.1 π 152 10−6
)

= 0.68N.

This force is pointing downwards.



Chapter 3
Immersed and Floating Bodies

Looking at an iron ship one wonders how it is possible that it floats, possibly in a
stable configuration for the safety of cargo and people, even if the iron has a mass
density much greater than that of water. We also wonder about the principle behind
the rising motion of hot air balloons, or behind the vertical movement of submarines
or fishes. All these are called floating bodies and the analysis of their equilibrium
requires only a small addition to the analysis of the hydrostatic forces acting on a
curved surface. Some basic principles were discovered byArchimedesmore than two
thousand years ago and are perfectly suited to the modern theory of Fluid Statics. In
essence, a body immersed (partially or totally) in a fluid is subject to its own weight,
and receives an additional force, called Archimedes’ thrust, equal to the weight of
the volume of fluid displaced by the body and directed against gravity.

In this chapter we consider the condition of equilibrium of floating bodies with
some examples of analysis of the stability of the equilibrium.

Exercise 3.1 Awooden beam floating in water is pivoted along a hedge as shown in
Fig. 3.1. The beam, of unitary length, is in equilibrium in the geometric configuration
shown in the drawing.

– Calculate the relative specific weight of the wood neglecting friction at the pivot.

Assume γw = 9800Nm−3, L = (1.00 + Cu/10)m, D = (0.50 + Cpu/20)m.

Solution The beam is in rotational equilibrium if the resulting moment of all the
forces about the pivot is zero. Observing the schematic in Fig. 3.2, the forces acting
are the hydrostatic force on the base of the beam (per unit length), equal to

Cu and Cpu , that are two integer numbers between 0 and 9, for example, the last and second-last
digit of the registration number.

© Springer Nature Switzerland AG 2021
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water

pivot

D

L

L

Fig. 3.1 Floating wooden beam pivoted in one corner

water

pivot

D

L

L

FA

Sx

D/3

G

L/2

x

y

Fig. 3.2 Schematic of the forces acting on the beam

FAy = γwLD,

which has arm L/2 with respect to the pivot; the own weight of the beam (per unit
length),

Gy = −γwsL
2,

where s is the relative specific weight of the wood, which has arm L/2 with respect
to the pivot; the horizontal force of the water on the vertical left wall of the beam
(per unit length),

Sx = 1

2
γwD

2,

which has arm D/3 with respect to the pivot.
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By imposing balance at rotation about the pivot, yields

(
FAy + Gy

) L

2
+ Sx

D

3
= 0 → γw

L2D

2
− sγw

L3

2
+ γw

D3

6
= 0.

Hence

s = D

L
+ D3

3L3
.

For Cu = Cpu = 0 it results L = 1.0m, D = 0.5m,

∴ s = D

L
+ D3

3L3
= 0.5

1.0
+ (0.5)3

3 (1.0)3
= 0.54.

Fig. 3.3 Floating sphere at
the interface between two
liquids

γ1

γ

r

z

Exercise 3.2 The sphere in Fig. 3.3 is in equilibrium at the interface between two
liquids of specificweightγ 1 = 7 kNm−3 andγ 2 = 9 kNm−3, respectively. The inter-
face passes through the centroid of the sphere.

– Calculate the specific weight of the material of the sphere.

Solution The sphere is in vertical equilibrium under the action of its own weight
and of the forces exerted by the two liquids, see Fig. 3.4. The equation of equilibrium
in the vertical direction is

Gz + Π1z + Π2z = 0.

The own weight is equal to
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Fig. 3.4 Forces acting on
the sphere

γ1

γ

r

z

G

Π1

Π2

Gz = 4

3
πr3γs,

where γs is the unknown specific weight of the material of the sphere.
The force of liquid 1 is the buoyancy relative to the volume of the sphere immersed

in liquid 1,

Π1z = −2

3
πr3γ 1,

and is pointing upwards.
The force of liquid 2 is the buoyancy relative to the volume of sphere immersed

in liquid 2,

Π2z = −2

3
πr3γ 2,

and is pointing upwards.
In equilibrium condition, yields

4

3
πr3γs − 2

3
πr3γ 1 − 2

3
πr3γ 2 = 0.

Substituting the numerical values, it results

∴ γs = γ 1 + γ 2

2
= 7 + 9

2
= 8kNm−3.
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water
pivot

D = 4 cm

L = 8 m

m = 2 kg

θ = 30°

Fig. 3.5 Pivoted cylinder with lead mass at the free end

Exercise 3.3 A cylinder with a circular cross-section is pivoted and is in equilibrium
in water with a sphere of lead with a mass of m = 2 kg hanging at the free end, see
Fig. 3.5.

– Calculate the specific weight of the cylinder material.
– Calculate the reaction of the pivot.
– Study the stability of the equilibrium to variations of the free surface level.

The ambient fluid is water with γw = 9806Nm−3, and the specific weight of lead
is γPb = 11.4γw.

Solution In the coordinate system shown in Fig. 3.6, the following forces are
applied to the cylinder and the sphere:

(1) the weight of the cylinder applied in the gravity centre, positive downwards,
equal to

Pt = γmVcyl ,

where γm is the specific weight of the material of the cylinder.
(2) The buoyancy force applied in the centroid of the immersed volume of the

cylinder, upwards, equal to
SAt = −γwVcyl .

(3) The weight of the lead sphere applied in the centre of gravity of the sphere,
downwards, equal to

Ps = mg.

(4) The buoyancy force applied in the centroid of the immersed volume of the
sphere, upwards, equal to

SAs = −γwVsphere = −γwmg

γPb
.

(5) The reaction of the pivot, directed along the vertical since there are no hori-
zontal forces to balance, with unknown magnitude and direction.
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D = 4 cm

L = 8 m

m = 2 kg
Pt

SAt

Ps

SAs

R

z

water
pivot

θ = 30°

Fig. 3.6 Schematic of the forces

The equilibrium to the translation in the vertical is

γmVcyl + mg − γwVcyl − γwmg

γPb
+ R = 0.

The equation of equilibrium at rotation about the pivot, neglecting the size of
the lead sphere (i.e., considering the forces applied at the end of the cylinder), is as
follows:

(γm − γw) Vcyl
L

2
cos θ + mg

(
1 − γw

γPb

)
L cos θ = 0.

The reaction of the pivot is equal to

R = (γw − γm) Vcyl + mg

(
γw

γPb
− 1

)
.

Substituting the numerical values, yields

∴ γm = γw − 2
mg

πD2

4
L

(
1 − γw

γPb

)
=

9806 − 2
2 9.806

π 0.042

4
8

(
1 − 1

11.4

)
= 6245Nm−3,

∴ R = (9806 − 6245)
π 0.042

4
8 + 2 9.806

(
1

11.4
− 1

)
= 17.9N.

The reaction of the pivot is pointing downwards. Notice that the value of the angle,
30◦, is not necessary to solve the problem.
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D = 4 cm

L = 8 m

m = 2 kg
Pt

SAt

Ps

SAs

R

z

h

water
pivot

θ

Fig. 3.7 Schematic of the forces acting when the cylinder is partially immersed in water

Stability of the Equilibrium

(a) If the free surface level is above the pivot, nothing changes with respect to the
case already studied. Equilibrium is indifferent.
(b) If the free surface level decreases, but with the lead sphere entirely immersed
in water, the reaction of the pivot decreases. The angle of inclination of the bar is
uniquely defined since the buoyancy force of the immersed part of the cylinder is a
function of θ .

We indicate with h the distance between the free surface level and the pivot, as
shown in Fig. 3.7. The equation of equilibrium in the vertical is

γmVcyl + mg − γwVcyl

(
1 − h

L sin θ

)
− γwmg

γPb
+ R = 0,

and the equation of rotational equilibrium is

γmVcyl
L

2
cos θ − γwVcyl

(
1 − h

L sin θ

) (
L

2
cos θ + h

2 tan θ

)

+ mg

(
1 − γw

γPb

)
L cos θ = 0,

which is simplified as

h

L sin θ
=

√(
1 − γm

γw

)
− 2mg

γwVcyl

(
1 − γw

γPb

)
.

The root argument must be positive, i.e. it must result

γm

γw

< 1 − 2mg

γwVcyl

(
1 − γw

γPb

)
.
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h/L
= 0.795
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0
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0.637

γw

Fig. 3.8 Angle of equilibrium as a function of the water level with respect to the pivot and for
different values of the relative specific weight of the cylinder material

In addition, the solution is coherent with the hypothesis providing that

h

L sin θ
< 1.

In fact, if h > L sin θ the sphere is floating at the interface between water and
air and the buoyancy force must be calculated with reference to the partial volume
of the sphere immersed in water. The angle of equilibrium is shown in Fig. 3.8 as a
function of h/L and the relative specific weight of the cylinder material.

The clockwise torque due to the weight and to the buoyancy force acting on
the sphere decreases when h increases, because the arm is reduced. The counter-
clockwise torque due to the weight and to the buoyancy force acting on the cylinder
is reduced when h increases, both by the reduction of the arm and by the reduction
of the buoyancy force. Hence, it is reasonable to expect that there is a value of h
beyond which the angle of equilibrium is equal to 90◦. This limit value is shown in
Fig. 3.9 as a function of the relative specific weight of the material. Beyond this limit
condition, the only stable and possible equilibrium is for θ = 90◦.

(c) If the free surface level further decreases, leaving the whole sphere out of
the water, the angle is 90◦, the buoyancy force is null, the reaction in the pivot is
maximum, positive upwards, with magnitude equal to the sum of the weight of the
cylinder and the lead sphere. Equilibrium is stable.
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Fig. 3.9 Limit value of the water level distance from the pivot for different values of the specific
weight of the cylinder material relative to water

Exercise 3.4 The wooden tree trunk in Fig. 3.10 is immersed in water and is
anchored to the bottom with a cable.

– Calculate the tensile force in the cable.
– Calculate the specific weight of wood.

In addition, analyze the equilibrium as the water depth H varies.

Fig. 3.10 Floating tree trunk
with anchoring cable

water

cable

D = 8 cm

4 m

θ

1 m

H

Solution Referring to the schematic shown in Fig. 3.11, the forces acting on the
tree trunk are:

(1) the force of buoyancy, applied in the centre of gravity of the immersed volume
(centre of buoyancy), pointing upwards and equal to

SA = −γwVi = −γw

4

5
Vtot ,
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Fig. 3.11 Schematic of the
forces

water

cable

D = 8 cm

4 m

1 m

H
P

T

SA

z

θ

where Vi is the immersed volume, Vtot is the total volume of the trunk, γw =
9806Nm−3 is the specific weight of the water.

(2) The weight of the trunk, applied in the centre of gravity of the body, pointing
downwards and equal to

P = γmVtot ,

where γm is the specific weight of the wood.
(3) The force exerted by the cable, necessarily of traction, pointing downwards

and equal to T .
We can write the following equation of equilibrium to the vertical translation:

−γw

4

5
Vtot + γmVtot + T = 0,

and the rotational equilibrium about the axis orthogonal to the sheet and passing
through the point of application of the tensile force of the cable (the cable cannot
sustain compressive forces or torques):

γw

4

5
Vtot

limm cos θ

2
− γmVtot

ltot cos θ

2
= 0, (3.1)

where limm = 4/5ltot is the length of the immersed part of the trunk, ltot is the total
length of the trunk. From Eq. (3.1) we obtain

γm

γw

= 16

25
,

hence

T = γw

(
4

5
Vtot − 16

25
Vtot

)
= 4

25
γwVtot = 1

4
γmVtot = P

4
.

By substituting the numerical values, yields
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∴ γm = 16

25
γw = 16

25
9806 = 6275Nm−3,

and

∴ T = 1

4
γmVtot = 1

4
6275

π 0.082

4
5 = 39.4N.

The angle of inclination θ will depend only on the water depth H and on the
length of the trunk.

Equilibrium for varying water depth

We neglect the length of the cable.
(a) If H < 4ltot/5 (but H enough to prevent the trunk from touching the bot-

tom), the angle θ depends only on the geometry. Since if γm/γw = 16/25 it
is also limm/ ltot = 4/5, for increasing H the cylinder rotates at an angle θ =
sin−1[5H/(4ltot )]. The equilibrium is stable, the tensile force in the cable is con-
stant and equal to P/4.

(b) If 4ltot/5 < H < ltot , the angle is θ = 90◦ and the tension in the cable increases
linearly until it reaches the maximum value of T = 9P/16. Equilibrium is stable.

(c) If H > ltot , the angle is still θ = 90◦ and the tensile force in the cable is
constant and equal to the maximum value. Equilibrium is stable.

a

b

l

steel block

water

mercury

A

Fig. 3.12 Parallelepiped block floating at the interface between two liquids

Exercise 3.5 The steel block in Fig. 3.12 floats at the interface betweenmercury and
water. The specific weight of steel is equal to γFe/γw = 7.85, the mercury specific
weight is equal to γHg/γw = 13.56.

– Calculate the ratio a/b in equilibrium condition.
– Calculate the l/b ratio required for rotational stability around an axis orthogonal
to the sheet plane of trace A.
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Fig. 3.13 Schematic for the calculation of the centre of buoyancy

Assume a unit depth of the block.

Solution The condition of equilibrium along the vertical is obtained by imposing
that the buoyancy force equals the weight of the block, i.e.:

γHglb + γwla = γFel (a + b) →

∴ a

b
= γHg − γFe

γFe − γw

= 0.834.

To check the linear rotational stability of equilibrium for (small) rotations aboutA,
we first calculate the position of the centre of gravity. Selecting a coordinate system
with the origin on the lowest basis of the block and positive upwards, the centre of
gravity has coordinate equal to

zG = a + b

2
→ zG

b
= a/b + 1

2
= 0.834 + 1

2
= 0.917.

The centre of buoyancy (the point of application of the buoyancy force) can
be calculated by imposing the equivalence between the system of applied vectors
represented by the two buoyancy forces (due to water and mercury, respectively) and
the resulting vector.

This equivalence requires that the moment of the resulting vector with respect
to any axis be equal to the vector sum of the moments of the two buoyancy forces
with respect to the same axis. It can be demonstrated that the result does not change
if the two vectors are rotated at the same angle, and for simplicity we rotate SA1
and SA2 in order to make them horizontal, see Fig. 3.13. Actually, they are collinear
and pointing downwards. Considering the horizontal axis through the origin of the
coordinate system, yields

SA2zC2 + SA1zC1 = SAzC → γwal
(a
2

+ b
)

+ γHgbl
b

2
= (

γwal + γHgbl
)
zC,

hence,
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zC
b

= 1

2
+

a

b

(
a

2b
+ 1

2

)

a

b
+ γHg

γw

.

By substituting the numerical values, it yields

zC
b

= 1

2
+

0.834

(
0.834

2
+ 1

2

)

0.834 + 13.56

1

= 0.553.

The relative distance between the centre of gravity and the centre of buoyancy is
equal to

zG − zC
b

= 0.917 − 0.553 = 0.364,

with the buoyancy centre below the centre of gravity. In this condition stability is
not guaranteed, and it is necessary to verify the position of the metacentre. In the
hypothesis of small rolling rotations (rotation around an axis orthogonal to the sheet),
the distance between the centre of buoyancy and the metacentre is equal to

zM − zC =
(
γHg − γw

)
IGxx

γHgbl + γwal
,

where IGxx = l3/12 is the second moment of the cross-section of the block at the
interface with respect to the barycentric axis of rotation. Substituting, it yields

zM − zC
b

=

(
γHg

γw

− 1

)
1

12

l2

b2
γHg

γw

+ a

b

=

(
13.56

1
− 1

)
1

12

l2

b2

13.56

1
+ 0.834

= 0.0727
l2

b2
.

For the stability of the equilibrium it is required that

zM − zC
b

>
zG − zC

b
,

hence

∴ 0.0727
l2

b2
> 0.364 → l

b
> 2.237.

Let us consider the condition with the specific weight of the upper fluid (water)
negligible if compared to that of the lower fluid (mercury). In this case the vertical
equilibrium requires that
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γHglb = γFel (a + b) ,

or a

b
= γHg

γFe
− 1 = 0.727.

The centre of gravity has still the coordinate

zG = a + b

2
,

hence

zG = a + b

2
→ zG

b
= a/b + 1

2
= 0.727 + 1

2
= 0.864.

The centre of buoyancy has the coordinate

zC
b

= 1

2
.

The distance between the centre of gravity and the centre of buoyancy is equal to

zG − zC
b

= 0.864 − 0.5 = 0.364.

with the centre of gravity below the buoyancy centre.
The distance between the buoyancy centre and the metacentre is equal to

zM − zC = IGxx
bl

→ zM − zC
b

= 1

12

l2

b2
.

For the stability of the equilibrium it is required that

zM − zC
b

>
zG − zC

b
,

or
1

12

l2

b2
> 0.364 → l

b
> 2.09.

This result is almost equal to the one obtained considering also the action of
the overlying fluid. If the overlying fluid had been air, the results on the stability
condition of the equilibrium analyzed by including or neglecting the overlying fluid
would have been practically coincident. This also applies if the underlying fluid is
water with air above. It is for this reason that, as a rule, the action of the air is always
neglected when studying the stability of the equilibrium of boats and of floating
bodies in water.
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Fig. 3.14 Floating cylinder pivoted along the generatrix

Exercise 3.6 The cylinder in Fig. 3.14 floats in water and is pivoted to its full length
along the generatrix.

– Calculate the relative specific weight of the cylinder material as a function of the
ratio α = H/R for 0 ≤ α < 1.

Friction at the pivot is negligible.

Solution The forces acting on the cylinder are:

– the weight force, applied in the centre of gravity and pointing downwards;
– the buoyancy force, applied in the centre of buoyancy and pointing upwards;
– the reaction of the constraint, necessarily passing through the pivot.

The first two forces are always vertically aligned due to the symmetry of the
body. Since they must have zero torque about the pivot, they must have the same
magnitude. Therefore, the reaction of the pivot is null, since there are no horizontal
acting forces.

In equilibrium condition, it results

− |P| + |SA| = 0.

The weight of the cylinder per unit of depth has magnitude

|P| = γmπR2,

where γm is specific weight of the cylinder.
Buoyancy force per unit depth has magnitude

|SA| = γwA,
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where γw is specific weight of water and A is the cross-section of the immersed
volume, equal to

A = R2cos−1

(
1 − H

R

)
− R2

(
1 − H

R

)√

2
H

R
−

(
H

R

)2

.

Upon substitution, yields

−γmπR2 + γw

⎡

⎣R2cos−1

(
1 − H

R

)
− R2

(
1 − H

R

)√

2
H

R
−

(
H

R

)2
⎤

⎦ = 0,

and, as function of α:

∴ γm

γw

= cos−1 (1 − α) − (1 − α)
√
2α − α2

π
.

Exercise 3.7 The barge in Fig. 3.15 carries oil floating on a layer of water. The
weight of the hull per unit length is Phull = (3000 + 100 Cpu)Nm−1. The width
is b = (10 + Cu)m, the depth of the water layer is y1 = 1.5m and the depth of the
oil layer is y2 = 2.0m.

– Calculate the draught y3 of the boat if it is immersed in water.

Assume γw = 9806Nm−3, γo = 0.8γw.

Solution Vertical equilibrium is satisfied if buoyancy force equals the weight of
the hull and its contents. The buoyancy force per unit length of the hull (orthogonal to
the sheet) is equal to the product of the immersed volume of the hull and the specific
weight of the water:

FA = γw (b + y3) y3,

and is pointing upwards.
The weight of the hull and its contents, per unit of length, is equal to

P = Phull + γw (b + y1) y1 + γo (b + 2y1 + y2) y2,

and is pointing downwards.
By equating and solving the following second-order equation in y3,

γw (b + y3) y3︸ ︷︷ ︸
Vdisplaced

= Phull + γw (b + y1) y1 + γo (b + 2y1 + y2) y2︸ ︷︷ ︸
P

,
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Fig. 3.15 Floating barge
containing stratified liquids

water
oil

b

y1

y2

1
1y3

the draught of the barge is calculated.

For Cu = Cpu = 0 it results Phull = 3 kNm−1, b = 10.0m, y1 = 1.5m, y2 =
2.0m,

∴ P = Phull + γw (b + y1) y1 + γo (b + 2y1 + y2) y2 =
3000 + 9806 (10 + 1.5) 1.5

+ 0.8 9806 (10 + 2 1.5 + 2.0) 2.0 = 407.5kNm−1,

γw (b + y3) y3 = P → 9806 (10.0 + y3) y3 = 407 500,

which admits the physically acceptable solution

∴ y3 = 3.16m.

Exercise 3.8 The device in Fig. 3.16 is a differential level gauge. The two cylinders,
of specific weight γm , are connected by an inextensible cable suspendedwith a pulley
of diameter Dp = 200mm. The cylinders have diameter D1 = D2 = 150mm and
height h1 = h2 = h = 400mm, and the length of the cable is L = 1000mm. In the
hypothesis that the friction torque at the axis of the pulley is negligible:

– analyze the behavior of the system as a function of the absolute level and the
difference in level in the two measuring wells, if γm < γw, where γw is specific
weight of water.

– Perform the same analysis if γm > γw.

In addition, analyze the effects of a friction torque at the pulley axis equal to M =
5 10−3 Nm.
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Fig. 3.16 Differential level
gauge with floating cylinders
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Solution We consider the equilibrium of the two cylinders, subject to their own
weight, to the buoyancy and to the cable traction, see Fig. 3.17.

In the absence of friction torque at the pulley axis, the tensile force in the cable is
constant. The draught of the two cylinders is calculated on the basis of the following
two equilibrium equations:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γm
πD2

1

4
h1 − γw

πD2
1

4
Δ1 − T = 0,

γm
πD2

2

4
h2 − γw

πD2
2

4
Δ2 − T = 0.

By subtracting the corresponding sides of the two equations, yields

γm

(
πD2

1

4
h1 − πD2

2

4
h2

)
− γw

(
πD2

1

4
Δ1 − πD2

2

4
Δ2

)
= 0.

If the diameters of the two cylinders are equal (D1 = D2 = D), it results

γm
πD2

4
(h1 − h2) − γw

πD2

4
(Δ1 − Δ2) = 0 → (Δ1 − Δ2) = γm (h1 − h2)

γw

.

This means that the difference between the draught of the two cylinders is inde-
pendent of the level of the fluid in the two wells. Therefore, if the level in one well
remains fixed and the level in the other well varies, the cable will run by a value
exactly equal to the differential level variation, and the angle of rotation of the pulley
will be linearly proportional to the difference in level between the two wells:

α ∝ Δ

Dp
,

and the device works as a differential level gauge with a linear characteristic.
If γm < γw, the device no longer works as a differential level gauge when the

traction in the cable is null, i.e. when the following condition occurs:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ1 = γm

γw

h1,

Δ2 = γm

γw

h2.

(3.2)

This is equivalent to the condition of floating cylinders with buoyancy force able
to support them without traction in the cable.

The analysis of the operating range can be carried out by referring (i) to the average
level of free surface level in the two wells, and (ii) to the excursion of free surface
level in the two wells about this average level.

After selecting a system of coordinates z with the origin at the level of the axis
of the pulley, see Fig. 3.18, assuming h1 = h2 = h the limit condition (3.2) allows
to calculate one of the two limit positions of the average level:

max zav =
(
L − πDp

2

)
1

2
+ h

(
1 − γm

γw

)
,
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Fig. 3.18 Schematic for the
analysis of the measurement
range

1

2

z

max zav

min z av

Δ
Δ

zav

1

2

z

max zav

min z

Δ
Δ

zav

which becomes:

max zav =
(
L − πDp

2

)
1

2
+ h

(
1 − γm

γw

)
→

(
1000 − π 200

2

)
1

2
+ 400

(
1 − γm

γw

)
= 742.9 − 400

(
γm

γw

)
mm.

The other limit position of the average level corresponds to the condition of
cylinders suspended out of the water (buoyancy force is null and the cylinders are
supported only by the traction in the cable), and depends on the geometry of the
system:

min zav =
(
L − πDp

2

)
1

2
+ h,

which becomes

min zav =
(
L − πDp

2

)
1

2
+ h →

(
1000 − π 200

2

)
1

2
+ 400 = 742.9mm.

On the basis of the previous results, the range of excursion of the average level is
equal to

∴ max zav − min zav = h
γm

γw
.
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The range of excursion of the differential level in the wells, equal to the average
level plus ±Δ/2, depends only on the geometry of the system, i.e. the length of the
cable and the height of the cylinders.

If γm > γw the device no longer works as a differential level gauge if the level in
the wells is such that the two cylinders sink or emerge completely. Unlike the case
where γm < γw, the traction in the cable never cancels.

The condition of fully sunk cylinders results in a limit position of the average
level of:

max zav =
(
L − πDp

2

)
1

2
→

(
1000 − π 200

2

)
1

2
= 342.9mm.

The condition of cylinders completely out of water leads to calculate the other
limit position of the mean level, which depends on the geometry of the system and
is equal to:

min zav =
(
L − πDp

2

)
1

2
+ h,

and which becomes:

min zav =
(
L − πDp

2

)
1

2
+ h →

(
1000 − π 200

2

)
1

2
+ 400 = 742.9mm.

The average level excursion range is equal to:

∴ max zav − min zav = h.

Notice that this value is greater than the value calculated if γm < γw.
Also in this case, the range of excursion of the differential level in the wells, equal

to the average level ±Δ/2, depends only on the geometry of the system, i.e. the
length of the cable and the height of the cylinders.

If we include the effect of the friction torque, the traction in the cable is not
necessarily constant and the two equilibrium equations for the two cylinders are
rewritten as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γm
πD2

1

4
h1 − γw

πD2
1

4
Δ1 − T = 0,

γm
πD2

2

4
h2 − γw

πD2
2

4
Δ2 − T ± 2M

Dp
= 0.

By subtracting the corresponding sides of the two equations, yields

γm

(
πD2

1

4
h1 − πD2

2

4
h2

)
− γw

(
πD2

1

4
Δ1 − πD2

2

4
Δ2

)
∓ 2M

Dp
= 0.
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If the diameters of the two cylinders are equal (D1 = D2 = D), it results

γm
πD2

4
(h1 − h2) − γw

πD2

4
(Δ1 − Δ2) ∓ 2M

Dp
= 0 →

(Δ1 − Δ2) = γm (h1 − h2)

γw

∓ 8M

γwπD2Dp
.

(3.3)

Compared to the analysis in the absence of friction torque, there is an uncertainty in
the estimate which is systematic and leads to an underestimation of the differential
level if the difference in level is increasing, to an overestimation if the difference in
level is decreasing. It can be demonstrated that the uncertainty in the estimation of
(Δ1 − Δ2) (only the contribution due to the friction torque) is equal to the uncertainty
in the differential level:

δ (Δ1 − Δ2) ≡ δ (Δ) .

In the present condition, this uncertainty is equal to

δ (Δ1 − Δ2) ≡ δ (Δ) = ± 8M

γwπD2Dp
=

± 8 5 10−3

9806 π 0.152 0.2
= ±0.3mm,

(3.4)

and it can be reduced by increasing the diameter of the pulley and of the cylinders.

Exercise 3.9 The concrete caisson in Fig. 3.19 has a horizontal section with walls
d = 15 cm thick and a bottom 2d thick. The external side has length l = (2.0 +
0.01 Cu)m, and the height is H = (3.2 + 0.1 Cpu)m.

– Check the buoyancy equilibrium.
– Check the stability of the equilibrium for small rotations about a horizontal axis.

Assume the specific weight of concrete γc = 24 kNm−3 and the specific weight of
seawater γw = 10.15 kNm−3.

Solution Consider the schematic shown in Fig. 3.20. For buoyancy, it is necessary
that the force of buoyancy balances the weight of the caisson:

γcVc = γwVb,

where Vc is the net volume of concrete and Vb is the volume of buoyancy.
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Fig. 3.19 Concrete floating caisson

Fig. 3.20 Schematic for
calculation of the centre of
gravity and of centre of
buoyancy
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The net volume of concrete is equal to

Vc = l2H − (l − 2d)2 (H − 2d) ,

and the volume of buoyancy is equal to

Vb = l2h,

where h refers to the immersed part of the caisson.
Hence,

γc
[
l2H − (l − 2d)2 (H − 2d)

] = γwl
2h →

h = γc
[
l2H − (l − 2d)2 (H − 2d)

]

γwl2
.
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For the stability of the equilibrium to small rotations about a horizontal axis
orthogonal to the sheet, it is necessary that the centre of buoyancy is above the centre
of gravity. If this is not verified, it is sufficient that the metacentre is above the centre
of gravity, that is:

(zM − zC) > (zG − zC).

In the hypothesis of infinitesimal rotations, the distance between the centre of
buoyancy and the metacentre is calculated as follows:

(zM − zC) = IGxx
Vb

,

where IGxx is the second moment of inertia of the cross-section of the floating body
at the waterline with respect to an axis parallel to the axis of rotation and barycentric.
For a square cross-section, results:

IGxx = 1

12
l4.

The position of the centre of gravity is calculated by dividing the box into ele-
mentary volumes, for example the bottom and the walls. Therefore, the first moment
of the whole caisson is equalised with the sum of the first moments of the elementary
volumes. The first moment of the bottom, with respect to a horizontal plane passing
through the origin of the coordinate system, is

Sz−b = 2d2l2.

The first moment of the walls is

Sz−w = [2 (l − 2d) d + 2ld] (H − 2d)

(
H − 2d

2
+ 2d

)
.

The first moment of the caisson (net volume filled with concrete) is equal to

Sz−c = [
l2H − (l − 2d)2 (H − 2d)

]
zG.

Hence

Sz−c = Sz−b + Sz−w → [
l2H − (l − 2d)2 (H − 2d)

]
zG =

2d2l2 + [2 (l − 2d) d + 2ld] (H − 2d)

(
H − 2d

2
+ 2d

)
→

zG =
2d2l2 + [2 (l − 2d) d + 2ld] (H − 2d)

(
H − 2d

2
+ 2d

)

l2H − (l − 2d)2 (H − 2d)
.
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The distance between the centre of buoyancy and the centre of gravity is equal to
zG − zC and the equilibrium is stable if (zM − zC) > (zG − zC).

For Cu = Cpu = 0 it results d = 15 cm, l = 2.00m, H = 3.2m, γc =
24 kNm−3, γw = 10.15 kNm−3,

∴ h = γc
[
l2H − (l − 2d)2 (H − 2d)

]

γwl2
=

24 000
[
2.02 3.2 − (2.0 − 2 0.15)2 (3.2 − 2 0.15)

]

10 150 2.02
= 2.61m,

(zM − zC) = IGxx
Vb

=
1

12
l4

l2h
=

1

12
2.04

2.02 2.61
= 0.13m,

zG =

[
2d2l2 + [2 (l − 2d) d + 2ld] (H − 2d)

(
H − 2d

2
+ 2d

)]

l2H − (l − 2d)2 (H − 2d)
=

[
2 0.152 2.02 + [2 (2.0 − 2 0.15) 0.15 + 2 2.0 0.15]

(3.2 − 2 0.15)

(
3.2 − 2 0.15

2
+ 2 0.15

)]

2.02 3.2 − (2.0 − 2 0.15)2 (3.2 − 2 0.15)

= 1.315m,

(zG − zC) = 1.315 − 2.61

2
= 0.01m.

Hence, the centre of buoyancy is below the centre of gravity. However

(zM − zC) > (zG − zC) → 0.13 > 0.01,

and the equilibrium is stable.

Exercise 3.10 The breakwater of a marina in a lake shown in Fig. 3.21, is made
of floating caissons with dimensions l = 5260mm, b = 3000mm, hc = 1800mm,
free to slide vertically on pairs of vertical cylindrical circular piers, equipped with
a screen to reduce wave penetration, having height hs = 3000mm. To ensure the
verticality of the caisson, a counterweight equal to the weight of the screen is placed
inside. The sliding takes place through circular pipes with a diameter of 1400mm,
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Fig. 3.21 Floating breakwater caisson free to slide in the vertical

Fig. 3.22 Schematic for the
calculation of the centre of
mass, centre of buoyancy
and metacentre
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extended beyond the bottom of the box. The caissons, screen and pipes are made of
steel sheet with a thickness of s = 10mm.

– Calculate the submersion h of the caissons.
– Check the stability of the equilibrium for small rotations about the two horizontal
axes.

– Calculate the period of vertical oscillation of the caissons.

Assume the specific weight of steel γFe = 77 kNm−3 and the specific weight of
fresh water γw = 9.80 kNm−3. The added mass coefficient is equal to Cm = 1.7.

Solution Consider the diagram in Fig. 3.22.
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For buoyancy (equilibrium in the vertical direction), the force of buoyancy must
balance the weight of the caisson:

Pc = γwVb,

where Vb is the volume of buoyancy.
The weight of the caisson is equal to

Pc = γFe

⎡

⎢⎢⎢
⎣
2hcls + 2hcbs︸ ︷︷ ︸

volume of sides

+ 2

(
bl − 2

πD2

4

)
s

︸ ︷︷ ︸
volume horizontal plates

+ 2πDhts︸ ︷︷ ︸
volume
of tubes

+ hsls︸︷︷︸
volume screen

⎤

⎥⎥⎥
⎦

+ Pcw,

where Pcw is the counterweight, equal to the weight of the screen. Hence

Pc = γFe

⎡

⎢⎢
⎢
⎣
2hcls + 2hcbs︸ ︷︷ ︸

volume of sides

+ 2

(
bl − 2

πD2

4

)
s

︸ ︷︷ ︸
volume horizontal plates

+ 2πDhts︸ ︷︷ ︸
volume
of tubes

+ 2hsls︸ ︷︷ ︸
volume screen +
counterweight

⎤

⎥⎥
⎥
⎦

.

The volume of buoyancy is equal to

Vb =
(
bl − 2

πD2

4

)
h

︸ ︷︷ ︸
volume displaced by
the parallelepiped

+ 2πD (ht − hc) s︸ ︷︷ ︸
volume of the tubes
out of the caisson

+ hsls︸︷︷︸
volume screen

,

where h is the depth of the submerged part of the caisson.
In equilibrium condition, it results

γw

⎡

⎢⎢⎢
⎢⎢
⎣

(
bl − 2

πD2

4

)
h

︸ ︷︷ ︸
volume displaced by
the parallelepiped

+ 2πD (ht − hc) s︸ ︷︷ ︸
volume of the tubes
out of the caisson

+ hsls︸︷︷︸
volume screen

⎤

⎥⎥⎥
⎥⎥
⎦

=

γFe

⎡

⎢⎢
⎢
⎣
2hcls + 2hcbs︸ ︷︷ ︸

volume of sides

+ 2

(
bl − 2

πD2

4

)
s

︸ ︷︷ ︸
volume horizontal plates

+ 2πDhts︸ ︷︷ ︸
volume
of tubes

+ 2hsls︸ ︷︷ ︸
volume screen +
counterweight

⎤

⎥⎥
⎥
⎦

.

By substituting the numerical values, yields
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Pc = γFe

⎡

⎢⎢⎢
⎣
2hcls + 2hcbs︸ ︷︷ ︸

volume of sides

+ 2

(
bl − 2

πD2

4

)
s

︸ ︷︷ ︸
volume horizontal plates

+ 2πDhts︸ ︷︷ ︸
volume
of tubes

+ 2hsls︸ ︷︷ ︸
volume screen
plus counterweight

⎤

⎥⎥⎥
⎦

=

77

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

2 1.80 5.26 0.01 + 2 1.80 3 0.01︸ ︷︷ ︸
volume of sides

+

2

(
3 5.26 − 2

π 1.42

4

)
0.01

︸ ︷︷ ︸
volume horizontal plates

+ 2 π 1.4 2.8 0.01︸ ︷︷ ︸
volume
of tubes

+

2 3 5.26 0.01︸ ︷︷ ︸
volume screen +
counterweight

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

=

77 1.1132 = 85.72kN,

where the volume of iron equals 1.1132 m3,

Vb =
(
bl − 2

πD2

4

)
h

︸ ︷︷ ︸
volume displaced by
the parallelepiped

+ 2πD (ht − hc) s︸ ︷︷ ︸
volume of the tubes
out of the caisson

+ hsls︸︷︷︸
volume screen

=

(
3 5.26 − 2

π 1.42

4

)
h + 2 π 1.4 (2.80 − 1.80) 0.01

+ 3 5.26 0.01 = 12.70 h + 0.24576

In equilibrium condition, it results:

∴ Pc = γwVb → 85 720 = 9800 (12.70h + 0.24576) → h = 0.67m.

The volume of buoyancy is equal to

Vb = Pcb
γw

= 85 720

9800
= 8.747m3.

For the stability of the equilibrium to the small rotations around a horizontal axis
orthogonal to the sheet, it is necessary to consider the level of the centre of mass,
of the centre of buoyancy and possibly of the metacentre. If the centre of buoyancy
is above the centre of mass, the equilibrium is stable and no further verification is
necessary. Otherwise it is sufficient that the metacentre is above the centre of mass,
i.e.

(zM − zC) > (zG − zC).

The position of the centre of mass is calculated by dividing the caisson into
elementary volumes. Then, the first moment of the whole caisson is equalized with
the sum of the first moments of the elementary volumes.
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The first moment of the parallelepiped portion of the caisson, with respect to a
horizontal plane passing through the origin of the coordinate system, is as follows:

Sz1 =

⎡

⎢⎢
⎢
⎣
2hcls + 2hcbs︸ ︷︷ ︸

volume of sides

+ 2

(
bl − 2

πD2

4

)
s

︸ ︷︷ ︸
volume horizontal plates

+ 2πDhcs︸ ︷︷ ︸
volume of tubes
within the caisson

⎤

⎥⎥
⎥
⎦

hc
2

.

The first moment of the screen is negative and is equal to

Sz2 = −
⎛

⎝ hsls︸︷︷︸
volume screen

⎞

⎠ hs
2

.

The first moment of the out-of-caisson portion of the tubes is negative and is equal
to

Sz3 = − 2πD (ht − hc) s︸ ︷︷ ︸
volume of tubes
out of the caisson

(ht − hc)

2
.

Weneglect thefirstmoment of the counterweight, assuming that the counterweight
is at a short distance from the origin of the coordinate system. The total first moment
is equal to the product of the total volume of steel (including the equivalent volume
of the counterweight) multiplied by the unknown distance of the centre of mass

⎡

⎢⎢
⎢
⎣
2hcls + 2hcbs︸ ︷︷ ︸

volume of sides

+ 2

(
bl − 2

πD2

4

)
s

︸ ︷︷ ︸
volume horizontal plates

+ 2πDhts︸ ︷︷ ︸
volume
of tubes

+ 2hsls︸ ︷︷ ︸
volume screen +
counterweight

⎤

⎥⎥
⎥
⎦
zG =

Sz1 + Sz2 + Sz3.

By substituting the numerical values, it results

Sz1 =

⎡

⎢⎢⎢
⎣
2hcls + 2hcbs︸ ︷︷ ︸
volume of sides

+ 2

(
bl − 2

πD2

4

)
s

︸ ︷︷ ︸
volume horizontal plates

+ 2πDhcs︸ ︷︷ ︸
volume of tubes
in the caisson

⎤

⎥⎥⎥
⎦

hc
2

=

⎡

⎣2 1.80 5.26 0.01 + 2 1.80 3 0.01︸ ︷︷ ︸
volume of sides
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+ 2

(
3 5.26 − 2

π 1.42

4

)
0.01

︸ ︷︷ ︸
volume horizontal plates

+ 2 π 1.4 1.8 0.01︸ ︷︷ ︸
volume of tubes
in the caisson

⎤

⎥
⎥
⎦

1.8

2

= 0.639m4,

Sz2 = −
⎛

⎝ hsls︸︷︷︸
volume screen

⎞

⎠ hs
2

= −3 5.26 0.01
3

2
= −0.2367m4,

Sz3 = − 2πD (ht − hc) s︸ ︷︷ ︸
volume of tubes
out of caisson

(ht − hc)

2
=

− 2 π 1.4 (2.8 − 1.8) 0.01
(2.8 − 1.8)

2
= − 0.04398m4,

zG = Sz1 + Sz2 + Sz3

2hcls + 2hcbs︸ ︷︷ ︸
volume of sides

+ 2

(
bl − 2

πD2

4

)
s

︸ ︷︷ ︸
volume horizontal plates

+ 2πDhts︸ ︷︷ ︸
volume
of tubes

+ 2hsls︸ ︷︷ ︸
volume screen +
counterweight

=

0.639 − 0.2367 − 0.04398

1.1132
= 0.32m.

In the same way, it is possible to calculate the centre of buoyancy with reference to
the first moment of the displaced volumes of water. Sz2 and Sz3 are unchanged. The
first moment of the volume of water displaced by the caisson is

Sz4 =
[
blh − 2

πD2h

4

]
h

2
=

[
3 5.26 0.67 − 2

π 1.42

4
0.67

]

︸ ︷︷ ︸
V4

0.67

2
=

8.509︸ ︷︷ ︸
V4

0.67

2
= 2.850m4,

zC = Sz4 + Sz2 + Sz3
Vb

= 2.850 − 0.2367 − 0.04398

8.747
= 0.29m.

As already mentioned in the previous paragraphs, if the centre of buoyancy were
above the centre of mass, the floating body would be stable for small rotations, since
the incipient torque associatedwith a small rotationwould tend to reverse the rotation
itself. Since the centre of buoyancy is below the centre of mass, it is necessary to
check the position of the metacentre.
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In the hypothesis of small roll rotations (rotation around an axis orthogonal to the
figure), the distance between the centre of buoyancy and the metacentre is calculated
as follows:

(zM − zC) = IGxx
Vb

,

where IGxx is the second moment of the cross-section of the floating body at the
waterline level, with respect to an axis parallel to the axis of rotation and barycentric.
In the present case, it results

IGxx = 1

12
lb3 − 2

πD4

64
.

By substituting the numerical values, yields

IGxx = 1

12
lb3 − 2

πD4

64
= 1

12
5.26 33 − 2

π 1.44

64
= 11.458m4.

Hence

(zM − zC) = IGxx
Vb

= 11.458

8.747
= 1.31m.

The condition of stability of equilibrium at small rotations about a horizontal axis
orthogonal to the sheet requires that

(zM − zC) > (zG − zC) → 1.31 > 0.32 − 0.29 ≡ 0.03m.

Equilibrium is stable. The stability is guaranteed even more for the rotation about
an axis orthogonal to the previous one and contained in the horizontal plane, since
the moment of inertia IGxx previously calculated is the smallest.

For the calculation of the resonance period for vertical oscillations, we write the
equation of the dynamics in which the force acting is buoyancy as a consequence of
a vertical displacement z with respect to the position of equilibrium:

(m + ma)
d2z

dt2
+ γwAz = 0,

wherem is themass of the floating body,ma is the addedmass (due to the surrounding
fluid involved in the movement of the floating body, Fig. 3.23), A is the area of the
cross-section of the buoyancy volume at the waterline.

The added mass is obtained by multiplying the mass of water displaced by the
volume of buoyancy (also equal to the mass of the floating body) by the added mass
coefficient Cm (which is experimentally evaluated):

ma = CmρwVb,
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Fig. 3.23 Volume of the
added mass (hatched) for
vertical oscillations analysis.
The shape is purely
conceptual

b

h

floating
caisson

added mass

where ρw is the mass density of water.
The homogeneous 2nd order differential equation can be rewritten in a compact

form as
d2z

dt2
+ γwA

m + ma︸ ︷︷ ︸
ω2

z = 0.

The solution is
z(t) = c1 sinωt + c2 cosωt,

where c1 and c2 are the two integration constants, which depend on the initial con-
ditions. The period of oscillation is equal to

T = 2π

ω
= 2π

√
m + ma

γwA
.

By substituting the numerical values, yields

m = Pc
g

= 85 720

9.806
= 8742kg,

ma = CmρwVb = 1.7 1000 8.747 = 14 870kg,

A = 3 5.26 − 2
π 1.42

4
= 12.70m2,

∴ T = 2π

√
m + ma

γwA
= 2 π

√
8742 + 14 870

9800 12.70
= 2.74 s.



Chapter 4
Balances of Linear and Angular
Momentum

Several practical problems of Fluid Dynamics can be solved with the use of the
linearmomentum balance equation, mostly in integral form.We select an appropriate
control volume and evaluate all the forces acting on it, separating the surface forces
(acting on the outer surface of the control volume), and the volume forces (acting
on the fluid particles contained in the volume). For ideal fluids (zero viscosity), only
pressure is present and the surface forces are normal to the external surface. The
volume forces are the weight, the local inertia (in unsteady flows) and the apparent
forces (e.g., centrifugal, Coriolis, Euler), defined in non-inertial control volumes.

Other equations are mass conservation and, for ideal fluids, energy conservation.
Energy conservation is often expressed as Bernoulli’s theorem: the total energy of
each particle of an ideal fluid body is invariant along a path provided no energy
enters or leaves the system. Energy is defined as “total head”, has a length dimension
(energy per unit of weight), and is shared between (i) elevation head (represents the
gravitational potential energy arising from elevation), (ii) pressure head (represents
the energy due to fluid pressure) and (iii) velocity head (represents the kinetic energy).
The magnitude of each of the three terms may vary but their sum is invariant. The
real fluid dissipates energy during the flow, but in many cases the dissipation is
negligible or can be parametrised with coefficients. Bernoulli’s theorem has different
formulations if the fluid is compressible or not, is unsteady, and is specialized for
non inertial frames.

A careful selection of the control volume is essential to derive solutions also
in complex systems. In some cases, the equation of conservation of the angular
momentum is also invoked.

Cu and Cpu , that are two integer numbers between 0 and 9, for example, the last and second-last
digit of the registration number.

© Springer Nature Switzerland AG 2021
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Although the equations used here are specialized for fluids, they apply to any
continuum in a broader definition.

Exercise 4.1 The reducing elbow curve shown in Fig. 4.1 is contained in a vertical
plane and deflects a water current by an angle of 135◦. The inlet and outlet diameters
are D1 and D2. The water flow rate Q and the pressures p1 and p2, barycentric in
sections1 and 2, are known; the water volume W between sections1 and 2 and the
weight of the curve P are also known.

– Determine the forces in the horizontal and vertical directions needed to keep the
curve in equilibrium.

Numerical data: D1 = (400 + Cu)mm, D2 = (200 + Cu)mm, Q = (400 +
Cpu) l s−1, p1 = (150 + Cu) kPa, p2 = (90 + Cpu) kPa, W = (0.2 + 0.01
Cu) m3, P = (120 + Cpu) N.

Fig. 4.1 Reducing elbow
curve contained in a vertical
plane

135°

section 1

section 2

D1

D2

SolutionWe apply the momentum balance in integral form to the control volume
delimited by sections1 and 2 and by the walls of the curve, see Fig. 4.2:

G + Π + �I + M1 − M2 = 0 → G + F + Π1 + Π2 + M1 − M2 = 0,

where F is the force exerted by the curve on the control volume and local inertia I is
cancelled because the flow is stationary. The balance equation of the momentum in
the x-direction is

Fx = −p1
πD2

1

4
− ρQV1 − p2

πD2
2

4
cos θ − ρQV2 cos θ,

where Fx represents the x-component of the force exerted by the curve on the control
volume. The balance equation of the momentum in the y-direction is
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Fig. 4.2 Schematic for
calculation of the forces

135°

section 1

section 2

Π1M1

Π2

M2

G

F

P
x

y

D1

D2

Fy = −p2
πD2

2

4
sin θ − ρQV2 sin θ + γwW,

where Fy represents the y-component of the action exerted by the curve on the control
volume. The total vertical force to be exerted on the curve will be equal to the sum
of Fy and the weight of the curve, Ftoty = Fy − P .

For Cu = Cpu = 0 it results D1 = 400 mm, D2 = 200 mm, Q = 400 l s−1, p1 =
150 kPa, p2 = 90 kPa, W = 0.2 m3, P = 120N, θ = 45◦, ρ = 1000 kgm−3,

∴ Fx = −p1Ω1 − ρ
Q2

Ω1
− p2Ω2 cos θ − ρ

Q2

Ω2
cos θ =

− 150 000
π 0.42

4
− 1000

0.42

π 0.42

4

− 90 000
π 0.22

4
cos 45◦

− 1000
0.42

π 0.22

4

cos 45◦ = −25.70 kN,

∴ Fy = −p2Ω2 sin θ − ρ
Q2

Ω2
sin θ + γwW = −90 000

π 0.22

4
sin 45◦

− 1000
0.42

π 0.22

4

sin 45◦ + 9806 0.2 = −3.64 kN,

∴ Ftoty = Fy − P = −3639 + 120 = −3.52 kN.
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V = 10 m/s

D = 20 mm

Fig. 4.3 Skater with nozzle

Exercise 4.2 The skater in Fig. 4.3, of mass M = (60 + Cu) kg, holds a nozzle of
diameter D = 20 mm and negligible mass. The water outflow speed is 10 m s−1.
Starting from rest:

– calculate the speed of the skater after 5 s.
– Calculate the distance travelled by the skater in the same time interval.

Solution In a control volume attached to the skater (in general, this frame is non-
inertial), the momentum balance allows the calculation of a force acting on the skater
equal to the out-flowing momentum:

F = ρV 2 πD2

4
.

This force is parallel to the outflow velocity V and is pointing in the opposite
direction. The velocity must always be calculated in relation to the control volume
and, if the nozzle supply is not affected by the skater’smotion, the force F is constant.
Therefore, the dynamic equation for the skater can be written as

M
d2s

dt2
= F,

where s is the space coordinate. Double integrating, yields

s = F

M

t2

2
+ c1t + c2.

The initial conditions of zero speed and position in the origin of the coordinate
system s, render null the two constants of integration c1 and c2. Hence,
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s = F

M

t2

2
, U ≡ ds

dt
= F

M
t.

For Cu = Cpu = 0 it results M = 60 kg, D = 20 mm, V = 10 m s−1,

∴ F = ρV 2 πD2

4
= 1000 102

π 0.022

4
= 31.4 N,

∴ s = F

M

t2

2
= 31.4

60

52

2
= 6.54 m,

∴ U = F

M
t = 31.4

60
5 = 2.62 m s−1.

Exercise 4.3 The water jet in Fig. 4.4, having diameter D = (100 + 10 Cpu) mm
and speed V = (30 + Cu) ms−1, axially strikes a conical surface.

– Calculate the thickness of the water sheet at a distance of R = 200 mm from the
axis of the cone.

– Calculate the force that must be applied to the cone to move it to the left with
constant speed Vc = 15 m s−1.

Solution We consider the dashed trajectory in Fig. 4.5, between section1 and
section2. Neglecting the energy losses, from Bernoulli’s theorem results

Fig. 4.4 Water jet striking a
conical surface

60°

Vc

V R

D
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Fig. 4.5 Trajectory for the
application of Bernoulli’s
theorem and pressure
diagram

1
R

p

2

60°

Vc

z1 +
�
��
p1
γw

+ V 2
1

2g
= z2 + p2

γw
+ V 2

2

2g
.

Figure4.5 shows the qualitative diagram of the pressure distribution, hatched area.
The pressure is maximum in the axis and is zero in the section of detachment of the
current from the cone. In the sections of the current at contactwith the conical surface,
the pressure distribution along the normal wall is almost hydrostatic (however, the
trajectories are slowly converging towards the wall and therefore the distribution is
not rigorously hydrostatic) and decreases from the axis towards the trailing edge,
where it assumes a value equal to the atmospheric pressure. Since the calculation
of p2 requires the integration of the motion equations, the application of Bernoulli’s
theorem is in general not advantageous for the calculation of the V2 speed. But if we
neglect the variation of elevation head, and if section2 is external to the cone, where
the current is again all in air (and the relative pressure p2 is zero), it results that the
velocity of the current is equal to the velocity of the incident jet. This also applies
approximately at a distance sufficiently large from the axis. At a distance of R from
the axis, the current section is equal to:

Ω = 2πRδ + πδ2 sin 30◦ ≈ 2πRδ,

where δ � R is the thickness of the jet. Applying the mass conservation equation,
yields

πD2

4
V = 2πRδV → δ = D2

8R
.

To calculate the force required tomove the cone at a constant speed, we choose the
mobile control volume attached to the cone in Fig. 4.6. In the application of momen-
tum balance, all flows must be calculated with reference to the surface delimiting the
control volume, with quantities that have been transformed into the mobile reference
system attached to the control volume. The speed of the input flow in the mobile
inertial frame is equal to V + Vc. The pressure is equal to the atmospheric pressure
(it can be demonstrated that the pressure inside a current of a liquid in air, must be
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Fig. 4.6 Mobile control
volume for forces calculation

V+Vc F

V+Vc

V+Vc

60°

x

y

uniform and equal to the pressure at the boundary). The speed of the outlet fluid is
still equal to V + Vc. Hence, yields

ρ(V + Vc)
2 πD2

4
︸ ︷︷ ︸

input momentum flux along x

− ρ(V + Vc)
2Ωu cos 60

◦
︸ ︷︷ ︸

output momentum flux along x

+Fx = 0,

where Ωu is the area of the cross-section of the current flowing out of the control
volume. For the conservation of the mass, it results:

(V + Vc)
πD2

4
= (V + Vc)Ωu,

hence

Fx = −ρ(V + Vc)
2 πD2

4
(1 − cos 60◦) .

Neglecting theweight force, any other component of the force is null by symmetry.
The force applied to the cone must be pointing to the left.

For Cu = Cpu = 0 it results D = 100 mm, V = 30 m s−1, R = 200 mm, Vc =
15 m s−1,

∴ δ = D2

8R
= 0.12

8 0.2
= 6.25 mm,
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∴ Fx = −ρ(V + Vc)
2 πD2

4
(1 − cos 60◦) =

− 1000 (30 + 15)2
π 0.12

4
(1 − cos 60◦) = −7950 N.

Exercise 4.4 The horizontal water jet in Fig. 4.7, having cross-sectional area a =
(50 + 10 Cpu) cm2 and speed V = (5.0 + Cu) ms−1, strikes a flat plate inclined
at an angle θ = (20 + Cpu)

◦ to the horizontal.

(a) Calculate the force if the plate is stationary.
(b) Calculate the force if the plate ismovingwith horizontal velocityU = 1.0 m s−1.
(c) Calculate the force if the plate is moving with velocity U = 1.0 m s−1 along its

normal.
(d) Calculate the power of the force and the efficiency for the three cases.

Solution Case (a). The fluid is ideal and the forces can only be normal to the
plate. The momentum balance in integral form reduces to

�G + Π + �I + M1 − M2 = 0 → −F + M1 − M2 = 0,

where we have neglected the weight, local inertia is zero, and where F ≡ −Π is the
force of the control volume on the flat plate. If we choose a coordinate system with
x normal to the plate and y parallel to the plate, results

Fx = M1x , Fy = 0. (4.1)

Hence,
Fx = ρaV 2 cos θ.

The power and the efficiency are null since the force has a fixed application point.

Case (b). If the plate is moving with horizontal velocity U , we choose an inertial
control volume translatingwith the same velocity, see Fig. 4.8, and the linearmomen-
tum balance equations are still coincident with Eq. (4.1), with velocities computed
in the mobile control volume. The result is

Fx = ρa (V −U )2 cos θ,

since the velocity in the inertial control volume is V − U.
The power is

P = F · U = FxU cos θ = ρaU (V −U )2 cos2 θ,
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U

V

a x

θ

V

U

V

a) b)

c)

Fig. 4.7 Water jet striking a flat plate, case (a), (b) and (c)

Fig. 4.8 Schematic for case
(b), water jet striking a flat
plate translating with
uniform horizontal speed

U

V

b)
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Fig. 4.9 Schematic for case
(c), water jet striking a flat
plate translating with
uniform speed orthogonal to
the plate. U′ is the horizontal
velocity of translation of the
inertial control volume, with
magnitude U/ cos θ

V

c)

U

U

and the efficiency is the ratio between the power of force acting on the plate and the
kinetic power of the incoming jet (with a unitary energy coefficient):

η = ρaU (V −U )2 cos2 θ

ρV 3a/2
= 2

U

V

(

1 − U

V

)2

cos2 θ.

Case (c). The third case can be solved by selecting a control volume which, in
order to guarantee a zero inertial term, must contain a time invariant volume of fluid.
This result is achieved if the control volume translates horizontally with a velocity
U/ cos θ , see Fig. 4.9. Hence,

Fx = ρa

(

V − U

cos θ

)2

cos θ. (4.2)

This result can be obtained as follows, by reasoning without separating flux of
momentum and local inertia.

The resultant of the forces balances the variation of momentum in unit time. The
mass leaving the nozzle in unit time is ρaV and the mass used to extend the jet
is ρa(U/ cos θ), hence the mass striking the plate is ρa(V −U/ cos θ). The initial
velocity normal to the plate is V cos θ and the final velocity normal to the plate isU ,
with a velocity variation equal to V cos θ −U . Hence,

Fx = m

Δt
ΔV ≡ ρa

(

V − U

cos θ

)

(V cos θ −U ),

which is equivalent to Eq. (4.2).
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Fig. 4.10 Case (c), water jet
striking a flat plate
translating with uniform
speed orthogonal to the
plate. Disadvantageous
choice of the control volume

V

c)

U

The power is

P = F · U = FxU = ρaU

(

V − U

cos θ

)

(V cos θ −U ),

and the efficiency is the ratio between the power of force acting on the plate and the
kinetic power of the incoming jet (by assuming again a unitary energy coefficient):

η =
ρaU

(

V − U

cos θ

)

(V cos θ −U )

ρV 3a/2
= 2

cos θ

U

V

(

cos θ − U

V

)2

.

The control volume in a reference system translating with the velocity U, shown
in Fig. 4.10, should be avoided, since it does not follow the fluid and requires extra
terms for the correct balance.

For Cu = Cpu = 0 it results a = 50 cm2, V = 5.0 m s−1, U = 1.0 m s−1, θ =
20◦,

Case (a)

∴ Fx = ρaV 2 cos θ = 1000 50 10−4 5.02 cos 20◦ = 117.5 N,

∴ P = 0, η = 0.
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Case (b)

∴ Fx = ρa (V −U )2 cos θ = 1000 50 10−4 (5.0 − 1.0)2 cos 20◦ = 75.2 N,

∴ P = FxU cos θ = 75.2 1.0 cos 20◦ = 70.7 W,

∴ η = 2
U

V

(

1 − U

V

)2

cos2 θ = 2
1.0

5.0

(

1 − 1.0

5.0

)2

cos2 20◦ = 22.6 %.

Case (c)

∴ Fx =ρa

(

V − U

cos θ

)2

cos θ =

1000 50 10−4

(

5.0 − 1.0

cos 20◦

)2

cos 20◦ = 72.8 N,

∴ P = FxU = 72.8 1.0 = 72.8 W,

∴ η = 2

cos θ

U

V

(

cos θ − U

V

)2

= 2

cos 20◦
1.0

5.0

(

cos 20◦ − 1.0

5.0

)2

= 23.3 %.

Exercise 4.5 The fuel tank of the rocket shown in Fig. 4.11 is cylindrical, with
diameter D = 3 m, coaxial with the rocket and pressurized to an absolute pressure
p = (3 + Cpu/10) 105 Pa. The mass density of the liquid fuel is equal to ρ f =
0.8ρw, and the initial level is equal to h = (3 + Cu/10) m.

– Calculate the force at the bottom of the tank at take-off, if the initial acceleration
is a = 10 m s−2 and the launch ramp is at sea level.

– Calculate the same force when 40% of the fuel is burned and the total rocket mass
is 70% of the initial mass, assuming the engine thrust is the same as the take-off
thrust, the tank pressurization is unchanged, the gravity acceleration is equal to
50% of the standard gravity acceleration and the atmospheric pressure is reduced
to 20% of the sea level atmospheric pressure.

Assume ρw = 1000 kgm−3, patm = 105 Pa at sea level.

Solution Integrating the indefinite equation of statics in the non-inertial reference
attached to the rocket:

ρ f (g + a) = ∂p

∂z
,

and requiring the condition that the absolute pressure at the fuel free interface is
equal to p, the absolute pressure at the bottom of the tank is equal to
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Fig. 4.11 Rocket with
cylindrical circular tank

a

h

p z

p f int = p + ρ f (g + a) h.

Atmospheric pressure acts from the outside. The net force acting on the bottom,
on take-off, is equal to

F = (p f int − patm
) πD2

4
= [p + ρ f (g + a) h − patm

] πD2

4
.

If after a certain interval of time in flight, during which the mass reduces from m
to m ′ = 0.7m (due to fuel and comburent consumption), the thrust of the vector is
unchanged, there will be an increase in acceleration, with a new value equal to

a′ = a
m

m ′ = a

0.7
.

In addition, a 40% reduction in fuel leads to a reduction of the fuel level in the
tank, the new fuel level being equal to h′ = 0.6h.
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Therefore, also considering the reduction of the acceleration of gravity, the value
of the new force on the bottom will be equal to:

F ′ = (p′
f int − 0.2patm

) πD2

4
= [p + ρ f

(

0.5g + a′) h′ − 0.2patm
] πD2

4
=

[

p + ρ f

(

0.5g + a

0.7

)

0.6h − 0.2patm
] πD2

4
.

For Cu = Cpu = 0 it results D = 3 m, p = 3 105 Pa, ρw = 1000 kgm−3,
ρ f = 0.8ρw = 800 kgm−3, h = 3 m, a = 10 m s−2,

∴ F = [p + ρ f (g + a) h − patm
] πD2

4
=

[

3 105 + 800 (9.806 + 10) 3 − 1 105
]

π 32

4
= 1750 kN,

∴ F ′ =
[

p + ρ f

(

0.5g + a

0.7

)

0.6h − 0.2patm
] πD2

4
=

[

3 105 + 800

(

0.5 9.806 + 10

0.7

)

0.6 3 − 0.2 105
]

π 32

4
= 2174 kN.

Exercise 4.6 The helicopter in Fig. 4.12, of mass M = (10 000 + 100 Cu) kg, has
blades of diameter D = (14 + Cpu/10)m rotating at 400 rpm. Calculate:

– the volumetric air flow rate required for lifting, if the helicopter is at sea level.
– The power required.
– Theminimum blade rotation rate required, if the helicopter is at an altitude of 3000
m, with air density equal to ρ ′

air = 0.79 kgm−3.
– The same values if the helicopter moves vertically with a speed U = 20 m s−1.
– The same values if the helicopter has attached a mass load M1 = 12 000 kg.

Assume ρair = 1.18 kgm−3 at sea level. Assume the volumetric flow rate linearly
variable with the rotation rate of the blades.

Solution Experimental results indicate that the streamlines of the flow generated
by the blades converge from the upstream region, and are arranged in such a way as
to define the streamtube shown in Fig. 4.13.

The pressure varies slightly along the single pathline (coinciding with the stream-
line in stationary condition) except across the blades, where a significant gradient
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U

M1

D

Fig. 4.12 Helicopter for transporting loads

D

control volume

Vout

Vin ~ 0
Πin

Πout x

y

streamtube

2
3

2
3

V2

V3

V2

V3

Vout

Vin

pa

p3

p2

pa~ 0

Fig. 4.13 Schematic and control volume for calculating forces

of pressure is located. The speed of the current is asymptotically zero upstream,
increases progressively through the propeller, reaches a uniform value Vout down-
stream. We choose a control volume with a lateral surface outside the flow tube and
with inlet and outlet sections where the trajectories are straight and parallel. Apply-
ing Bernoulli’s theorem for a streamline between the asymptotic upstream section
and section2, yields

pa + ρair
V 2
in

2
= p2 + ρair

V 2
2

2
.
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Thechange in level headgives a negligible contribution.The same theoremapplied
for a streamline between section3 and the output section downstream, results in the
following balance equation

p3 + ρair
V 2
3

2
= pa + ρair

V 2
out

2
.

Since V2 = V3 (mass conservation), subtracting the corresponding sides of the
two equations results in

p3 − p2 = ρair
V 2
out − V 2

in

2
.

The thrust is obtained by multiplying the difference of pressure across the blades
by the area of the surface of the circle described by the blades during rotation,

F = Ω (p3 − p2) = πD2

4
ρair

V 2
out − V 2

in

2
,

where Ω = πD2/4 is the area of the surface described by the rotating blade. The
thrust must also satisfy the momentum balance,

�G + Π + M1 − M2 = 0 → F = −Π = M1 − M2, (4.3)

where F is the force exerted by the fluid to the helicopter. The weight of the air G is
negligible. Expanding all the terms in Eq. (4.3), yields

F = ρair Q1 (Vout − Vin) ≡ ρair
πD2

4
V2 (Vout − Vin) .

By equating the two expressions of the thrust (obtained by applying both
Bernoulli’s theorem along a streamline, and the balance of momentum in integral
form), results in

V2 = V3 = Vout + Vin

2
.

If the helicopter is at rest, the input speed of the fluid is zero, thus

V2 = V3 = Vout

2
,

F = πD2

4
ρair

V 2
out

2
= πD2

4
ρair V2Vout = 2ρair

Q2
1

Ω
,

hence,

Q1 =
√

Ω

2ρair
Mg,
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where Mg is the weight of the helicopter.
The power required to take off is equal to

P1 = γair Q1H = γair Q1

(

�z +
�

��
pa

γair
+ V 2

out

2g

)

= ρair Q12V
2
2 = 2ρair

Q3
1

Ω2
.

If the helicopter ascends vertically with uniform velocityU , having chosen a con-
trol volume attached to the moving helicopter, we can use all the previous equations
by imposing Vin = U ,

V2 = V3 = Vout +U

2
→ Vout = 2V2 −U,

F = ρair Q2 (Vout − Vin) = ρairΩV2 (Vout −U ) = ρairΩV2 (2V2 − 2U ) =
2ρair Q2

(

Q2

Ω
−U

)

and then, solving the 2nd order equation, yields

Q2 = UΩ

2
+
√

U 2Ω2

4
+ MgΩ

2ρair
.

The power is equal to

P2 = γair Q2ΔH = γair Q2

(

�z + pa
γair

+ V 2
out

2g
− �z − pa

γair
− U 2

2g

)

=

ρair Q2
1

2

(

V 2
out −U 2

) = ρair Q22V2 (V2 −U ) = 2ρair
Q2

2

Ω

(

Q2

Ω
−U

)

.

If the mass density of the air changes, the new volumetric flow rate will be equal
to

Q′
1 =

√

Ω

2ρ ′
air

Mg → Q′
1

Q1
=
√

ρair

ρ ′
air

.

To calculate the rotation speed of the blades, consider that the volumetric flow
rate varies linearly with the rotation speed. Therefore,

n′
1

n1
=
√

ρair

ρ ′
air

.

For Cu = Cpu = 0 it results M = 10 000 kg, D = 14 m, n1 = 400 rpm, Ω =
153.93 m2.

(i) If U = 0:
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∴ Q1 =
√

Ω

2ρair
Mg =

√

153.93

2 1.18
10 000 9.806 = 2529 m3 s−1,

∴ P1 = 2ρair
Q3

1

Ω2
= 2 1.18

25293

153.932
= 1.61 MW,

∴ n′
1

n1
=
√

ρair

ρ ′
air

=
√

1.18

0.79
= 1.22 → n′

1 = 489 rpm.

(ii) If U = 20 m s−1:

∴ Q2 = UΩ

2
+
√

U 2Ω2

4
+ MgΩ

2ρair
= 20 153.93

2

+
√

202 153.932

4
+ 10 000 9.806 153.93

2 1.18
= 4500 m3 s−1,

∴ P2 = 2ρair
Q2

2

Ω

(

Q2

Ω
−U

)

=

2 1.18
45002

153.93

(

4500

153.93
− 20

)

= 2.87 MW.

The case of a payload in addition to the own weight of the helicopter, has an
immediate solution.

Exercise 4.7 The system in Fig. 4.14 is a helicopter turbine of total mass
M = (1500 + 20 Cpu) kg. The inlet has a circular cross-section with diameter
D = (3 + Cu/10) m, the outlet section is a circular crown with internal diameter
d = (2.7 + Cu/10) mand external diameter D. Assuming in the inlet and outlet sec-
tions a uniform pressure distribution equal to the atmospheric pressure, considering
the take-off conditions, calculate:

– the velocity of the air at the inlet and outlet sections.
– The required power of the turbine.
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Fig. 4.14 Helicopter turbine D

D

d

Fig. 4.15 Control volume

y

Assume an isochoric flow for the air, with ρair = 1.2 kgm−3.

Solution After choosing the control volume in Fig. 4.15, we project the balance
of momentum equation along y:

��Gy + Πy + ��Iy + M1y − M2y = 0. (4.4)

The surface forces are only the action exerted by the propeller and the turbine
casing on the control volume,

Πy = −F,
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because, by hypothesis, the pressure in the inlet and outlet sections is equal to the
atmospheric pressure.

In particular, the pressure acting on the lower side of the propeller is greater than
the pressure acting on the upper side. Expanding all terms in Eq. (4.4) results in

−F + ρair
Q2

πD2

4

− ρair
Q2

π
(

D2 − d2
)

4

= 0.

Therefore, the action of the fluid in the control volume on the propeller-carter
system (i.e. the thrust of the turbine) is equal to:

F = −4ρair Q2

π

[

1
(

D2 − d2
) − 1

D2

]

,

and it is pointing upwards. At the take-off, the thrust must be equal to the weight of
the helicopter (in incipient motion, we are neglecting the acceleration):

F + Mg = 0.

Therefore, the minimum volume discharge rate required for the take-off is equal
to

Q =
√

√

√

√

√

√

Mg

4ρair

π

[

1
(

D2 − d2
) − 1

D2

] .

The power of the turbine shall be equal to

P = γair QΔH = ρair Q

(

V 2
o

2
− V 2

i

2

)

,

since the pressure contribution is null and the gravitational term is negligible. Vi and
Vo are the average air velocity in the inlet and outlet section calculated in the control
volume reference, respectively, using the mass conservation equation:

Vi = 4Q

πD2
, Vo = 4Q

π
(

D2 − d2
) .

For Cu = Cpu = 0 it results M = 1500 kg, D = 3m, d = 2.7m, ρair =
1.2 kgm−3,
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Q =
√

√

√

√

√

√

Mg

4ρair

π

[

1
(

D2 − d2
) − 1

D2

] =

√

√

√

√

√

√

1500 9.806

4 1.2

π

[

1
(

32 − 2.72
) − 1

32

] = 142.6 m3 s−1,

∴ Vi = 4Q

πD2
= 4 142.6

π 32
= 20.2 m s−1,

∴ Vo = 4Q

π
(

D2 − d2
) = 4 142.6

π
(

32 − 2.72
) = 106.2 m s−1,

∴ P = ρair Q

(

V 2
o

2
− V 2

i

2

)

= 1.2 142.6

(

106.22

2
− 20.22

2

)

= 930 kW.

Exercise 4.8 Water flows through the pipeline system in Fig. 4.16, with outflow in
atmosphere through pipelines 2 and 3.

– Calculate the outflow velocity V2.
– Calculate the force exerted on the flange.

Neglect weight and losses. Numerical data: V1 = (6 + Cu/10) ms−1, V3 = (9 +
Cu/10) ms−1, D1 = D2 = (300 + Cpu) mm, D3 = (200 + Cu) mm, α = (40 +
Cu)

◦, pm = (0.7 + Cpu 0.1) 105 Pa.

Solution The velocity V2 is calculated using mass conservation,

V1
πD2

1

4
= V2

πD2
2

4
+ V3

πD2
3

4
→ V2 = V1

D2
1

D2
2

− V3
D2

3

D2
2

.

The forces along the x and y axes are calculated by applying the momentum
balance,

��Gx + Π0x + Π1x + Π2x + ��Ix + M1x − M2x = 0,

��Gy + Π0y + Π1y + Π2y + ��Iy + M1y − M2y = 0,

equivalent to
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Π0x + (ρV 2
1 + pm

) πD2
1

4
+ ρV 2

3
πD2

3

4
− ρV 2

2
πD2

2

4
cosα = 0,

Π0y + ρV 2
2

πD2
2

4
sin α = 0,

whereΠ0x andΠ0y are the two components of the force exerted by the flange, through
the pipe sections connected to it, on the control volume, and pm is the relative pressure
indicated by the manometer. According to the principle of action and reaction, the
actions on the flange are equal and opposite:

Sx = −Π0x = (ρV 2
1 + pm

) πD2
1

4
+ ρV 2

3
πD2

3

4
− ρV 2

2
πD2

2

4
cosα,

Sy = −Π0y = ρV 2
2

πD2
2

4
sin α.

ForCu = Cpu = 0 it resultsV1 = 6.0 m s−1,V3 = 9.0 m s−1,D1 = D2 = 300 mm,
D3 = 200 mm, α = 40◦, pm = 0.7 105 Pa,

∴ V2 = V1
D2

1

D2
2

− V3
D2

3

D2
2

= 6.0 − 9.0
2002

3002
= 2.0 m s−1,

∴ Sx = (ρV 2
1 + pm

) πD2
1

4
+ ρV 2

3
πD2

3

4
− ρV 2

2
πD2

2

4
cosα =

(

1000 6.02 + 0.7 105
) π 0.32

4
+ 1000 9.02

π 0.22

4

− 1000 2.02
π 0.32

4
cos 40◦ = 9821 N,

Fig. 4.16 Pipeline system

V1

α

V2

V3

D1

D2

D3

pm

x

y
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∴ Sy = ρV 2
2

πD2
2

4
sin α = 1000 2.02

π 0.32

4
sin 40◦ = 182 N.

Exercise 4.9 The fighter aircraft in Fig. 4.17 flights in a straight line with uniform
speed V = (100 + 10 Cu) ms−1. The direction control system is supported by a
deflector for changing the direction of the reactor jet. The input mass flow rate is
equal to the output mass flow rate and is equal to Qm = (230 + 10 Cpu) kg s−1.
Vout = (300 + 10 Cu) ms−1 is measured with respect to the aircraft. Calculate:

– the thrust of the engine if the jet is coaxial to the fuselage.
– The thrust of the engine if the jet is inclined by θ = (4 + Cpu)

◦ in the vertical
plane with respect to the axis of the fuselage.

– The pitch torque (rotation around the longitudinal axis of the wings) for the two
cases, calculated with respect to the axis with trace Cg .

V

Vout

b = 8 m

Cg x

y

Fy

Fx

M

Fig. 4.17 Fighter aircraft, the dashed line delimits the control volume

Solution We select the dashed control volume in Fig. 4.17. If the motion is rec-
tilinear and uniform, the reference system attached to the control volume is inertial,
and we choose a coordinate system with the x-axis coaxial to the fuselage and the
y-axis positive upwards. In the mobile reference, the inflow has a velocity equal to
V , and applying the momentum balance to the control volume, the forces acting on
the fuselage are equal and opposite to the forces exerted by the fuselage (via the
carter of the engine) on the control volume:

⎧

⎨

⎩

Fx = −Π0x = M1x − M2x = −Qm (V − Vout cos θ) ,

Fy = −Π0y = ��M1y − M2y = −QmVout sin θ.

In particular, the Fy component is due to the deflector and is assumed to be applied
in the pivot of the deflector. The pitch torque is equal to

|M| = Fyb.
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For Cu = Cpu = 0 it resultsQm = 230 kg s−1,V = 100 m s−1,Vout = 300 m s−1,
θ = 4◦.

If the jet is coaxial to the fuselage, it results

∴ Fx = Qm (Vout − V ) = 230 (300 − 100) = 46 000N,

∴ Fy = 0,

and the pitching torque is null. Notice that the airplane weight is balanced by the lift
of the wings.

If the jet is inclined of θ = 4◦, it results

∴ Fx = Qm (Vout cos θ − V ) = 230 (300 cos 4◦ − 100) = 45 832 N,

∴ Fy = −QmVout sin θ = −230 300 sin 4◦ = −4813 N,

and the counter-clockwise pitch torque is equal to

∴ |M| = Fyb = 4813 8 = 38 504 Nm,

where b = 8 m is the arm with respect to Cg . This torque is intended as incipient
torque: as soon as it is applied, it determines a rotation of the aircraft corresponding
to a nose-up. Also in this case there is an additional lift due to the wings.

Exercise 4.10 A dredger and a barge are linked by a chain, as shown in Fig. 4.18.
The dredger draws the mud through a vertical pipe from the bottom and discharges
into the barge a mixture of water and slurry with a specific gravity equal to 1.9.
The horizontal outflow velocity is equal to V = (5 + Cu/10) ms−1 and the nozzle
diameter is equal to D = (30 + Cpu) cm.

– Calculate the traction force in the chain.

Solution Consider the control volume in Fig. 4.19. By applying the momentum
balance, the horizontal component of the input momentum flow, equal to M1x =
ρQV , tends to push the barge to the right and is counteracted by the tractive force
in the chain. The vertical component depends on the vertical speed reached by the
current of the jet due to gravity, tends to increase the sinking of the barge and is
balanced by the greater buoyancy force.

In the momentum balance applied to the dredger, see Fig. 4.20, the input momen-
tum flow has no horizontal component (it has a vertical component, neglected in the
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Fig. 4.18 Dredger
unloading water and slurry
into a barge

D V

Fig. 4.19 Control volume
for calculating forces acting
on the barge

F

D

V

Fig. 4.20 Control volume
for calculating forces acting
on the dredger

D V

F

present analysis) and there is only the output momentum flow equal to M2x = ρQV ,
balanced by the chain traction force. Applying themomentum balance to the dredger-
barge system, the outgoing and incomingmomentumflows in the horizontal direction
are zero and the system remains at rest. Therefore, the chain is in traction with a force
equal to F = ρQV that balances both the flow of momentum entering the barge and
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the flow of momentum leaving the dredger, and the dredger-chain-barge system does
not move, since all forces are internal.

For Cu = Cpu = 0 it results V = 5 m s−1, D = 30 cm, and

∴ F = ρQV = 1.9 1000 5
π 0.32

4
5 = 3.35 kN.

Exercise 4.11 The pump in the tank in Fig. 4.21 generates a jet of water that hits
a crankcase and is diverted by an angle α = (120 + Cpu)

◦. The flow rate is equal
to Q = 0.01 m3 s−1 and the speed of the jet exiting the pump is equal to V = (2 +
Cu/3) ms−1.

– Calculate the force on the trolley initially at rest if the jet follows the trajectory A.
– Calculate the same force if the jet follows the trajectory B.

Fig. 4.21 Trolley with pump

A

B

α

SolutionWe first choose the dashed control volume in Fig. 4.22. If the jet follows
the trajectory A, the force on the trolley is the weight of the volume of fluid only.
Applying the momentum balance equation, yields

G + Π + I + M1 − M2 = 0.

The projection in the x-direction yields

��Gx + Πx + ��Ix + M1x − M2x = 0.

It can be shown that M1x = M2x and, therefore, Fx = −Πx = 0. Fx is the action
on the trolley, equal and opposite to the actionΠx exerted by the trolley on the control
volume.

The projection in the y-direction yields
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Fig. 4.22 Mobile control
volume

x

y

A

B

α

Gy + Πy + ��Iy + M1y − M2y = 0.

It can be shown that M1y = M2y and, therefore, Fy = −Πy = Gy .

If the jet follows the trajectory B, applying the momentum balance and projecting
it in the x-direction yields

��Gx + Πx + ��Ix + ��M1x − M2x = 0,

hence Fx = −Πx = −M2x . The trolley is subject to a force equal to

Fx = −ρQV cos (π − α)

which, for α > π/2, is pointing to the left. In the vertical direction it results Fy =
−Πy = Gy − M2y . The trolley is subject to a force in excess of the weight of the
fluid and equal to

Fy − Gy = ρQV sin (π − α) .

For Cu = Cpu = 0 it results α = 120◦, Q = 0.01 m3 s−1, V = 2 m s−1,

∴ Fx = −ρQV cos (π − α) = −1000 0.01 2 cos (180◦ − 120◦) = −10 N,

pointing left, and

∴ Fy − Gy = ρQV sin (π − α) = 1000 0.01 2 sin (180◦ − 120◦) = 17.3 N,

pointing downwards.
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Fig. 4.23 Three-arm
splinker

R

d

x

y

X

Y

β

ω

Vr

θ = 30°

Exercise 4.12 The sprinkler in Fig. 4.23 is operated with a flow rate Q = (50 +
10 Cu) l min−1. The diameter of the nozzles is d = 6 mm and the radius of the
pinwheel is R = (80 + 10 Cpu) mm.

– Calculate the outflow rate.
– Calculate the uniform angular speed at full speed by neglecting the friction torque
on the axis of rotation.

Solution The exercise can be approached by choosing (i) a fixed inertial frame,
and (ii) a rotating non-inertial frame attached to the pinwheel. The choice of the
coordinate system is arbitrary: in both cases a fixed or mobile coordinate system can
be selected.

We first choose a coaxial cylindrical control volume in a fixed inertial frame, with
dimensions such as to intersect the three outgoing water jets with the lateral surface,
and the incoming fluid current with the lower base. We also choose a fixed XY Z
coordinate system with the Z -axis coincident with the axis of rotation, see Fig. 4.24.

Velocities and accelerations must be evaluated in the control volume frame, i.e.
in the fixed inertial frame. The equation of balance of the angular momentum is as
follows:

Gm + Im + Πm + M1m − M2m = 0.

Since the only degree of freedom of the system is the rotation around the vertical
axis, we project the equation in the direction of the Z -axis coincident with z-axis.
We analyze the different contributions on moments of the acting forces.

The moment of the mass forces is equal to
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Vr

X

YZ

Fixed control volume

Fixed coordinate
system

Va

0

ω

Fig. 4.24 Inertial fixed control volume

GmZ =
∫

CV

[(X − X0) ∧ ρf]Z dW =
∫

CV

[

(X − X0) ∧ ρg
]

Z dW = 0,

whereX0 is a point belonging to the Z -axis (for example, the origin of the coordinate
system). The acceleration vector of gravity g is parallel to Z and the cross product
(X − X0) ∧ ρg is always orthogonal to a plane that contains the Z -axis. As a con-
sequence, the component of the vector cross product along the Z -axis direction is
null.

The rotational inertial term is equal to

ImZ = −
∫

CV

[

(X − X0) ∧ ∂ρVa

∂t

]

Z

dW = 0,

because the analysis is in steady state and all the variables and characteristic quantities
of thefluid are independent of time.Va is the absolute velocity of thefluid, as observed
in the fixed inertial frame.

The moment of the surface forces is equal to

ΠmZ =
∫

S

[(X − X0) ∧ (T · n)]Z dS = 0,

(T is the stress tensor) since the pressure of the fluid in the outlet sections is equal
to the atmospheric pressure (the relative pressure is, therefore, zero). To the fluid
pressure in the supply line (parallel to Z ) is associated (i) a force with a zero arm,
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if the pressure distribution has an axial symmetry; (ii) a force generating a moment
with null component along the Z -axis, if it has not axial symmetry. In both cases its
moment component along Z is null.

The inlet flow of angular momentum is equal to

M1mZ =
∫

Sin

[(X − X0) ∧ ρVa(Va · n)]Z dS = 0,

because the only input section is the intersection of the supply line with the base
surface of the control volume. There the current velocity is parallel to the Z -axis
and the arm is null, if the velocity distribution is axial-symmetric. If the velocity
distribution is not axial-symmetric, the component of the vector cross product along
Z is still null. We are assuming that the current has no swirling.

The only non-zero term is the component of the outflow angular momentum
M2mZ :

M2mZ =
∫

Sout

[(X − X0) ∧ ρVa(Va · n)]Z dS.

In the outlet section of each of the three small pipes the velocity of the fluid has
components, in a rotating coordinate system attached to the pinwheel, equal to

Vr = |Vr | sin θ i′ − |Vr | cos θ j′,

where i′ and j′ are the versors of the rotating coordinate system. If β(t) is the angle
(function of time) between the x-axis of the rotating coordinate system and the X -
axis of the fixed coordinate system, the instantaneous components of the relative
velocity vector in the outlet section, read in the fixed coordinate system, are

Vr = |Vr | (sin θ cosβ + cos θ sin β) i + |Vr | (sin θ sin β − cos θ cosβ) j,

where i and j are the X and Y versors in the fixed coordinate system. The relative
velocity is composed with the transport velocity of the relative frame of reference:

Va = Vr + V0 + ω ∧ (x − x0) .

Va is the velocity in the absolute reference,V0 is the translation velocity of the origin
of the relative reference with respect to the absolute reference,ω is the rotation veloc-
ity of the relative reference, (x − x0) is the position vector in the relative coordinate
system. In the present case V0 = 0 and the angular velocity vector is expressed as
ω = |ω|k; the vector cross product is equal to
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ω ∧ (x − x0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

0 0 |ω|

R cosβ R sin β 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= − |ω| R sin βi + |ω| R cosβj.

In summary, the absolute velocity of the current in the exit section, read in the
fixed coordinate system, is equal to

Va = [|Vr | (sin θ cosβ + cos θ sin β) − |ω| R sin β] i+
[|Vr | (sin θ sin β − cos θ cosβ) + |ω| R cosβ] j ≡ VaX i + VaY j.

For a stationary observer who observes the sprinkler during its operation, the jet of
nozzles will not appear coaxial to the tubes in the outflow section, due to the dragging
component, see Fig. 4.24. The term (X − X0) ∧ ρVa is uniform on the outlet surface
(the outlet section of the small pipe) and results

(X − X0) ∧ ρVa = ρ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

R cosβ R sin β 0

VaX VaY 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ρ (VaY R cosβ − VaX R sin β) k =

ρ
(− |Vr | R cos θ + |ω| R2

)

k.

The relative output velocity magnitude can be calculated by applying the mass
conservation to the control volume, by dividing the input flow rate into three equal
flow rates (for symmetry),

|Vr | = 4Q

3πd2
.

Ultimately, it results

M2mZ =
∫

Sout

[(X − X0) ∧ ρVa(Va · n)]Z dS =

ρ
(− |Vr | R cos θ + |ω| R2

)

∫

Sout

Va · n dS = − ρQR (|Vr | cos θ−|ω| R) ,

already extended to all three pipes. In fact, due to mass conservation, it results

∫

Sout

Va · n dS = Q.

The angular speed in steady state regime, in the absence of friction, assumes
the value that cancels the outflow of angular momentum, since no other torque can
balance it:
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−ρQR (|Vr | cos θ − |ω| R) = 0 → |ω| = |Vr | cos θ

R
.

In this condition, results

Va = |Vr | (sin θ cosβ) i + |Vr | (sin θ sin β) j ≡ |Vr | sin θ (cosβi + sin βj) ,

i.e. the velocity of the outlet current is only radial since cos βi + sin βj ≡ i′, where i′
is the radial versor rotating with the sprinkler and read in the fixed coordinate system
XY Z .

We perform the same calculations by fixing an xyz rotating coordinate system,
but with a fixed (inertial) reference system. The only non-zero contribution is still
the outflow of angular momentum,

M2mz =
∫

Sout

[(X − X0) ∧ ρVa(Va · n)]z dS.

Suppose, for simplicity, that one of the three tubes is aligned with the x-axis. The
absolute velocity in the outflow section, read in the xyz rotating coordinate system,
is equal to

Va = |Vr | sin θ i′ − (|Vr | cos θ − |ω| R) j′.

The arm has component
(X − X0) = Ri′,

hence

(X − X0) ∧ ρVa = ρ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i′ j′ k′

R 0 0

|Vr | sin θ − (|Vr | cos θ − |ω| R) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

ρ
(− |Vr | R cos θ + |ω| R2

)

k′.

By integrating in the outlet section of the single small pipe, the contribution to the
outflow momentum, equal to 1/3 of the total outflow, is computed. For symmetry,
the total outflow of momentum flux will be equal to
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Vr

x
y

z

ω

Rotating control volume

Rotating coordinate
system dx

dW

Ω

2 r dWω V

Fig. 4.25 Non-inertial rotating control volume

M2mz =
∫

Sout

[(X − X0) ∧ ρVa(Va · n)]z dS =

ρ
(− |Vr | R cos θ + |ω| R2

)

∫

Sout

Va · n dS = − ρQR (|Vr | cos θ − |ω| R) .

This last expression coincides with the one previously calculated using the fixed
coordinate system XY Z . The final result, of course, does not depend on the choice
of the coordinate system.

If we choose a control volume in the non-inertial frame of reference as shown in
Fig. 4.25, geometrically defined as the previous one but rotating together with the
pinwheel, the balance equation of the angular momentum remains unchanged, but
the velocities and accelerations must be evaluated in the relative non-inertial rotating
frame of reference. Again, we are free to choose a fixed or a rotating coordinate
system. We choose a rotating coordinate system xyz. In addition to the mass force
of gravity, there are also fictitious mass forces deriving from the evaluation of accel-
erations in the non-inertial frame. The relative acceleration to be introduced in the
calculation of Gm is obtained from the following vectorial composition:

aa = ar + a0 + 2ω ∧ Vr + ω ∧ (ω ∧ (x − x0)) + dω

dt
∧ (x − x0) ,

with obvious meaning of the terms. Since in the present case a0 = 0, aa = g,
dω/d t = 0 (in steady state regime), it results

ar = g − 2ω ∧ Vr − ω ∧ (ω ∧ (x − x0)) .
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The moment of gravity acceleration has no component along z; the moment of the
centrifugal acceleration is zero because centrifugal acceleration and the arm (x − x0)
are parallel. The only contribution is due to the acceleration of Coriolis,

Gmz =
∫

CV

[(x − x0) ∧ ρ(−2ω ∧ Vr )]z dW.

We consider the outflow small pipe coaxial with the x-axis and define the vol-
ume dW = Ωdx , where Ω is the area of the cross section of the pipe. The position
vector will have component (x − x0) = x i′; the relative velocity has the only com-
ponent Vr = |Vr | i′; the vector cross product is ω ∧ Vr = |ω| |Vr | j′ and, therefore,
(x − x0) ∧ ρ(−2ω ∧ Vr ) = −2ρ |ω| |Vr | xk′. For simplicity sake, we assume that
the end portion of the pipe, which leads to an axis variation of 30◦, is of negligible
length. Integrating from 0 to R results in

Gmz

3
=

R
∫

0

−2ρ |ω| |Vr | Ωx dx = −ρ |ω| Q
3
R2.

It can be demonstrated that this result is valid regardless of the geometry of the small
pipe. The contribution of girotoric inertia and of surface forces are null, and the
inflowing angular momentum at the inlet is zero. The outflowing angular momentum
is equal to

M2mz =
∫

Sout

[

(x − x0) ∧ ρVr (Vr · n′)
]

z dS =

ρ (− |Vr | R cos θ)

∫

Sout

V · n′ dS = −ρQR |Vr | cos θ,

already extended to all three small pipes.
In equilibrium conditions, it results

Gmz − M2mz = ρQR |Vr | cos θ − ρ |ω| QR2 = ρQR (|Vr | cos θ − |ω| R) = 0,

which coincideswith the expression found by choosing a control volume in an inertial
frame.

In the non-inertial rotating frame, in equilibrium conditions the torque generated
by the outflowing currents is balanced by the torque generated by the distribution of
surface forces (mainly pressure forces) on the internal walls of the pipes. This distri-
bution of surface forces is such as to divert the current from the uniform rectilinear
motion, forcing it to follow also the circular motion of the pipe, with pathlines that,
for an external observer in a fixed inertial frame, are spirals.
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The results would be identical, making the appropriate transformations, if the
coordinate system had been chosen fixed and coincident, for example, with the XY Z
system.

Ultimately, the choice of frameof reference and coordinate systemdoes not change
the results and must be conveniently operated in such a way as to simplify the
calculations. It is also obvious that the coordinate system is not linked to the frame
of reference, with the first being or not being attached to the second.

For Cu = Cpu = 0 it results Q = 50 lmin−1, d = 6 mm, R = 80 mm,

∴ |Vr | = 4Q

3πd2
= 4 50 10−3/60

3 π
(

6.0 10−3
)2 = 9.82 m s−1,

∴ |ω| = |Vr | cos θ

R
= 9.82 cos 30◦

80 10−3
= 106.3 s−1.

Exercise 4.13 A circular water jet with a diameter of d = 50 mm flows out of the
tank on a trolley in Fig. 4.26, with a relative speed of V = 4.9 m s−1. The centroid
of the outlet orifice has a depth of zG = (1500 + 20 Cu) mm.

– Calculate the force of the jet on the trolley, if the tank is at rest.
– Calculate the force of the jet on the trolley, if the trolley moves in the opposite
direction to the jet with velocityU = (1.2 + Cpu/10) ms−1 (assuming the relative
velocity V unchanged).

– Calculate, for the previous case, the work of the current on the trolley per unit
time.

The contraction coefficient is unitary. Assume a stationary regime.

zG

dU V

Fig. 4.26 Tank on a trolley with outflow water jet
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zG

dU V

x

y

Fig. 4.27 Control volume attached to the tank

Solution We choose the dashed control volume in Fig. 4.27.
The linear momentum balance projected along x is

��Gx + Πx + ��Ix + ��M1x − M2x = 0.

Therefore, the surface forces on the control volume are equal to the outlet flow of
momentum (which has only component according to the x-axis). For the principle
of action and reaction, the force exerted by the fluid on the walls of the tank is equal
to and opposite to the outlet flow of momentum,

F ≡ −Πx = −M2x .

The velocity of the jet is given and is always lower than the theoretical one
V = √

2gzG, as it should be for the presence of dissipations. The force is equal to

F = −ρV 2Ω ≡ −ρV 2 πd2

4
,

and it is pointing left. If the trolley is moving at constant speed, the force does
not change. In fact, if the control volume is mobile with the tank, the inlet flow of
momentum is still zero and the outlet flow of momentum is unchanged compared to
the case of tank at rest. The work of the current on the trolley per unit time (power)
is equal to

P = FU.

For Cu = Cpu = 0 it results zG = 1500 mm, U = 1.2 m s−1.
The theoretical velocity of the jet is equal to

V = √2gzG = √
2 9.806 1.5 = 5.42 m s−1,
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the actual velocity is given and is equal to V = 4.90 m s−1.
The force has a magnitude equal to

∴ F = −ρV 2 πd2

4
= −1000 4.902

π 0.052

4
= −47.1 N,

and the power of the jet is equal to

∴ P = FU = 47.1 1.2 = 56.5 W.

Exercise 4.14 The trolley in Fig. 4.28 moves without friction pushed by the water
jet. The water jet can be controlled with a valve. Starting from the rest, the trolley, of
mass M = 3 kg, must accelerate with constant acceleration and equal to a = (2 +
0.1 Cpu) ms−2. The exit angle of the jet is α = (90 + 10 Cu)

◦ and the outflow
velocity is constant and equal to V = (10 + Cpu) ms−1.

– Calculate the nozzle area function A(t).
– Calculate the value of A at the time t = 3 s.
– Calculate the power of the force acting on the trolley.

Assume that the outflow velocity is independent of the area of the jet, a unit
coefficient of contraction, and neglect local inertia.

Solution We choose the mobile frame of reference in Fig. 4.29 which, in the
general case, is non-inertial. Neglecting the local inertia of the fluid, the force exerted
by the jet is equal to the inflow momentum minus the outflow momentum:

F = ρA(t) [V −U (t)]2 (1 − cosα) ,

and it is null when U (t) = V .

Fig. 4.28 Water
jet-propelled trolley

U

V

α

MA
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Fig. 4.29 Mobile control
volume attached to the
trolley

x

y
V U

V U

MA

α

By applying Newton’s second law, yields

ρA(t) [V −U (t)]2 (1 − cosα) = F ≡ Ma.

If the acceleration a is constant, the velocity variation of the trolley is linear,

U (t) = ���U(0) + at = at.

By replacing the expression ofU(t) and inverting, the time function of the nozzle
area is obtained:

A(t) = Ma

ρ(V − at)2 (1 − cosα)
, 0 ≤ t < V/a.

The power of the force exerted by the jet on the trolley is equal to

P ≡ FU = Ma2t.

For Cu = Cpu = 0 it results a = 2 m s−2, α = 90◦, V = 10 m s−1,

∴ A(t) = Ma

ρ(V − at)2 (1 − cosα)
= 6

1000(10 − 2t)2
m2 (t in seconds),

∴ A(3.0) = 6

1000 (10 − 2 3)2
= 3.75 10−4 m2,

∴ P = Ma2t = 3 22 t = (12 t) W (t in seconds).
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Fig. 4.30 Trolley pushed by
a water jet

U

M

V
60°

Fig. 4.31 Mobile control
volume attached to the
trolley and coordinate
system

x

y

M

V U
60°

V U

Exercise 4.15 The trolley in Fig. 4.30, with mass M = (10 + Cpu) kg, moves with-
out friction on a horizontal plane with an initial speed U0 = 12.5 m s−1. At a time
t = 0 the trolley is hit by a jet of water coming out of a nozzle with a cross-sectional
area A = (900 + 10 Cu) mm2, with an average speed V = 8.3 m s−1. The jet is
diverted upwards at an angle of 60◦ to the horizontal.

– Calculate the force of the jet on the trolley at the time t = 0.
– Calculate the stopping time of the trolley.
– Calculate the distance covered by the trolley from t = 0 to the stop.

Neglect inertia effects and assume a unit coefficient of contraction.

SolutionWe choose the control volume attached to the trolley and the coordinate
system shown in Fig. 4.31. By applying the linear momentum balance and neglecting
local inertia, the horizontal component of the force is

Fx = −ρ[V +U (t)]2A (1 − cos 60◦) ,

pointing to the left. The vertical component of the force is

Fy = −ρ[V +U (t)]2A sin 60◦,

pointing downwards. We have neglected the weight of the jet.
The initial force has components equal to
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⎧

⎨

⎩

Fx(t0) = −ρ(V +U0)
2A (1 − cos 60◦) ,

Fy(t0) = −ρ(V +U0)
2A sin 60◦.

For the calculation of the stopping time and of the space covered by the trolley, it
is necessary to calculate the law of the time. Applying the equation of dynamics, it
results

M
dU

dt
+ ρ[V +U (t)]2A (1 − cos 60◦) = 0.

Introducing the auxiliary variable z = U + V , results dz = dU (V is constant), and
therefore

M
dz

dt
+ ρz2A (1 − cos 60◦) = 0.

By separating the variables:

z
∫

z0

dz

z2
+

t
∫

t0

ρA

M
(1 − cos 60◦) dt = 0 → 1

z
− 1

z0
= ρA

M
(1 − cos 60◦) (t − t0) .

By imposing t0 = 0 and replacing the original variables, yields

1

V +U
− 1

V +U0
= ρA

M
(1 − cos 60◦) t,

or, in explicit form

U = 1
1

V +U0
+ ρA

M
(1 − cos 60◦) t

− V .

The stopping time of the trolley is calculated by setting U = 0, and it is equal to

tstop =
1

V
− 1

V +U0

ρA

M
(1 − cos 60◦)

.

The distance covered before stopping is obtained by integrating the law of the
time:
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dx

dt
= 1

1

V +U0
+ ρA

M
(1 − cos 60◦) t

− V →

x
∫

x0

dx =
t
∫

t0

⎛

⎜

⎜

⎝

1
1

V +U0
+ ρA

M
(1 − cos 60◦) t

− V

⎞

⎟

⎟

⎠

dt,

from which we obtain

x − x0 = M

ρA (1 − cos 60◦)
ln

⎛

⎜

⎜

⎝

1

V +U0
+ ρA

M
(1 − cos 60◦) t

1

V +U0
+ ρA

M
(1 − cos 60◦) t0

⎞

⎟

⎟

⎠

− V (t − t0) .

For t0 = 0 and for t = tstop it results

xstop = M

ρA (1 − cos 60◦)

[

ln

(

1 + U0

V

)

− U0

(U0 + V )

]

.

For Cu = Cpu = 0 it results

∴ Fx (t0) = −ρ(V +U0)
2A (1 − cos 60◦) =

− 1000 (8.3 + 12.5)2 900 10−6 (1 − cos 60◦) = − 194 N,

∴ Fy(t0) = −ρ(V +U0)
2A sin 60◦ =

− 1000 (8.3 + 12.5)2 900 10−6 sin 60◦ = −337 N,

∴ tstop = 1.609 s,

∴ xstop = 7.07 m.

Exercise 4.16 In the vertical reduction in Fig. 4.32 flows a fluid of specific gravity
equal to 0.8. The flow rate is Q = 0.6 m3 s−1 and the gage pressure in the largest
section is p1 = 20 kPa.

– Calculate the force on the reduction taking into account the weight of the fluid.

Assume γw = 9806 Nm−3.
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Fig. 4.32 Vertical reduction

d = 300 mm

D = 450 mm

l=
 5

00
 m

my

1

2

p1

Solution The fluid velocity in section1 is equal to

V1 = 4Q

πD2
= 4 0.6

π 0.452
= 3.77 m s−1,

and in section2 it is equal to

V2 = 4Q

πd2
= 4 0.6

π 0.32
= 8.49 m s−1.

The pressure in section2 is calculated by applyingBernoulli’s theorem (neglecting
dissipations),

p2 = p1 + γ (z1 − z2) + γ
V 2
1 − V 2

2

2g
=

20 000 − 0.8 9806 0.5 + 9806 0.8
3.772 − 8.492

2 9.806
= −7.1 kPa.

In section2, the pressure is therefore lower than the atmospheric pressure.
Applying the linear momentum balance along the vertical, yields

Gy + Π0y + Π1y + Π2y + ��Iy + M1y − M2y = 0,

and, by substitution,

−γWT − Fy + p1
πD2

4
− p2

πd2

4
+ ρQV1 − ρQV2 = 0,

where Fy = −Π0y is the force exerted by the fluid in the control volume on the walls
of the reduction. The volume of the truncated cone is equal to
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WT = 1

3

(

πD2

4
3l − πd2

4
2l

)

=
π 0.452

12
3 0.5 − π 0.32

12
2 0.5 = 0.056 m3.

Substituting the numerical values, yields

∴ Fy = −0.8 9806 0.056 + 20 000
π 0.452

4

+ 7100
π 0.32

4
+ 800 0.6 3.77 − 800 0.6 8.49 = 978 N,

pointing upwards.

Exercise 4.17 The trolley in Fig. 4.33 advanceswith an initial speedU0 = 10 m s−1.
The jet exerts a force in the opposite direction to the initial motion of the trolley.

– Calculate the initial force.
– Calculate the time required for stopping the trolley.

The local inertia of the fluid can be neglected.

SolutionWe choose a frame reference attached to the trolley. Applying the linear
momentum balance and neglecting the local inertia, the horizontal component of the
initial force of the jet, pointing to the left, is calculated as follows:

∴ F = −ρ
πD2

4
(U0 + V ) |U0 + V | (1 + sin 45◦) =

− 1000
π 0.052

4
(10 + 20) |10 + 20|

(

1 +
√
2

2

)

= −3016 N.

M = 20 kg

45°

U

V = 20 m/s

D = 50 mm

Fig. 4.33 Trolley hit by a water jet
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The vertical component is pointing downwards, it has the same magnitude of the
horizontal component, and it is balanced by the reaction of the floor.

To calculate the stopping time, we need to integrate the following differential
equation:

M
dU

dt
= −ρ

πD2

4
(U + V ) |U + V | (1 + sin 45◦) .

Introducing the auxiliary variable z = U + V , results dz = dU , since V is con-
stant. For z > 0 results

dz

dt
+

ρ
πD2

4
M

(1 + sin 45◦)
︸ ︷︷ ︸

k

z2 = 0 → dz

dt
+ kz2 = 0. (4.5)

Equation (4.5) can be integrated between the initial null instant and the instant t ,
giving

z
∫

z0

dz

z2
= −

t
∫

0

k dt → 1

z
− 1

z0
= kt,

or
1

U + V
− 1

U0 + V
= kt. (4.6)

The stopping time is obtained by imposing U = 0 in Eq. (4.6):

∴ t = U0

kV (V +U0)
→ t = MU0

ρ
πD2

4
(1 + sin 45◦) V (V +U0)

=

20 10

1000
π 0.052

4
(1 + sin 45◦) 20 (20 + 10)

= 0.099 s.

Exercise 4.18 A circular orifice with a diameter of d = 0.10 m is at the bottom
of a tank filled with water, with water depth h = 1.20 m, see Fig. 4.34. The vena
contracta is at a distance d from the plane of the orifice, and the contraction coefficient
is equal to Cc = 0.62. The jet impacts the free surface of a lower tank at a distance
H = 3.40 m from the vena contracta. The lower tank is a cylinder with diameter
D = 1.20 m, containing water with depth equal to h/2.
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Fig. 4.34 Water jet
outflowing from the upper
tank into the lower tank

h

D

h/2

d

d

H

– Calculate the flow-rate through the orifice.
– Calculate the force at the bottom of the lower tank.

Assume γw = 9806 Nm−3.

Solution Applying Bernoulli’s theorem for a trajectory between the free surface
of the upper tank and the vena contracta, yields

Vc = √2g (h + d) = √2 9.806 (1.20 + 0.10) = 5.05 m s−1.

The flow rate through the orifice is equal to

∴ Q = VcCc
πd2

4
= 5.05 0.62

π 0.102

4
= 24.6 l s−1.

To calculate the force at the bottom of the lower tank, we apply the linear momen-
tum balance in the vertical direction:

G + ��Π1y − Sy + M1y − ��M2y = 0.

The weight is due to the fluid in the lower tank, and is equal to

G = γw
πD2

4

h

2
= 9806

π 1.202

4

1.20

2
= 6654 N.

In the hypothesis that the dissipations are negligible also for the water jet in air,
the velocity of arrival of the jet in the lower tank is still calculated using Bernoulli’s
theorem, and it is equal to
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VF = √2g (h + d + H) = √2 9.806 (1.20 + 0.10 + 3.40) = 9.6 m s−1.

The influx of momentum is equal to

M1y = ρQVF = 1000 24.6 10−3 9.6 = 236 N,

where ρ = 1000 kgm−3 is mass density of water.
The force of the fluid at the bottom of the lower tank is equal to:

∴ Sy = G + M1y = 6654 + 236 = 6890 N.

Exercise 4.19 In the reduction in Fig. 4.35 flows a fluid of specific gravity equal to
0.8. The gage pressure in the largest section is 88 kPa; the absolute pressure in the
narrow section is 109 kPa. The volume of the reduction is WT = 0.6 m3.

– Calculate the force on the reduction taking into account the weight of the fluid.
– Draw the hydraulic grade line and the energy grade line.

Assume γw = 9806 Nm−3.

SolutionWe perform the calculations by considering the gage pressure first. The
gage pressure in the narrow section is equal to

p2rel = p2abs − patm = 109 000 − 101 000 = 8 kPa.

We choose the coordinate system in Fig. 4.36.
The linear momentum balance projected in the x-direction for the hatched control

volume in Fig. 4.36 is

Fig. 4.35 Horizontal
reduction d = 200 mm

D = 400 mm

p1rel= 88 kPa
p2abs= 109 kPa

V1 = 3 m/s



4 Balances of Linear and Angular Momentum 173

Fig. 4.36 Control volume
and coordinate system d = 200 mm

D = 400 mm

p1rel= 88 kPa
p2rel = 8 kPa

ΠM
G

x

y

ΠM

F Π

��Gx + ��Ix + Π1x + Π2x + Π0x + M1x − M2x = 0,

i.e.,

Fx = −Π0x = (p1rel + ρV 2
1

) πD2

4
− (p2rel + ρV 2

2

) πd2

4
,

where ρ = 0.8ρw = 0.8 1000 = 800 kgm−3 is the mass density of the fluid, Π0x

is the x-component of the action Π0 exerted by the reduction on the control volume,
equal and opposite to the unknown force F exerted on the reduction. The flow rate is
equal to

Q = V1
πD2

4
= 3

π 0.42

4
= 0.377 m3 s−1.

The velocity in the narrow section is equal to

V2 = 4Q

πd2
= 4 0.377

π 0.22
= 12.0 m s−1.

Hence,

∴ Fx = (p1rel + ρV 2
1

) πD2

4
− (p2rel + ρV 2

2

) πd2

4
=

(

88 000 + 800 32
) π 0.42

4

− (8000 + 800 122
) π 0.22

4
= 8093 N.

The linear momentum balance in the y-direction reduces to the weight component
alone (ignoring the buoyancy due to the air):

∴ Fy = −γWT + ���γaWT = −0.8 9806 0.6 = −4707 N,

where γ = 0.8γw.
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Total force has magnitude

∴ |F| =
√

F2
x + F2

y =
√

80932 + 47072 = 9362 N.

Notice that while the two vectors of flux of the momentumM1 andM2 are coaxial
with the reduction (in the hypothesis of radial symmetry of the current velocity
distribution), the two forces on the surfaces Π1 and Π2 are applied in the respective
centres of pressure which, in the present case, are below the axis of the reduction.
The corresponding torque is balanced by a suitable pressure distribution on the walls
of the reduction.

We now perform the calculations considering the absolute value of the pressure.
In this case it is necessary to include the force due to the atmospheric pressure acting
on the external lateral surface of the reduction. The resultant of this force, neglecting
the vertical gradient of air pressure, has only the component according to the x-axis,
is pointing to the left and is equal to

−patm

(

πD2

4
− πd2

4

)

,

regardless of the shape of the reduction. The linear momentum balance projected in
the x-direction is

Fx = (p1abs + ρV 2
1

) πD2

4
− (p2abs + ρV 2

2

) πd2

4
− patm

(

πD2

4
− πd2

4

)

=
(

p1rel + ρV 2
1

) πD2

4
− (p2rel + ρV 2

2

) πd2

4
,

equivalent to the expression calculated with the gage pressure. As expected, the force
on reduction is independent of the chosen pressure reference.

The head in the large cross-section, with respect to a horizontal barycentric axis,
is equal to

H1 = z1 + p1
γ

+ V 2
1

2g
= 88 000

0.8 9806
+ 32

2 9.806
= 11.68 m.

The head, with respect to the same axis, in the small cross-section is equal to

H2 = z2 + p2
γ

+ V 2
2

2g
= 8000

0.8 9806
+ 122

2 9.806
= 8.36 m.

The hydraulic head (gage) in the large cross-section is equal to

h1 = z1 + p1
γ

= 88 000

0.8 9806
= 11.22 m.
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Fig. 4.37 Energy and
hydraulic grade lines

p1rel= 88 kPa
p2abs= 109 kPa

V1 = 3 m/s

hydraulic grade
line

energy grade line

The hydraulic head (gage) in the small cross-section is equal to

h2 = z2 + p2
γ

= 8000

0.8 9806
= 1.02 m.

The drawing in Fig. 4.37 shows the qualitative trend of the heads in the reduction.
The actual trend of the energy and hydraulic grade lines depends on the geometry of
the reduction.

Exercise 4.20 The Pelton turbine shown in Fig. 4.38, with a radius of R = 1.0 m, is
driven by a cylindrical water jet with a diameter of d = 5 cm and an average velocity
of the current V = 60 m s−1.

– Calculate the maximum force acting on the turbine bucket, if the exit angle of the
jet is β = 150◦.

– Calculate the power output at 200 rpm.
– Calculate the efficiency at 200 rpm.

SolutionWe consider a non-inertial frame of reference attached to the wheel. For
the single bucket-shaped vane fitted to the wheel, the transformation of the velocities
is given in the diagram shown in Fig. 4.39.U is the peripheral velocity of the wheel.

The force exerted on the single bucket vane is equal to
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n (rpm)
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Fig. 4.38 Pelton turbine

Fig. 4.39 Velocity diagram
in a frame of reference
attached to the moving wheel
bucket

V U

V U

V Uβ = 150°

Fvane = ρ
πd2

4
(V −U )2 (1 − cosβ) ,

is maximum if the peripheral velocity of the wheel is zero, assuming the value

∴ Fmax = ρ
πd2

4
V 2 (1 − cosβ) =

1000
π 0.052

4
602 (1 − cos 150◦) = 13.2 kN.

Considering that there is always at least one vane hit by the water jet, it can be
demonstrated that the average force on the system of vanes is equal to

Fav = ρQ (V −U ) (1 − cosβ) ,

i.e. all the flowrate Q = Vπd2/4, not only the reduced flowrate (V −U )πd2/4 for
an observer attached to the vanes, contributes to the force. The average output shaft
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power is equal to
Psha f t = ρQ (V −U ) (1 − cosβ)U.

At rotation rate n = 200 rpm, the peripheral velocity is equal to

U = 2πn

60
R = 2 π 200

60
1.0 = 20.95 m s−1,

and, therefore:

∴ Psha f t = ρQ (V −U ) (1 − cosβ)U = ρ
πd2

4
VU (V −U ) (1 − cosβ) =

1000
π 0.052

4
60 20.95 (60 − 20.95) (1 − cos 150◦) = 180.0 kW.

The efficiency is equal to the ratio between the shaft power and the power of the
water jet (the latter is only kinetic power because the jet is in air, with an internal
pressure equal to atmospheric pressure and a negligible contribution of gravity):

∴ η = Psha f t
Pjet

= ρQ (V −U ) (1 − cosβ)U

γwQ
V 2

2g

= 2 (V −U ) (1 − cosβ)U

V 2
=

2 (60 − 20.95) (1 − cos 150◦) 20.95

602
= 0.85.

Exercise 4.21 The diffuser shown in Fig. 4.40 generates a radial water sheet with
a thickness t = 1.5 mm. The output velocity is V2 = 10 m s−1, the radius is R =
50 mm and the sheet covers an angle of 180◦. The supply pipe has a diameter of
D = 50 mm and the manometer indicates a gage pressure p1 = 150 kPa.

– Calculate the flow rate Q that supplies the diffuser.
– Calculate the force and torque that load the flange.

Neglect theweight of the fluid. Assume amass density of water ρ = 1000 kgm−3.

Solution The flow rate exiting the diffuser is calculated by integration, and is
equal to

∴ Q = πRtV2 = π 50 10−3 1.5 10−3 10 = 2.36 l s−1.

Applying mass conservation, the velocity in the supply line is equal to
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Fig. 4.40 Diffuser with
radial water sheet

V1
R θ

D

p1

x

y
V2

V1 = 4Q

πD2
= 4 2.36 10−3

π
(

50 10−3
)2 = 1.2 ms−1.

In the calculation of the forces and torque we neglect the weight of the fluid.
In the coordinate system shown in Fig. 4.40, the equilibrium in the y-direction is

satisfied by symmetry. The equilibrium in the x-direction requires that

Π0x + Π1x + ��Π2x + M1x − M2x = 0,

or

−Fx + p1
πD2

4
+ ρV 2

1
πD2

4
− ρ

π/2∫

−π/2

V 2
2 cos θ t R dθ = 0 →

Fx = p1
πD2

4
+ ρV 2

1
πD2

4
− ρV 2

2 t R sin θ |π/2−π/2 =

p1
πD2

4
+ ρV 2

1
πD2

4
− 2ρV 2

2 t R,

where Fx = −Π0x is the force exerted by the fluid in the control volume on the
diffuser device and, ultimately, on the flange. The torque is null by symmetry.

Substituting the numerical values, yields

∴ Fx = p1
πD2

4
+ ρV 2

1
πD2

4
− 2ρV 2

2 t R =

150 103
π
(

50 10−3
)2

4
+ 1000 1.22

π
(

50 10−3
)2

4
− 2 1000 102 1.5 10−3 50 10−3 = 282 N.
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Fig. 4.41 Diffuser with
water sheet along a
generatrix

Q

D = 150 mm

x

y

V2 = 11.3 m/sV1 = 7.5 m/s

b l

Exercise 4.22 Apipe of diameter D = 150 mm ends with a diffuser connected with
a flange. The diffuser has a rectangular gap along the generatrix, h = 15 mm high
and l = 1.0 m long, through which the water flows out at a right angle to the axis,
with the velocity distribution shown in Fig. 4.41 which is due to an internal set of
vanes. The gap starts at a distance of b = 0.2 m from the flange. The gage pressure
in the flange section is pin = 30 kPa.

– Calculate the flow rate Q that supplies the diffuser.
– Calculate the forces and torque on the flange.

Solution In the coordinate system shown inFig. 4.41, the velocity varies according
to the following equation:

Vy(x) = −V1 − V2 − V1

l
x .

The flowrate is equal to

∴ Q =
l
∫

0

|Vy(x)|h dx =V1 + V2

2
lh = 7.5 + 11.3

2
1 0.015 = 0.141 m3 s−1.

The inlet velocity is equal to

Vin = 4Q

πD2
= 4 0.141

π 0.152
= 7.98 m s−1.

The linear momentum balance projected in the x-direction gives

−Fx + pin
πD2

4
+ ρV 2

in

πD2

4
= 0.



180 4 Balances of Linear and Angular Momentum

Substituting the numerical values, yields

∴ Fx = (pin + ρV 2
in

) πD2

4
= (30 000 + 1000 7.982

) π 0.152

4
= 1655 N.

The linear momentum balance projected in the y-direction is

−Fy +
l
∫

0

ρ
[

Vy(x)
]2
h dx = 0,

hence

Fy =
l
∫

0

ρ

(

−V1 − V2 − V1

l
x

)2

h dx = ρh

l
∫

0

(

−V1 − V2 − V1

l
x

)2

dx =

ρh

[

V 2
1 x +

(

V2 − V1

l

)2 x3

3
+ V1

V2 − V1

l
x2
]∣

∣

∣

∣

∣

l

0

=

ρh

[

V 2
1 l + (V2 − V1)

2 l

3
+ V1 (V2 − V1) l

]

,

∴ Fy = ρh
(

V 2
1 + V 2

2 + V1V2
) l

3
=

1000 0.015
[

7.52 + 11.32 + 7.5 11.3
] 1

3
= 1343 N.

The angular momentum balance projected in the z-direction, results in

−Mz +
l
∫

0

ρ
[

Vy(x)
]2

(x + b)h dx = 0.

Hence,

Mz =
l
∫

0

ρ

(

−V1 − V2 − V1

l
x

)2

(x + b)h dx =

ρhb

l
∫

0

(

−V1 − V2 − V1

l
x

)2

dx + ρh

l
∫

0

(

−V1 − V2 − V1

l
x

)2

x dx =

ρhb

[

V 2
1 x +

(

V2 − V1

l

)2 x3

3
+ V1

V2 − V1

l
x2
]∣

∣

∣

∣

∣

l

0
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+ ρh

[

V 2
1
x2

2
+
(

V2 − V1

l

)2 x4

4
+ 2V1

V2 − V1

l

x3

3

]∣

∣

∣

∣

∣

l

0

=

ρhb
[

V 2
1 + V 2

2 + V1V2
] l

3
+ ρh

[

V 2
1

12
+ V 2

2

4
+ 1

6
V1V2

]

l2.

Substituting the numerical values, yields

∴ Mz = ρhb
[

V 2
1 + V 2

2 + V1V2
] l

3
+ ρh

[

V 2
1

12
+ V 2

2

4
+ 1

6
V1V2

]

l2 =

1000 0.015 0.2
[

7.52 + 11.32 + 7.5 11.3
] 1

3

+ 1000 0.015

[

7.52

12
+ 11.32

4
+ 1

6
7.5 11.3

]

12=1030 Nm.

Exercise 4.23 The air-cushion vehicle (ACV, hovercraft) in Fig. 4.42 is supported
by pressurized air from a fan. The air fills a rectangular chamber 15 20 m2 and
escapes through a continuous slit of height δ = 7.5 cm. The volume of the chamber is
sufficiently large to neglect the average air velocity. The vehicleweight is P = 45 kN.

– Calculate the flow rate Q required to support the vehicle.
– Calculate the fan power, if its efficiency is η = 0.5.
– Calculate the slit height, if the flow rate is reduced to 60% of the previously
calculated value.

Neglect incoming momentum flux. The air mass density is equal to ρair =
1.3 kgm−3.

Solution The vehicle is supported by the air pressure in the chamber, which
is in excess of the atmospheric pressure. The calculation is immediate because the
outgoingmomentumfluxhas an exclusively horizontal component and, by neglecting

δ2
int

skirt

fan

Fig. 4.42 Schematic of an air-cushion vehicle (ACV, hovercraft)
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the incoming momentum flux due to the fan (because of the low speed and the low
air mass density), it results

pintab = |P| ,

where pint is the relative pressure of the air inside the unit, and a, b are the lengths
of the sides of the skirt. Hence,

pint = |P|
ab

= 45 000

15 20
= 150 Pa.

Applying Bernoulli’s theorem between the section inside the skirt and section2
along the trajectory in Fig. 4.42, it results

pint + ρair
V 2
int

2
= p2 + ρair

V 2
2

2
,

and therefore, since Vint ≈ 0 and p2 = 0, it results

V2 =
√

2pint
ρair

=
√

2 150

1.3
= 15.2 m s−1.

Consequently, the volumetric flow rate must be equal to

∴ Q = V2δ(2a + 2b) = 15.2 0.075 (2 15 + 2 20) = 79.8 m3 s−1.

The fan power is equal to:

∴ P = γair QH

η
≈ Qpint

η
= 79.8 150

0.5
= 24 kW,

where H is the head that, for the low speeds and for the low values of the air mass
density, reduces to the pressure head component only:

H ≈ pint
γair

.

If the flow rate is reduced to 60% of the value previously calculated, it results

V2
′δ′ (2a + 2b) = 0.6V2δ (2a + 2b) .

Moreover, since the internal pressure must remain unchanged, from Bernoulli’s
theorem also the speed in the output section must remain unchanged, hence

∴ δ′ = 0.6δ = 0.6 7.5 = 4.5 cm.
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Q

y

x
z

h = 0.01 m

Vmax = 10 m/s

Fig. 4.43 Diffuser with horizontal water sheet

Exercise 4.24 In the device in Fig. 4.43, the water enters vertically and flows out lat-
erally through a slot of length l = 0.2 m, with a linear velocity distribution between
0 and 10 m s−1 and with constant sheet thickness h = 0.01 m. The diameter of the
supply pipe is D = 25 mm. Calculate:

– the three components of the force exerted by the fluid on the device.
– Their centres of pressure.

Assume a uniform and permanent velocity distribution in the supply pipe. Neglect
the effect of gravity. Assume a pressure at the inlet section equal to the atmospheric
pressure. Assume water density ρ = 1000 kgm−3.

Solution The linear momentum balance in vector form reads

G + Π + I + M1 − M2= 0. (4.7)

We neglect the weight. Local inertia is null in stationary regime. Projecting Eq.
(4.7) in the x-direction results in

Πx = 0,

hence no force is exerted along x .
Projecting Eq. (4.7) in the y-direction results in

Fy ≡ −Πy = −M2y,
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because the incoming momentum flux has null y-component. The velocity profile in
the slot varies according to the relation

Vy = Vmax
(x + l/2)

l
,

where Vmax = 10 m s−1 is the maximum value of the output velocity, and l = 0.2 m
is the width of the slot. The outgoing momentum flux is equal to

M2y =
∫

A

ρVy |V · n| dS =
l/2
∫

−l/2

ρhV 2
max

(

x + l/2

l

)2

dx =

ρhV 2
max

3l2
(x + l/2)3

∣

∣
l/2

−l/2 = ρhV 2
maxl

3
.

Therefore, the force component in the y-direction is equal to

∴ Fy = −ρhV 2
maxl

3
= −1000 0.01 102 0.2

3
= −66.7 N.

Its centre of pressure is calculated by writing the balance equation of the angular
momentum about the z-axis:

��Gmz + Πmz + ��Imz + ���M1mz − M2mz = 0.

The only terms contributing to the balance shall satisfy the following equation

Πyxc ≡ Πmz = M2mz, (4.8)

where xc is the abscissa of the centre of pressure of theΠy ≡ −Fy force component.
The z-component of the outgoing flux of angular momentum is equal to

M2mz =
∫

A

ρxVy |V · n| dS =
l/2
∫

−l/2

ρhxV 2
max

(

x + l/2

l

)2

dx = ρhV 2
maxl

2

12
.

Equation (4.8) reduces to

−Fyxc = ρhV 2
maxl

2

12
→
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∴ xc = −ρhV 2
maxl

2

12Fy
= l

4
= 0.2

4
= 0.05m.

Projecting Eq. (4.7) in the z-direction, it results

Fz ≡ −Πz = M1z,

because the outgoing momentum flux has null z-component. The incoming momen-
tum flux is

M1z =
∫

A

ρVz|V · n| dS = −ρ
4Q2

πD2
.

The flow rate Q is computed by integrating the velocity profile on the slot,

Q =
l/2
∫

−l/2

hVmax

(

x + l/2

l

)

dx = hVmaxl

2
= 0.01 10 0.2

2
= 0.01 m3 s−1.

Substituting the numerical values, yields

∴ Fz = −ρ
4Q2

πD2
= −1000

4 0.012

π 0.0252
= −203.7 N.

Fz is coaxial to the supply pipe.

Exercise 4.25 A boxcar moves at a speed of V = 60 kmh−1 and is equipped with a
vane as shown in Fig. 4.44, which is partially immersed in a water channel between
the rails. The width of the vane between the rails is l = 1.0 m.

– Calculate the resistance to motion.

h = 25 mm

V
30°

Fig. 4.44 Boxcar with a vane immersed in a channel between the rails
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V

x

h = 25 mm

30°

V

Fig. 4.45 Mobile control volume attached to the boxcar

SolutionWechoose a control volume attached to the boxcar, as shown in Fig. 4.45.
Thewater inlet speed is equal to V = 60 kmh−1 = 16.7 m s−1. Resistance tomotion
is calculated by writing the linear momentum balance for the control volume chosen
in the mobile reference (which is inertial):

G + Π + I + M1 − M2 = 0. (4.9)

Projecting Eq. (4.9) in the x-direction yields

��Gx + Πx + ��Ix + M1x − M2x = 0 → Fx ≡ −Πx = M1x − M2x ,

where Fx is the horizontal force exerted by the control volume to the boxcar.
Neglecting the dissipations and the variation of level head, applying Bernoulli’s

theorem results that the velocity of the outgoing water current is still equal to V .
Hence,

∴ Fx = ρV 2lh + ρV 2lh cos 30◦ =
1000 (16.7)2 1 25 10−3 (1 + cos 30◦) = 13.0 kN,

pointing in the direction opposite to the motion.
There is also a vertical component Fy pointing downwards, but it is not a resistance

force, unless friction on the rails is considered.

Exercise 4.26 In the horizontal reducer in Fig. 4.46 the inlet diameter is D1 = 8 cm,
the outlet diameter is D2 = 5 cm. The outlet pressure p2 coincides with the atmo-
spheric pressure. The velocity of the inflowingwater is V1 = 5 m s−1, and the reading
of the mercury differential pressure gauge is h = 58 cm.
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h

p p2 =     = 101 kPaa

mercury

water

1
2

x

Fig. 4.46 Reducer with a mercury differential pressure manometer

h

p p2 =     = 101 kPaa

mercury

water

1
2

x

Fig. 4.47 Control volume for calculating the force on the flanges

– Calculate the horizontal force on the flanges assuming that pipe after section2
cannot apply forces on the reducer.

Assume γw = 9806Nm−3, ρ = 1000 kgm−3 and γHg/γw = 13.6.

SolutionThe horizontal force is computed applying the linearmomentumbalance
equation to the dashed control volume in Fig. 4.47.

The linear momentum balance in the x-direction is

Gx + Π0x + Π1x + Π2x + Ix + M1x − M2x = 0,

where

Gx = 0, Π1x = p1g
πD2

1

4
, Π2x = −p2g

πD2
2

4
, Ix = 0,

M1x = ρ
πD2

1

4
V 2
1 , M2x = ρ

πD2
2

4
V 2
2 ,
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and where Π0x is the unknown force exerted by the reducer on the control volume.
The gage pressure p1g ≡ p1 − pa , where p1 is the absolute pressure and pa is the
absolute atmospheric pressure, is calculated from the manometer reading as follows:

p1g = p2g + (γHg − γw
)

h = 0 + 9806 (13.6 − 1) 0.58 = 71 660 Pa,

where p2g ≡ p2 − pa = 0.
The velocity V2 is calculated by applying the mass conservation equation,

V2 = V1
D2

1

D2
2

= 5
0.082

0.052
= 12.8 m s−1.

Hence

Π0x = p2g
πD2

2

4
− p1g

πD2
1

4
− ρ

πD2
1

4
V 2
1 + ρ

πD2
2

4
V 2
2 = 0 − 71 660

π 0.082

4

− 1000
π

4

(

0.082 52 − 0.052 12.82
) = −164.2 N.

The force on the flanges is equal to

∴ Fx = −Π0x = 164.2 N,

and induces tensile stress in the bolts.

Exercise 4.27 The nozzle in Fig. 4.48 diffuses a sheet of water of thickness t =
0.03 m for the whole semicircle, with a radial velocity V = 15 m s−1 at a distance
R = 0.3 m from the axis.

– Calculate the flow rate Q and the force that must be applied in the y-direction to
keep the nozzle in place.

Assume ρ = 1000 kgm−3.

SolutionWechoose the control volume shown in Fig. 4.49. Themass conservation
equation allows the calculation of the flow rate,

Q = πRtV = π 0.3 0.03 15 = 0.424 m3 s−1.

The linear momentum balance equation in the y-direction reads

��Gy + ��Π1y + ��Π2y + Π0y + ��Iy + ��M1y − M2y = 0.
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Fig. 4.48 Radial diffuser
nozzle

Q

D = 0.2 m

R = 0.3 m

t = 0.03 m

V = 15 m/syx

z

Fig. 4.49 Control volume

y

z

G

Π

M

ΠM

Π

θ
R

x

The unknown force Π0y is the only term balancing the outgoing momentum flux
(y-component). In the polar coordinate system θ − R shown in Fig. 4.49, results

∴ Π0y ≡ M2y =
∫

Ae

ρVyV · n dS =

π
2∫

− π
2

ρ |V| cos θ |V| Rt dθ = ρ|V|2Rt sin θ | π
2
− π

2
=

1000 152 0.3 0.03 2 = 4.05 kN.
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This force is positive and, for a symmetrical distribution of the elementary out-
going momentum flux contributions with respect to a plane orthogonal to the axis z,
it must be contained in this plane.

De = 3 cm

Ve

V0

compressed air

Fig. 4.50 Boat powered by compressed air

Exercise 4.28 The boat in Fig. 4.50 moves at a constant speed driven by a jet of
compressed air. The air escapes from a circular nozzle with a diameter De = 3 cm
at atmospheric pressure and at a critical speed Ve = 343 m s−1. The drag force on
the boat is equal to kV 2

0 with k = 19 N s2 m−2.

– Calculate the constant speed V0.

Assume air density ρa = 1.25 kgm−3.

SolutionWe choose a control volume in themobile reference frame, see Fig. 4.51.
If the boat is moving at a constant speed, the reference frame is inertial. The velocities
must be evaluated in the reference system of the control volume, i.e. in the mobile
inertial reference to which we decide to attach the system of coordinates X .

The linear momentum balance projected on the X -axis is

��GX + ��IX + Π0X + ��Π1X + ��Π2X + ���M1X − M2X = 0,

where

Π0X = −kV 2
0 , M2X ≡

∫

So

ρVXV · n dS = −ρaV
2
e

πD2
e

4
.
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De = 3 cm

Ve compressed air

X

Π X2X

Fig. 4.51 Mobile control volume attached to the boat

In equilibrium conditions, it results

∴ V0 = VeDe

√

ρaπ

4k
= 343 0.03

√

1.25 π

4 19
= 2.34 m s−1.

Exercise 4.29 A cylindrical tank with a cross-section area A = 0.09 m2 and height
h, is on the floor of an elevator, see Fig. 4.52. The elevator is initially at rest. The
empty tank has a mass M = 2.5 kg, is placed on a scale and is filled with water
from above through a hole with cross-section area A1 = 0.009 m2. The water comes
out laterally, near the bottom of the tank, trough two perfectly symmetrical holes of
cross-section area A2 = A3 = 2.22 10−3 m2. The water depth in the tank, in steady
state, is h1 = 0.57 m. Calculate:

– the reading on the scale if V1 = 1.5 m s−1.
– The minimum value of the coefficient of friction between the bottom of the tank
and the scale plate required to prevent sliding.

At a certain moment the elevator moves upwards with an acceleration
a = 1 m s−2. Calculate:

– the new water level in the tank.
– The new minimum value of the coefficient of friction between the bottom of the
tank and the scale plate required to prevent sliding.

At a later time, the lift moves with uniform motion (a = 0) and the flow through
section2 is interrupted. Calculate:

– theminimumvalue of h necessary for thewater not to reach the top of the container.
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hh1

h3

V1

V2V3
3

1

2

scale
a

x

y

Fig. 4.52 Elevator with tank on a scale

– The minimum value of the coefficient of friction between the bottom of the tank
and the scale plate required to prevent sliding.

Assumeρ = 1000 kgm−3, a unit contraction coefficient for all sections and ignore
dissipation. Assume that the velocity of the fluid at free surface in the tank is negli-
gible.

Solution After selecting the control volume in Fig. 4.53, the linear momentum
balance projected in the y-direction reads

Gy + Πy + Iy + M1y − M2y = 0,

where Gy = −ρgAh1, Iy = 0, M1y = −ρV 2
1 A1, M2y = 0, and Πy is the unknown.

Hence, the force acting on the control volume is equal to

Πy = ρgAh1 + ρV 2
1 A1.

The reading on the scale, including the weight of the container, is equal to

∴ ρgAh1 + ρV 2
1 A1 + Mg =

9806 0.09 0.57 + 1000 (1.5)2 0.009 + 2.5 9.806 = 549 N.

For the mass conservation and by symmetry, it also results

V2 = V3 = V1A1

2A2
= 1.5 0.009

2 2.22 10−3 = 3.04 m s−1,
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hh1

h3

scale
a

x

y

V1

V2V3

3

1

2

Fig. 4.53 Control volume

when section2 is still open.
The height of the centroid of section3 (coinciding with the height of the centroid

of section2), measured from the bottom of the container, is calculated by applying
Bernoulli’s theorem between the free surface of the water in the tank (where the fluid
velocity is null by hypothesis) and the outflow section, when the two orifices with
cross-section area A2 and A3 are open and in the hypothesis that the vertical size of
the two orifices is negligible with respect to the water depth. Hence,

V2 = V3 = √2g (h1 − h3),

from which yields

h3 = h1 − V 2
2

2g
= 0.57 − (3.04)2

2 9.806
= 0.10 m.

Due to the symmetry, the linear momentum balance in the x-direction is satisfied
even without friction.

In the presence of an upward acceleration, selecting a non-inertial control volume
(identical to the previous one), the outflow velocity through sections 2 and 3 becomes

V2 = V3 =
√

2 (g + a)
(

h′
1 − h3

)

,

and the new level of the free surface (measured with respect to the bottom of the
tank) becomes

∴ h′
1 = h3 + V 2

2

2 (g + a)
= 0.10 + (3.04)2

2 (9.806 + 1)
= 0.53 m.
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The minimum coefficient of friction is null again, since linear momentum in the
x-direction is self balanced.

If section2 is occluded, in steady state regime (a = 0) the entire inlet flow rate
must be evacuated through section3. The conservation of the mass requires that

V1A1 = V3A3 → V3 = A1V1

A3
= 0.009 1.5

2.22 10−3 = 6.08 m s−1.

The head measured with reference to the centroid of the outflow section3,
necessary to have an outflow velocity V3 = 6.08 m s−1, is calculated by applying
Bernoulli’s theorem to a path starting from the free surface in the tank (where the
velocity is negligible) and crossing the vena contracta of the outflow jet (null dissi-
pations and unitary contraction coefficient by hypothesis):

V3 = √2g (h − h3) →

∴ h = h3 + V 2
3

2g
= 0.10 + (6.08)2

2 9.806
= 1.98 m.

The linear momentum balance along the x-direction is

��Gx + Πx + ��Ix + ��M1x − M2x = 0,

where M2x = −ρV 2
3 A3 and Πx is the unknown. Hence

Πx = −ρV 2
3 A3 = −1000 (6.08)2 2.22 10−3 = −82 N.

The minimum value of the coefficient of friction required to prevent the container
from sliding in the positive direction of the x-axis is obtained by imposing that

|Πx | ≤ f
∣

∣ρghA + Mg+ρV 2
1 A1

∣

∣→

∴ f ≥ |Πx |
∣

∣ρghA + Mg + ρV 2
1 A1

∣

∣

=
|−82|

∣

∣1000 9.806 1.98 0.09 + 2.5 9.806 + 1000 (1.5)2 0.009
∣

∣

= 0.046.

Exercise 4.30 The water jet in Fig. 4.54, of diameter D = 20 mm, impinges on the
circular cap with speed V = 30 m s−1. The circular cap has an axial hole and moves
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Fig. 4.54 Water jet
impinging on a circular cap
with an axial hole

θ = 40°

V

D

U

d

Fig. 4.55 Control volume
attached to the circular cap

V U-

D

d

x

V U-

V U-

V U-

θ = 40°

to the left with velocityU = 10 m s−1. The jet is partly diverted, and partly continues
with a diameter d = 10 mm.

– Calculate the force required to keep the cap in uniform motion.

Assume ρ = 1000 kgm−3.

SolutionWe choose a control volume in the mobile frame of reference attached to
the cap, see Fig. 4.55. If the cap moves at a constant velocity, the reference is inertial.
The velocities must be evaluated in the reference system of the control volume, that is
in themobile inertial reference towhichwe decide to attach the system of coordinates
x .

The linear momentum balance projected along the x-axis is

��Gx + ��Ix + Π0x + ��Π1x + ��Π2x + M1x − M2x = 0,

where
Π0x = −Fx ,

being Fx the action exerted by the fluid in the control volume on the circular cap.
If we neglect the dissipations, applying Bernoulli’s theorem we can show that

the velocity of the current deflected by the cap and passing axially is equal to the
velocity of the incident current. In the relative mobile reference, this velocity is equal
to V −U .
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The incoming momentum flux is equal to

M1x = ρ(V −U )2
πD2

4
,

and the outgoing momentum flux is equal to

M2x = ρ(V −U )2
πd2

4
− ρ (V −U ) Qdiv cos θ,

where the first contribution is the momentum flux at the exit of the axial circular
hole, the second contribution is the momentum flux of the diverted current. Qdiv

represents the flow rate diverted for an observer attached to the cap, equal to the
difference between the input flow rate and the flow rate through the circular axial
hole:

Qdiv = (V −U )
π
(

D2 − d2
)

4
.

Hence,

M2x = ρ(V −U )2
πd2

4
− ρ(V −U )2

π
(

D2 − d2
)

4
cos θ.

The horizontal component of force exerted by the jet on the circular cap is equal
to:

∴ Fx = M1x − M2x →

Fx = ρ(V −U )2
π
(

D2 − d2
)

4
(1 + cos θ) =

1000 (30 − 10)2
π

(

0.022 − 0.012
)

4
(1 + cos 40◦) = 166 N,

and it is pointing to the left. To guarantee the uniformmotion of the cap, it is necessary
to apply a force equal to −Fx .

Exercise 4.31 The jet in Fig. 4.56 impinges on the body of mass M . The dynamic
friction coefficient between the body and the horizontal sliding plane is equal to
μk = 0.30. Calculate:

– the acceleration of the body, when its velocity is equal to U = 10 m s−1.
– The asymptotic velocity of the body.

Assume a mass density of the water ρ = 999 kgm−3.
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M = 30 kg
U

V = 20 m/s

A = 0.005 m2

μk = 0.30

Fig. 4.56 Water jet impinging on a sliding body

M = 30 kg
A = 0.005 m2

V U

μk = 0.30

Fig. 4.57 Mobile control volume attached to the body

SolutionWe choose the control volume in Fig. 4.57, attached to the moving body.
The force exerted by the jet is equal to the incoming momentum flux, neglecting the
local inertia:

F = ρA (V −U ) |V −U | .

Considering all the forces acting on the body, it results

M
dU

dt
= ρA (V −U ) |V −U | − μkMg,

Body acceleration for U = 10 m s−1 is equal to

∴ dU

dt
= ρA

M
(V −U ) |V −U | − μkg =

999 0.005

30
(20 − 10) |20 − 10| − 0.3 9.806 = 13.7 m s−2.

The asymptotic velocity of the body is reached when the acceleration is zero, that
is



198 4 Balances of Linear and Angular Momentum

∴ U = V −
√

μkMg

ρA
= 20 −

√

0.3 30 9.806

999 0.005
= 15.8 m s−1.

Exercise 4.32 A jet-ski moves in seawater, see Fig. 4.58. In navigation trip the water
intake is inclined at an angle α = (30 + Cpu)

◦ to the horizontal, and has a cross-
section area Ω1 = (1.5 + Cpu/10) dm2; the outflow section, of cross-section area
Ω2, is circular cylindrical with a diameter of d = (8 + Cpu/10) cm.

– Calculate the flow rate required to generate a 1300N thrust with a jet-ski velocity
of V1 = 7.0 m s−1.

– Calculate the power transferred to the water jet by the propeller to generate this
thrust.

– Perform the same calculations if the nozzle outflow cross-section has a diameter
of 2d and α = 90◦.

Consider the outgoing jet horizontal. Assume ρ = 1000 kgm−3, γw =
9806 Nm−3.

Solution We choose the control volume in Fig. 4.59, attached to the jet-ski. The
linear momentum balance in the horizontal direction reads

��Gx + Π0x + ��Π1x + ��Π2x + ��Ix + M1x − M2x = 0.

The force exerted on the control volume is due to the distribution of stresses at
the contact surface between the jet-ski and the fluid, equal and opposite to the action
exerted on the jet-ski:

Fx ≡ −Π0x = M1x − M2x .

αΩ

Ω

V

V

Fig. 4.58 Jet-ski
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Fig. 4.59 Control volume
control volume

x

αΩ

Ω

V

V

If the flow rate is Q, then

Fx = ρQ (V1 − V2) ,

where V2 is the velocity of the jet relative to the jet-ski.
Since Q = V2Ω2, yields

Fx = ρQV1 − ρ
Q2

Ω2
,

pointing left. Solving with respect to the flow rate, yields

Q =
V1Ω2 +

√

(V1Ω2)
2 − 4Fx

Ω2

ρ

2
.

Thewater enters the inletwith a relative speed equal to V1 sin α. The power yielded
by the pump to the jet is equal to the difference between the kinetic power of the
output current and the kinetic power of the input current:

Pj = γwQ

(

V 2
2

2g
− V 2

1 sin
2α

2g

)

.

The power transferred to the jet-ski is equal to:

Pjs = FxV1 =
(

ρ
Q2

Ω2
− ρQV1

)

V1.
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The efficiency is equal to

η = Pjs

Pj
=

(

ρ
Q2

Ω2
− ρQV1

)

V1

γwQ

(

V 2
2

2g
− V 2

1 sin
2α

2g

) = 2 (V2 − V1) V1

(V2 − V1 sin α) (V2 + V1 sin α)
.

If the axis of the intake is orthogonal to the direction of motion (α = 0), the
efficiency is

η = 2 (V2 − V1) V1

V 2
2

,

which assumes a maximum value of 50% for V2 = 2V1.
If the axis of the intake is parallel to the direction of motion (α = 90◦), the

efficiency is

η = 2V1

V2 + V1
,

which assumes a maximum theoretical value of 100% for V2 = V1. However, this
value is meaningless since it would correspond to a null thrust.

If V2 = 2V1, for α = 90◦ the efficiency is 66%, higher than the maximum value
calculated for α = 0.

Doubling the diameter of the outflow nozzle, the area of its cross-section quadru-
ples, and the flow rate becomes

Q′ =
V1Ω

′
2 +

√

(

V1Ω
′
2

)2 − 4Fx
Ω ′

2

ρ

2
=

4V1Ω2 +
√

(4V1Ω2)
2 − 16Fx

Ω2

ρ

2
> Q,

since Ω ′
2 = 4Ω2.

The efficiency is equal to

η′ = Pjs

P ′
j

=

(

ρ
Q′2

Ω ′
2

− ρQ′V1

)

V1

γwQ′
(

V
′2
2

2g
− V 2

1

2g

) = 2V1
(

V ′
2 + V1

) .

The efficiency increases for reduction of the speed V ′
2, obtained by increasing the

cross-section area of the outflow nozzle. At most, if the pump impeller is replaced
by a propeller in water (traditional solution), a maximum efficiency is achieved. The
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ducted jet solution is frequently used for navigation in shallow water, to protect the
propeller from impact against possible obstacles, or in jet-skis to ensure the safety
of the driver in the event of falling into the water.

For Cu = Cpu = 0 it results d = 8 cm, α = 30◦ and

Ω2 = πd2

4
= π

(

8 10−2
)2

4
= 5.0265 10−3 m2.

∴ Q =
V1Ω2 +

√

(V1Ω2)
2 − 4Fx

Ω2

ρ

2
= 7.0 5.0265 10−3

2

+ 1

2

√

(

7.0 5.0265 10−3
)2 − 4 (−1300)

5.0265 10−3

1000
= 0.100 m3 s−1,

V2 = Q

Ω2
= 0.100

5.0265 10−3 = 19.89 m s−1,

∴ Pj = γwQ

(

V 2
2

2g
− V 2

1 sin
2α

2g

)

=

9806 0.100

(

19.892

2 9.806
− 7.02 sin230◦

2 9.806

)

= 19.2 kW,

∴ η = 2 (V2 − V1) V1

(V2 − V1 sin α) (V2 + V1 sin α)
=

2 (19.89 − 7.0) 7.0

(19.89 − 7.0 sin 30◦) (19.89 + 7.0 sin 30◦)
= 47.1%.

For d ′ = 2d = 16 cm and α = 90◦ results

Ω ′
2 = πd ′2

4
= π

(

16 10−2
)2

4
= 20.106 10−3 m2,

∴ Q′ =
V1Ω

′
2 +

√

(

V1Ω
′
2

)2 − 4Fx
Ω ′

2

ρ

2
= 7.0 20.106 10−3

2

+ 1

2

√

(

7.0 20.106 10−3
)2 − 4 (−1300)

20.106 10−3

1000
= 0.247 m3 s−1,
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V ′
2 = Q′

Ω ′
2

= 0.247

20.106 10−3 = 12.27 m s−1,

∴ P ′
j = γwQ

′
(

V
′2
2

2g
− V 2

1

2g

)

=

9806 0.247

(

12.272

2 9.806
− 7.02

2 9.806

)

= 12.5 kW,

∴ η′ = 2V1
(

V ′
2 + V1

) = 2 7.0

(12.27 + 7.0)
= 72.7%.



Chapter 5
Pipeline Systems

Pipeline circuits are the most common application of Hydraulics and Fluid Mechan-
ics in civil and industrial engineering. The liquid is conveyed into pipes of various
diameters and roughness, usually in the presence of special components such as
valves, curves, elbows, fittings. In most cases the problems can be solved by apply-
ing the energy balance in terms of Bernoulli’s extended theorem with additional
energy losses. Energy losses belong to the category of concentrated and distributed
losses, both proportional to the velocity head (at least in turbulent conditions) with
a coefficient that depends on the type of the special component, on the roughness
of the duct and on the Reynolds number. In particular, the distributed energy losses
are calculated with the Darcy formula J = (λ/D)V 2/(2g), where the friction fac-
tor λ is calculated with the Moody chart or, in case of turbulent flow, with the
Colebrook–White equation, an equation in implicit form f (λ,Re, ε/D) = 0 of the
friction factor, the relative roughness ε/D and the number of Reynolds Re = V D/ν.
The Colebrook–White equation in the general case has no analytical solution, and a
numerical procedure is required, if necessary with iterations.

For pipes in series the energy losses are additive, for pipes in parallel or with more
branches, the energy losses must be calculated separately for each route, as they are
per unit of weight (they are intensive) and are not affected by the division of the flow.

In most cases the liquid occupies the entire cross-section (at full-depth), in some
cases it occupies part of it (at partial-depth), with air or vapour at vapour pressure on
top.

An immediate graphic visualization of the energy balance in the pipes is repre-
sented by the line of the energy grade, a line whose vertical distance from a datum is
the sum of the elevation head, the pressure (gage or absolute) head, and the velocity
head. The energy grade line is always decreasing in the direction of flow, unless a
pump or equivalent device capable of transferring energy to the current is inserted

Cu and Cpu , that are two integer numbers between 0 and 9, for example, the last and second-last
digit of the registration number.
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in the circuit. The pressure regime is displayed by the hydraulic grade line, always
below the energy grade line at a distance equal to the velocity head. The vertical dis-
tance between the pipe axis and the hydraulic grade line is the pressure head (gage or
absolute) in the cross-section. If the hydraulic grade line (gage pressure) is above the
pipe axis, the pressure in the cross-section is higher than the atmospheric pressure.
Otherwise, the relative pressure in the cross-section is negative, with a minimum
corresponding to the vapour pressure. The hydraulic grade line may increase in the
direction of flow in the presence of an expansion, which induces a reduction of the
velocity head.

For practical calculations, concentrated losses are negligible compared to dis-
tributed losses if they are less than a few percentage points of the total losses (1–4%).
In this case, also the velocity head is negligible and energy grade line coincides with
the hydraulic grade line.

Exercise 5.1 The siphon in Fig. 5.1 has a diameter d = (0.2 + Cpu/100) m and has
a local restriction. The pipe is supported by a floater and discharges water with a flow
rate Q = (0.06 + Cu/100) m3 s−1. The cross-section area of the cylindrical tank is
A = 10 m2.

– Calculate the coefficient ξ of the head loss due to the restriction, neglecting dis-
tributed losses.

– Calculate the pressure at vertex A.
– Calculate the time required for a level lowering in the tank equal to 0.20 m.

Assume H = 2.0 m, h = 1.5 m, a loss coefficient at the inlet/outlet ξin = 1.16
and ξout = 1, γw = 9806 Nm−3.

Fig. 5.1 Schematic of the
siphon with the inlet section
on a floater

H

h

A

d

C

B
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Solution The energy balance along the path from point C to the outflow section
B, neglecting the distributed head losses and the losses in the curve, leads to the
following relation:

zC +
�

��
pC
γw

+
�
�
�V 2
C

2g
= zB +

�
��
pB
γw

+ ξout
V 2
B

2g
+ ξin

V 2
B

2g
+ ξ

V 2
B

2g
→

zC − zB ≡ h = ξout
V 2
B

2g
+ ξin

V 2
B

2g
+ ξ

V 2
B

2g
,

which yields

ξ = 2gh

V 2
B

− ξin − ξout .

The average velocity of the current is equal to V ≡ VB = 4Q/(πd2). Applying the
energy balance between point C and vertex A, yields

zC +
�

��
pC
γw

+
�
�
�V 2
C

2g
− (ξ + ξin)

V 2

2g
= zA + pA

γw

+ V 2

2g
,

equivalent to

pA = −γw

[
zA − zC + (ξ + ξout + ξin)

V 2

2g

]
≡ −γw (H + h) .

A clarification is necessary on the meaning of ξout . In case of a cylindrical cross-
section in B, the energy loss can be interpreted as the kinetic energy out-flowing with
the exiting jet, and it results ξout = 1. The expression in terms of energy loss is more
flexible since it also interprets cases where there is a divergent in the exiting section
(to reduce energy loss), with ξout < 1; or a nozzle, with ξout > 1.

Since the available load h is constant, the flow rate is constant and the time required
to lower the water level in the tank by a value δ is equal to the ratio between the
corresponding volume of water and the flow rate:

Δt = Aδ

Q
.

For Cu = Cpu = 0 it results d = 0.2 m, Q = 0.06 m3 s−1, A = 10 m2, H =
2.0 m, h = 1.5 m, γw = 9806 Nm−3,

V = 4Q

πd2
= 4 0.06

π 0.22
= 1.91 m s−1,

∴ ξ = 2gh

V 2
B

− ξin − ξout = 2 9.806 1.5

1.912
− 2.16 = 5.90,
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∴ pA = −γw (H + h) = −9806 (2 + 1.5) = −34.3 kPa,

∴ Δt = Aδ

Q
= 10 0.2

0.06
= 33.3 s.

Exercise 5.2 The siphon in Fig. 5.2 is a pipe of diameter D = 0.4 mwith roughness
ε = 0.4 mm.

– Calculate the flow rate.
– Draw the energy grade line and the hydraulic grade line.

Assume an elbow loss coefficient ξe = 0.3 and inlet/outlet loss coefficients ξin =
ξout = 1.

Solution The energy balance along a path connecting the two tanks reads

H = ξin
V 2

2g
+ ξe

V 2

2g
+ ξout

V 2

2g
+ λ

V 2

2g

L1 + L2

D
, (5.1)

where ξin , ξe and ξout are the coefficients of loss at the inlet, at the elbow, and at the
outlet sections, respectively, and where H = 8.5 m is the available head, equal to
the difference of level of the two tanks.

Solving Eq. (5.1) with respect to the velocity, yields

V =
√√√√ 2gH

ξin + ξe + ξout + λ
L1 + L2

D

. (5.2)

Fig. 5.2 Siphon between
two tanks

4 m

13 m

V

S1
8.5 m

S2
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Fig. 5.3 Energy and
hydraulic grade lines

energy grade line
hydraulic
grade line

V

S1
8.5 m

S2

For the calculation of the distributed energy loss, we assume a value of the friction
factor λ equal to the asymptotic value for fully developed turbulence. The asymptotic
value of the resistance index corresponding to a relative roughness ε/D = 0.001 is
equal to λ∞ = 0.0195, see the Moody chart or the Prandtl-Nikuradse equation in the
Appendix.

Substituting the numerical values in Eq. (5.2), yields

V =
√√√√ 2 9.806 8.5

1 + 0.3 + 1 + 0.0195
4 + 13

0.4

= 7.30 m s−1.

The corresponding Reynolds number is equal to:

Re = V D

ν
= 7.30 0.4

10−6
= 2.92 106,

where ν ≈ 10−6 m2 s−1 is the kinematic viscosity of the water. The Moody chart
shows that the operating point of the pipeline is in conditions of fully developed
turbulence, with λ ≡ λ∞, confirming our hypothesis. The flow rate is equal to

∴ Q = V
πD2

4
= 7.30

π 0.42

4
= 0.92 m3 s−1.

The energy and the hydraulic grade lines are shown in Fig. 5.3. The slope of the
straight lines upstream and downstream of the elbow is the same.

Exercise 5.3 Water flows through the siphon in Fig. 5.4, with a diameter equal to
75 mm.



208 5 Pipeline Systems

B

A
4.80 m

2.70 m

2.40 m D = 75 mm

Fig. 5.4 Siphon with a restriction

– Calculate the flow rate neglecting losses.
– Calculate the diameter of the restriction in section A if the two pressure gauges
(in A and B) measure the same pressure, neglecting losses.

Solution The velocity of the current, neglecting losses, follows Torricelli’s law:

V = √
2gh = √

2 9.806 4.8 = 9.70 m s−1.

The flow rate is equal to

∴ Q = V
πD2

4
= 9.70

π 0.0752

4
= 42.85 10−3 m3 s−1.

Applying Bernoulli’s theorem between sections A and B, yields

zA + pA
γw

+ αA
V 2
A

2g
= zB + pB

γw

+ αB
V 2
B

2g
,

where VB = V .
Since pA = pB, if αA = αB = 1, it results

V 2
A = V 2

B + 2g (zB − zA) , (5.3)

and mass conservation equation gives

VA
πD2

A

4
= VB

πD2
B

4
. (5.4)

Solving the system of Eqs.(5.3–5.4), gives
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DB

DA
=

[
1 + 2g (zB − zA)

V 2
B

]1/4

=
[
1 + 2 9.806 (2.4 + 2.7)

9.72

]1/4

= 1.20,

hence,

∴ DA = DB

1.20
= 0.075

1.20
= 62.5mm.

Exercise 5.4 The two tanks in Fig. 5.5 are connected by a siphon. The pipe is made
of steel with a Gauckler-Strickler coefficient k = 80 m1/3 s−1. The ducts have length
LAB = 8 m, LBM = 32 m, LMC = 45 m and diameter D = (200 + 10 Cpu) mm.
The free surface levels in tanks 1–2 are z1 = (11 + 0.5 Cu) m, and z2 = 8 m,
respectively, and the height of vertex M is zM = 19 m.

– Calculate the flow rate.
– Draw the energy and the hydraulic grade lines.

Using a control system, it is possible to lower the level of the upstream tank z1 at a
rate equal to ΔWz1 = 0.001 m s−1, whilst z2 is constant and equal to 8 m.

– Calculate the time necessary for the current in the pipe to swap from a full- to a
partial-depth flow.

– Calculate the flow rate at that time.

Assume a unitary loss coefficient at the inlet and at the outlet, and a loss coefficient
ξc = 0.1 for each curve. The fluid is water at a temperature of 20 ◦C, with a vapour
pressure of 2314 Pa and γw = 9806 Nm−3.

Solution The energy balance equation is

z1 − z2 = (LAB + LBM + LMC)
Q2

k2
(
D

4

)4/3(
πD2

4

)2

+ (ξin + ξout + 2 ξc)
Q2

2g

(
πD2

4

)2 .

For Cu = Cpu = 0 it results D = 200 mm, z1 = 11 m and the energy balance
reads
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Fig. 5.5 Siphon between
two tanks

B

M

A

LAB

LBM

LMC

z1

z2

zM

C

11 − 8 = (8 + 32 + 45)
Q2

802
(
0.2

4

)4/3
(

π 0.22

4

)2

+ (1.0 + 1.0 + 2 0.1)
Q2

2 9.806

(
π 0.22

4

)2 ,

which admits the solution

∴ Q = 0.060 m3 s−1,

and V = 1.91 m s−1. The velocity head is equal to V 2/2g = 0.18 m.
In order to check whether the pipe is in full-depth flow condition, it is necessary

to calculate the hydraulic head. By applying the energy balance equation, the data
listed in Table 5.1 can be computed. The grade lines are shown in Fig. 5.6.

The hydraulic head line is always above the highest section of the pipe (plus the
increment vapour pressure head): vertex M is at +19.00 m and the increase due to
the vapour pressure is equal to 0.24 m. Hence, the pipe always operates in full-depth
condition and the siphon must be primed.

If the level in the upstream tank is lowered, the flow rate is reduced because of
the reduction in the available head. The flow becomes a partial-depth flow when the
pressure at vertex M is equal to the vapour pressure. The two unknowns are the level
z1 and the flow rate, and the following equations hold:
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Table 5.1 Energy and hydraulic heads in some sections of interest. Pressure head contribution
refers to absolute pressure

Duct Energy loss
(m)

End of the duct Energy head
(m)

Hydraulic head
(m)

Upstream duct – A 21.33 21.33

Inlet 1.0 0.18 = 0.18 A 21.15 20.97

AB 0.24 B 20.91 20.73

Curve No.1 0.1 0.18 = 0.02 B 20.89 20.71

BM 0.98 M 19.91 19.73

Curve No.2 0.02 M 19.89 19.71

MC 1.38 C 18.51 18.33

Outlet 1.0 0.18 = 0.18 C 18.33 18.33

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 − z2 = (LAB + LBM + LMC)
Q′2

k2
(
D

4

)4/3 (
πD2

4

)2

+ (ξin + ξout + 2 ξc)
Q′2

2g

(
πD2

4

)2 ,

z1 + patm
γw

−

⎡
⎢⎢⎢⎣zM + pvap

γw

+ Q′2

2g

(
πD2

4

)2

⎤
⎥⎥⎥⎦ =

(LAB + LBM)
Q′2

k2
(
D

4

)4/3 (
πD2

4

)2 + (ξin + ξc)
Q′2

2g

(
πD2

4

)2 .

By substitution, the following equation is obtained, which also represents the energy
balance between vertex M and the downstream tank when the absolute pressure at
vertex M is equal to the vapour pressure:

zM + pvap

γw

+ Q′2

2g

(
πD2

4

)2 − z2 − patm
γw

= LMC
Q′2

k2
(
D

4

)4/3 (
πD2

4

)2

+ (ξout + ξc)
Q′2

2g

(
πD2

4

)2 . (5.5)

By substituting the numerical values, Eq. (5.5) becomes
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19 + 0.24 + Q′2

2 9.806

(
π 0.22

4

)2 − 8 − 10.33 =

45
Q′2

802
(
0.2

4

)4/3 (
π 0.22

4

)2

+ (1.0 + 0.1)
Q′2

2 9.806

(
π 0.22

4

)2 ,

with the solution

∴ Q′ = 0.048 m3 s−1,

and V ′ = 1.53 m s−1, z′
1 = 9.94 m. The lowering of the level in the upstream tank

requires a time equal to

∴ Δt = z1 − z′
1

ΔWz1

= 11 − 9.94

0.001
= 1060 s.

patm

γw

head line

head line

hydraulic
grade line

inlet loss in A +
curve loss in B +
distributed loss in AB{

B

M

A C

LAB

LBM

LMC

z1

z2

zM

patm

γw

Fig. 5.6 Energy and hydraulic (absolute pressure) grade lines. Notice that the grade lines are
distorted
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Fig. 5.7 Rating curve (red bold line) and absolute pressure diagram (black bold line) at vertex M

Figure 5.7 shows the diagram of the flow rate and of the absolute pressure at vertex
M as a function of the water level in the upstream tank.

Exercise 5.5 The pipe in Fig. 5.8 is made of steel with diameter D = (200 +
Cpu 10) mm and roughness ε = 0.2 mm. The water flow rate is equal to Q =
(0.10 + Cu/100) m3 s−1 with h = (100 + Cu 10) m. The ducts have length L1 =
(500 + Cu 10) m, L2 = 150 m, L3 = (200 + Cpu 10) m.

– Calculate the absolute pressure p∗ in the tank required for flow rate Q.
– Calculate the absolute pressure p∗ necessary for the incipient outflow, with the
flow rate approaching zero.

– Draw the hydraulic grade line (with absolute pressure).

Neglect the velocity head and the local energy losses. The fluid is water with γw =
9806 Nm−3.

Solution The energy balance equation for the system shown in Fig. 5.8, reads

h + p∗

γw

− L2 − p∗
atm

γw

−
�
�
�V 2

2g
=

λ
Q2

2g

(
πD2

4

)2

1

D
(L1 + L2 + L3) +

�
�

�
�∑

ξi
V 2

2g
.

(5.6)
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Fig. 5.8 Tank with pressurized air
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p /* γw

p /atm w
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Fig. 5.9 Hydraulic grade line

The average velocity of water in the pipe is equal to V = 4Q/(πD2), the Reynolds
number is equal to Re = V D/ν = 4Q/(πDν) and the relative roughness is equal
to ε/D. The Moody chart allows to determine the friction factor λ and, neglecting
the concentrated energy losses, Eq. (5.6) becomes

p∗ = p∗
atm + γw

[
L2 − h + λ

V 2

2g

1

D
(L1 + L2 + L3)

]
.

For Q → 0, Eq. (5.6) reduces to

p∗ = p∗
atm + γw (L2 − h) ,

where the finite size of the duct has been neglected.
Figure 5.9 shows the hydraulic grade line (absolute pressure head is considered).

For Cu = Cpu = 0 it results D = 200 mm, ε = 0.2 mm, Q = 0.10 m3 s−1, h =
100 m, L1 = 500 m, L2 = 150 m, L3 = 200 m,

V = 4Q

πD2
= 4 0.10

π 0.22
= 3.18 m s−1,
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Re = V D

ν
= 3.18 0.2

10−6
= 6.4 105.

For ε/D = 0.2/200 = 10−3 it results λ = 0.02, and

∴ p∗ = p∗
atm + γw

[
L2 − h + λ

V 2

2g

1

D
(L1 + L2 + L3)

]

= 105 + 9806

[
150 − 100 + 0.02

3.182

2 9.806

1

0.2

(500 + 150 + 200)

]

= 1.02 106 Pa.

For incipient outflow (Q → 0), it results

∴ p∗ = p∗
atm + γw (L2 − h) = 105 + 9806 (150 − 100) = 5.9 105 Pa.

Exercise 5.6 The pipeline in Fig. 5.10 conveys water from tank A to tank B
through a circular cross-section steel pipe of diameter D = 200 mm, length L =(
300 + 10 Cpu

)
m, roughness ε = 0.2 mm. The water level difference between

the two tanks is Y = (30 + Cu/10) m.

– Calculate the flow rate Q1.

In order to increase the flow rate to the value Q2 = 1.5 Q1, a replacement of the
existing pipeline is planned with a new one made of material which is able to ensure
the smooth-wall regime. The length of the new pipeline and the difference in level
between the tanks are unchanged.

– Determine the diameter of the new pipeline from the commercial series listed
below:

D (mm) = 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600,
700, 800, 900, 1000.

Assume ξin = 0.5, ξout = 1, ν = 10−6 m2 s−1.

Solution The energy balance equation reads

Y = Q2
1

2g�2
1

[
λ1

L

D1
+ (ξin + ξout )

]
,

where �1 = πD2
1/4. The flow rate is equal to
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Fig. 5.10 Pipeline
conveying water between
two tanks

Y

A

L

B

γ
w

Q1 =
√√√√√

2g�2
1Y

λ1
L

D1
+ (ξin + ξout)

.

Using Moody chart, the friction coefficient λ1 and the flow rate can be calculated
by iteration, according to the following procedure.

We initially assume that the flow is fully turbulent. The initial value of λ1 is the
asymptotic value for Re → ∞, commonly defined λ∞, which only depends on the
relative roughness ε/D1:

λ∞ =
[
−2 log10

(
1

3.71

ε

D1

)]−2

.

The flow rate of first approximation is equal to

Q′
1 =

√√√√√
2g�2

1Y

λ∞
L

D1
+ (ξin + ξout )

.

Once Q′
1 is known, the approximate Reynolds number is

Re′ = V ′
1D1

ν
= Q′

1D1

πD2
1

4
ν

.

Entering inMoody chart with the values of the relative roughness ε/D1 and of the
Reynolds number Re′, the value λ′

1 is estimated. If λ′
1 ≈ λ∞, the first approximation

flow rate is correct and it can be assumed as the definitive value of Q1. Otherwise,
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the new value of λ′
1 allows the calculation of the new flow rate. As an alternative to

the Moody chart, the Colebrook–White equation can be solved numerically:

λ′
1 =

[
−2 log10

(
2.51

Re′√λ′
1

+ 1

3.71

ε

D1

)]−2

.

Once the updated value of λ′
1 has been computed, the flow rate of second approx-

imation is calculated,

Q′′
1 =

√√√√√
2g�2

1Y

λ′
1

L

D1
+ (ξin + ξout )

.

If Q′
1 and Q′′

1 differ by a reasonable small amount (in the present case 10−4 m3 s−1

may be sufficient), the iteration can be stopped, otherwise a new iteration is necessary
repeating the procedure.

In order to obtain a flow rate Q2 = 1.5 Q1 a hydraulically smooth pipe is used,
for which the resistance coefficient can be expressed by means of the Blasius’ law:

λ = 0.3164Re−0.25 for Re < 105,

or by the Nikuradse’s law:

λ = 0.0032 + 0.221Re−0.237 for Re ≥ 105,

or by the Prandtl-Kármán’s law:

1√
λ

= −2 log10

(
2.51

Re
√

λ

)
.

Assuming the Blasius’ law and replacing the corresponding value of λ in the
balance equation, it results:

Y = 0.3164
(1.5Q1)

2

2g

(
πD2

2

4

)2

(1.5Q1D2)
−0.25

(
πD2

2

4
ν

)−0.25

L

D2
+ (1.5Q1)

2

2g

(
πD2

2

4

)2 (ξin + ξout) . (5.7)

As a first approximation, by neglecting the concentrated energy losses, Eq. (5.7)
admits an analytical solution:

D2 = 0.860 872L4/19Q7/19
1 ν1/19

g4/19Y 4/19
.
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If the concentrated energy losses are not negligible, a different approach is sug-
gested.

(i) A first attempt value of the diameter is calculated assuming an average velocity
of 1.0 m s−1, a value commonly accepted for a good operation of the plant.

On the basis of the definition of average velocity,V = Q/�, a theoretical diameter
equal to

Dth =
√

4Q2

π 1.0

is computed, and the diameter D′
2 of the commercial series larger than Dth is chosen.

(ii) The value of the head losses is calculated by assuming a flow rate equal to Q2

in a pipe of diameter D′
2:

ΔHp = L
λV ′2

2gD′
2

+ V ′2

2g
(ξin + ξout ) ,

where V ′ = 4Q2/(πD
′2
2 ).

IfΔHp > Y , the diameter D′
2 is too small and it is necessary to select a larger com-

mercial diameter. Again, it must be verified that the energy losses are not excessive
by repeating the procedure indicated in point (ii).

If ΔHp � Y , it is necessary to choose a smaller commercial diameter. Also in
this case it must be verified that the energy losses are not excessive.

The procedure stops when ΔHp ≤ Y , having chosen a commercial diameter
which is suitable from the hydraulic point of view.

ForCu = Cpu = 0 it results L = 300 m,Y = 30 m, ε = 200 mm, D1 = 200 mm.
Assuming a fully turbulent flow, we calculate, for ε/D = 0.001 , λ1 = 0.020, Q1 =
0.136 m3 s−1 and Re = 865 000.

To increase the flow rate by 50%, in the case of hydraulically smooth pipe, we cal-
culate a theoretical diameter equal to D2 = 0.211 m, applying the Prandtl-Kármán’s
law, with λ2 = 0.011. The commercial diameter of D2 = 250 mm is chosen, but it
is necessary to install a throttling valve to dissipate approximately 16.5 m of head in
excess.

Exercise 5.7 The pipeline in Fig. 5.11 has length L = (4000 + 100 Cu) m, diam-
eter D = (

200 + 10 Cpu
)
mm, Gauckler-Strickler coefficient k = 90 m1/3 s−1. A

Venturi meter is installed, with a differential pressure gauge indicating Δp =
(0.05 + 0.005 Cu) 105 Pa. The discharge coefficient of the Venturi meter is
Cv = 0.981. The diameter of the narrow section is d = (

150 + 5 Cpu
)
mm, the

diameter of the inlet section coincides with the actual diameter of the pipe.
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Fig. 5.11 Pipeline connecting two tanks with a Venturi meter inserted in the circuit

– Calculate the flow rate when a permanent flow is established.
– Calculate the difference of water levels between the two tanks.

The fluid is water with γw = 9806 Nm−3. Neglect concentrated energy losses and
the different elevation head between the intakes of the differential pressure gauge.

Solution The flow rate measured by the Venturi meter is equal to

Q = Cv

πd2

4

√√√√√
2gΔh

1 −
(
d

D

)4 = Cv

πd2

4

√√√√√√√√

2gΔp

γw

1 −
(
d

D

)4 .

The difference in water levels of the upstream and downstream tanksmust balance
only the distributed losses (by hypothesis, we neglect the concentrated energy losses),
hence

ΔH ≡ H1 − H2 = J L = Q2

k2
(
D

4

)4/3 (
πD2

4

)2 L ,

where J is the energy gradient.

For Cu = Cpu = 0 it results L = 4000 m, D = 200 mm, Δp = 5 103 Pa, d =
150 mm,
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∴ Q = Cv

πd2

4

√√√√√√√√

2gΔp

γw

1 −
(
d

D

)4 =

0.981
π 0.1502

4

√√√√√√√
2 9.806 0.05 105

9806

1 −
(
0.150

0.200

)4 = 66.3 10−3 m3 s−1.

The average velocity of the water in the pipeline is 2.11 m s−1. The difference of
water level between the two tanks is equal to

∴ ΔH = Q2

k2
(
D

4

)4/3 (
πD2

4

)2 L =

(
66.3 10−3

)2
902

(
0.200

4

)4/3 (
π 0.2002

4

)2 4000 = 119.4 m.

Exercise 5.8 In the plant in Fig. 5.12, the free surface level in the three tanks
is equal to H1=(150 + 10 Cu) m,H2=(100 + 5 Cu) m,H3=(70+10 Cu) m.
The connecting pipes have length L1 = L2 = (4000 + 100 Cu) m and
L3 = (1000 + 80 Cu)m, diameter D1 = D2 = D3 = D = (

150+10 Cpu
)
mm

and Gauckler-Strickler coefficient equal to k = 90 m1/3 s−1. The elevation of node
N is zN = 85 m.

– Calculate the flow rate in the three pipes.
– Calculate the relative pressure in the node N.

The fluid is water with γw = 9806 Nm−3. The plantmeets the conditions for neglect-
ing concentrated energy losses and velocity head.

SolutionAssuming positive the flowdirection indicated by the arrows in Fig. 5.12,
we can write the following energy balance and mass conservation equations:
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L1

L2

L3

H1 H2

H3

N

zN

Q2

Q3

energy grade line

HN

Q1

1
2

3

Fig. 5.12 Plant with pipelines connecting three tanks

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 − H3 = β1
Q2

1

D5
1

L1 + β3
Q2

3

D5
3

L3,

H2 − H3 = β2
Q2

2

D5
2

L2 + β3
Q2

3

D5
3

L3,

Q3 = Q1 + Q2,

(5.8)

where

β = 43

k2π2

(
D

4

)1/3 .

The energy balance equation between tank 1 and tank 2,

H1 − H2 = β1
Q2

1

D5
1

L1 − β2
Q2

2

D5
2

L2,

is obtained by combining the first two equations in (5.8) and is automatically satisfied.
From the first and second equations in (5.8), it results

Q1 =
√

H1 − H3 − L3β3Q2
3D

5
3

L1β1D5
1

,

Q2 =
√

H2 − H3 − L3β3Q2
3D

5
3

L2β2D5
2

.

By substituting Q1 and Q2 in the third equation in (5.8), yields
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Q3 =
√

H1 − H3 − L3β3Q2
3D

5
3

L1β1D5
1

+
√

H2 − H3 − L3β3Q2
3D

5
3

L2β2D5
2

. (5.9)

Equation (5.9) can be solved iteratively to find the solution Q3. If the direction of
the flow rate Q2 is different from the one hypothesized in Fig. 5.12, the solution is
imaginary and it is necessary to rewrite the system of equations changing the sign of
the discharges.

An alternative approach is to write the equations saving the sign of the flow rates:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 − H3 = β1
Q1|Q1|
D5

1

L1 + β3
Q3|Q3|
D5

3

L3,

H2 − H3 = β2
Q2|Q2|
D5

2

L2 + β3
Q3|Q3|
D5

3

L3,

Q3 = Q1 + Q2,

which admits real positive or negative solutions. A negative value of the flow rate
means that the water flows in the opposite direction.

Once the system of equations is solved, the head in node N is

HN = H1 − L1β1Q1|Q1|/D5
1,

and the pressure in the node N is

pN = γw (HN − zN ) ,

where we have neglected the velocity head.

For Cu = Cpu = 0 it results β1 = β2 = β3 = β = 0.00239, and

∴

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

HN = 94.4 m
Q1 = 21.0 l s−1

Q2 = 7.0 l s−1

Q3 = 28.0 l s−1

pN = 0.93 105 Pa

.

Exercise 5.9 In the pipeline system shown in Fig. 5.13, the difference between the
free surface level in tank A and tank B is equal to ΔH = (

130 + 10 Cpu
)
m.

The pipe has diameter D = 150 mm and length L = (8700 + 100 Cu) m, and the
Gauckler-Strickler coefficient is k = 90 m1/3 s−1.
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Fig. 5.13 Pipeline between
two tanks, with a bypass
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Fig. 5.14 Schematic for the
computation of the flow rate
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– Calculate the flow rate.
– Calculate the flow rate if a parallel pipeline (a bypass, the dashed pipeline in
Fig. 5.13) with a length equal to 50% of the total length is installed. The bypass
has the same diameter and roughness as the original pipeline.

The plantmeets the conditions for neglecting concentrated energy losses and velocity
head.

Solution The admitted energy loss per unit length is J = ΔH/L , and the flow
rate, in the case of the single pipeline and neglecting the concentrated energy losses,
is equal to

Q = kR1/6�
√
RJ = k

(
D

4

)2/3 (
πD2

4

)√
ΔH

L
.

If a bypass is installed, with pipeline characteristics identical to the ones of the
original pipeline, by symmetry the flow rates in the two ducts assume the same value,
equal to 50% of the total flow rate, see Fig. 5.14.

The energy balance equation becomes

ΔH = Q ′2

k2
(
D

4

)4/3 (
π
D2

4

)2 (L1 + L3) + (Q ′/2)2

k2
(
D

4

)4/3 (
π
D2

4

)2 L2,

with L1 + L3 = L2 = L/2. Hence,
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ΔH = Q ′2

k2
(
D

4

)4/3 (
π
D2

4

)2

5

8
L . (5.10)

Solving Eq. (5.10), the new flow rate Q′ is computed, with a value independent
of the geometric position of the bypass. The flow rate Q′ (with the bypass for 50%
of the total length) is greater than the flow rate in case of a single pipe, and results

Q ′ = Q

√
8

5
.

For Cu = Cpu = 0 it results ΔH = 130m, D = 150mm, L = 8700m,
k = 90m1/3 s−1,

∴ Q = k

(
D

4

)2/3 (
πD2

4

) √
ΔH

L
=

90

(
0.15

4

)2/3 (
π 0.152

4

) √
130

8700
= 22.0 l s−1,

∴ Q ′ = Q

√
8

5
= 22.0

√
8

5
= 27.8 l s−1.

Exercise 5.10 Thedifference in levelbetween the twotanks inFig. 5.15 isH = 12 m.

– Calculate the flow rate in the pipelines.

Neglect concentrated energy losses and velocity head.

Solution The unknowns are the flow rates into the pipelines and the head in node
C.We can write three energy balance equations and one mass conservation equation:

Fig. 5.15 Pipeline network
between two tanks

L1 = 60 m,
d1 = 50 mm,

= 0.6 mmε1

L3 = 120 m,
d3 = 100 mm,

= 1.2 mmε3

L d2 2= 90 m, = 120 mm,
= 0.9 mmε2

C

A

B
H

31

2
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Table 5.2 Summary of the operating characteristics of the pipes

Pipe L
(m)

D
(mm)

ε

(mm)
Q
(l s−1)

V
(ms−1)

J
(mkm−1)

λ

(.)
Re
(.)

1 60 50 0.6 1.76 0.89 34.04 0.042 44 500

2 90 120 0.9 13.94 1.23 22.70 0.035 147 600

3 120 100 1.2 15.70 2.00 82.97 0.041 200 000

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HA − HC = λ1
Q2

1

2g�2
1

L1

D1
,

HA − HC = λ2
Q2

2

2g�2
2

L2

D2
,

HA − HB = λ2
Q2

2

2g�2
2

L2

D2
+ λ3

Q2
3

2g�2
3

L3

D3
,

Q1 + Q2 = Q3,

(5.11)

where �1, �2 and �3 are the areas of the cross-section of the pipelines. The flow
direction is always from the tank with the highest head to the tank with the lowest
head. The value of the head in node C must be in between the head in tank A and the
head in tank B. By solving the system of Eq. (5.11), the results listed in Table 5.2 are
obtained.

Exercise 5.11 Tanks A and B in Fig. 5.16 are connected by two straight pipes of
diameter D = 0.10 m, roughness ε = 0.1 mm, and are inclined at an angle ±φ =
20◦ to the horizontal. The horizontal distance between the two tanks is L = 5 m and
the difference of level height of the free surfaces is H = 1 m. The fluid has a specific
weight γ = 9 kNm−3 and dynamic viscosity μ = 0.89 Pa s.

– Calculate the flow rate in the two pipes.
– Draw the energy and hydraulic grade lines.

The loss coefficient at the inlet is zero, since the pipe is well connected to the
upstream tank. The loss coefficient at the outlet is equal to 1.0, if turbulent flow regime
occurs, it is equal to 2.0 in laminar flow condition, since the Coriolis coefficient for
kinetic head is equal to 2.0 in laminar flow.

SolutionWe first assume the laminar flow regime. The loss coefficient at the inlet
is zero, the loss coefficient at the outlet is equal to 2.0. The length of the pipe is equal
to L/ cosϕ and the energy balance equation reads
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Fig. 5.16 Pipelines
connecting two tanks

L

H

D

D

A B

ΔH = 64

Re

V 2

2g

L

cosϕ

1

D
+ 2

V 2

2g
= 32μ

ρD2

V

g

L

cosϕ
+ V 2

g
,

where ρ is the mass density of the fluid, equal to γ /g. Defining χ = 32μL/(ρD2

cosϕ) the balance equation can be rewritten as follows:

V 2 + χV − gΔH = 0,

which admits the solution

V = −χ

2
+

√
χ2

4
+ gΔH .

Substituting the numerical values, yields

χ = 32μL

ρD2 cosϕ
= 32 0.89 5

(9000/9.806) 0.102 cos 20◦ = 16.51 m s−1,

V = −χ

2
+

√
χ2

4
+ gΔH = −16.51

2
+

√
16.512

4
+ 9.806 1.0 = 0.57 m s−1.

The Reynolds number is equal to

Re = ρV D

μ
= (9000/9.806) 0.57 0.10

0.89
= 59 � 2000.

The flow regime is actually laminar, according to the first hypothesis. The flow
rate is the same for the two pipes and sums up to
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Fig. 5.17 Energy and
hydraulic grade lines. Notice
that in laminar flow in
circular cross-section, the
velocity head is 2V 2/(2g)

2 2V /   g2

hydraulic
grade line

energy grade line

L

D

D

A B

∴ Q = 2V
πD2

4
= 2 0.57

π 0.102

4
= 8.95 l s−1.

The energy and the hydraulic grade lines shown in Fig. 5.17 are the same for the
two pipelines.

Exercise 5.12 The steel pipes in Fig. 5.18 connect the three tanks, each of themwith
constant free surface levels. The pipes have roughness ε = 0.3 mm.

– Calculate the flow rate in the three pipes and the head at node N.

Assume LAN = 1500 m, LCN = 3000 m, LBN = 700 m, DAN = 1000 mm,
DCN = 800 mm, DBN = 500 mm. Neglect concentrated energy losses.

Solution The unknowns are the flow rate in the three pipelines and the head in
node N. We can write a mass conservation equation for the node and three energy
balance equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QAN − QBN − QCN = 0,

HA − HN = λAN
QAN |QAN|
2g�2

AN

LAN

DAN
,

HB − HN = −λBN
QBN |QBN|
2g�2

BN

LBN

DBN
,

HC − HN = −λCN
QCN |QCN|
2g�2

CN

LCN

DCN
.

(5.12)
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110 m m.s.l.

90 m m.s.l.

N

HN

Fig. 5.18 Pipeline system connecting three tanks

Table 5.3 Summary of the operating characteristics of the pipes

Pipe L
(m)

D
(mm)

ε

(mm)
Q
(m3 s−1)

V
(ms−1)

J
(mkm−1)

λ

(.)
Re
( 106)

AN 1500 1000 0.2 2.00 2.55 5.07 0.015 2.50

BN 700 500 0.2 0.99 5.07 46.27 0.018 2.55

CN 3000 800 0.2 1.01 2.00 4.13 0.016 1.60

It is necessary to express the energy losses by introducing the absolute value of
the flow rates, because the direction of the flow is not known a priori, although in
the system in Fig. 5.18 the ambiguity holds only for the flow rate QCN. The system
of Eq. (5.12) can be solved iteratively, obtaining the results listed in Table 5.3.

Positive flow rates indicate that the flow direction is consistent with the one
assumed in Fig. 5.19. The head in node N is equal to

QCN

QAN

QBN

A

C

B

130 m m.s.l.

110 m m.s.l.

90 m m.s.l.

N

HN

Fig. 5.19 Schematic of the flow rates
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∴ HN = HA − λAN
QAN |QAN|
2g�2

AN

LAN

DAN
=

130 − 0.015
2.00 |2.00|

2 9.806

(
π 1.02

4

)2

1500

1.0
= 122.5 m.

Exercise 5.13 The pipes in Fig. 5.20 aremade of steel with roughness ε = 0.36 mm.
A valve is installed on the duct NC.

– Calculate the flow rates to tanks B and C, if the valve is closed.
– Calculate the flow rates to tanks B and C, if the valve is open.

Neglect the concentrated energy losses. The fluid is water with γw = 9806 Nm−3.

Solution When the valve is closed, the flow rate to tank C is obviously zero. The
flow rate to tank B is obtained by the following energy balance equation:

zA − zB = λ
V 2

2g

L

D
.

We have neglected the concentrated energy losses. The first attempt friction factor
value corresponds to Re → ∞ for ε/D = 3.6 10−3, and is equal to λ∞ = 0.027.
The corresponding velocity is

V ′ =
√
2g (zA − zB) D

λ∞L
=

√
2 9.806 (15 − 0) 0.1

0.027 120
= 3.0 m s−1.

The Reynolds number is equal to Re = V ′D/ν = 3.0 0.1/10−6 = 300 000.
Upon iteration, the approximate value of the friction factor is λ = 0.028, with a

A

C
B

80 m 40 m

75 m

z = 15 m

D = 100 mm
z = 0

N

valve

Fig. 5.20 Pipeline network connecting three tanks, with a valve
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Table 5.4 Summary of the operating characteristics of the pipes

Pipe V
(ms−1)

Q
(l s−1)

λ

(.)

AN 3.35 26.30 0.028

NB 1.94 15.23 0.028

NC 1.41 11.07 0.029

water velocity equal to

V =
√
2g (zA − zB) D

λL
=

√
2 9.806 (15 − 0) 0.1

0.028 120
= 2.96 m s−1.

The flow rate is equal to

∴ Q = πD2

4
V = π 0.12

4
2.96 = 23.2 l s−1.

If the valve is open, the problem has four unknowns, namely the head in the
common node N and the velocities in the three ducts. The following energy balance
and mass conservation equations can be written:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zA − zN = λAN
V 2
AN

2g

LAN

D
,

zN − zB = λNB
V 2
NB

2g

LNB

D
,

zN − zC = λNC
V 2
NC

2g

LNC

D
,

QAN = QNB + QNC.

The flows direction can only be from tank A to node N, and from node N to the
two tanks B and C. Mass conservation equation in node N for pipes of the same
diameter becomes

VAN = VNB + VNC.

The solution is obtained iteratively, searching for the correct values of the friction
factors. The results are listed in Table 5.4.
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h2

h1=3.00 m

L1=180 m

h3=1.80 m

L =2 270 m

G

main duct

D = 150 mm,
0ε

E

Fig. 5.21 Raised tank

Exercise 5.14 Calculate the minimum value of h2 that is necessary to guarantee an
outgoing flow rate of 28.3 l s−1 from the tank of the plant in Fig. 5.21, with a relative
pressure of 3.44 105 Pa in the terminal section. The flow rate is divided into two
equal parts at the junction G. The duct is made of hydraulically smooth plastic and
has a diameter of 150mm.

Neglect the concentrated energy losses.

Solution The energy balance equation between the tank and node G is

z0 + p0
γw

+ V 2
0

2g
= zG + pG

γw

+ V 2
1

2g
+ λ1

V 2
1

2g

(L1 + h2 + h3)

D
,

where z0 and zG are the elevation head of the free surface in the tank and the elevation
head of the node G, respectively. The energy balance equation between node G and
the terminal section of the main duct is

zG + pG
γw

+ V 2
1

2g
= zE + pE

γw

+ V 2
2

2g
+ λ2

V 2
2

2g

L2

D
.

Combining the two equations, yields

z0 + p0
γw

+ V 2
0

2g
= zE + pE

γw

+ V 2
2

2g
+ λ1

V 2
1

2g

(L1 + h2 + h3)

D
+ λ2

V 2
2

2g

L2

D
.

The average velocity of the water in the first duct is equal to

V1 = 4Q

πD2
= 4 28.3 10−3

π (0.15)2
= 1.6 m s−1.
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In the second duct, downstream of node G, the average velocity is equal to

V2 = 4 (Q/2)

πD2
= 4 (28.3/2) 10−3

π (0.15)2
= 0.8 m s−1.

The friction factor in the first duct is obtained from the Moody chart or by solving
the Coolebrook–White equation for smooth pipes:

1√
λ

= −2log10

(
2.51

Re
√

λ

)
.

The Reynolds number in the two ducts is equal to

Re1 = V1D

ν
= 1.6 0.15

10−6 = 240 000,

Re2 = V2D

ν
= 0.8 0.15

10−6 = 120 000.

The friction factors are

λ1 = 0.015, λ2 = 0.0173.

By assuming V0 = 0, p0 = 0, and neglecting the velocity head in the second duct,
it results

h2 − λ1
V 2
1

2g

h2
D

= pE
γw

+ λ1
V 2
1

2g

(L1 + h3)

D
+ λ2

V 2
2

2g

L2

D
− h1 − h3 →

h2

(
1 − 0.015

1.62

2 9.806

1

0.15

)
= 3.44 105

9806

+0.015
1.62

2 9.806

180 + 1.8

0.15
+ 0.0173

0.82

2 9.806

270

0.15
−3.0 − 1.8.

(5.13)

Notice that z0 − zE = h1 + h2 + h3. Equation (5.13) admits the solution

∴ h2 ≈ 34 m.



Chapter 6
Industrial Hydraulic Systems

Industrial hydraulic circuits are generally characterized by the presence of several
curves, elbows, valves, junctions, manometers, flow meters, with dominance of con-
centrated losses on distributed losses. In most cases, pumps transfer power to the
current, and one of the possible aim is transfer of power through the current. Cal-
culations are similar to those for the cases of civil hydraulic circuits, paying more
attention to the economic design of the components, in case of a new project. Some
examples of hydraulic industrial circuits are also present in cars, as cooling circuits.
In many cases, the circuits are closed, without variations of the elevation head.

Exercise 6.1 The recirculation circuit shown in Fig. 6.1 works on a horizontal plane
with a water flow rate Q. The pipes are made of steel with a Gauckler–Strickler
coefficient k and they have a uniform diameter D. The curves loss coefficient is
equal to ξ . A pipe doubling, consisting of 2 tubes of diameter d, length L2 with the
same Gauckler–Strickler coefficient k, is realized by means of a T-collector. In the
section immediately downstream of the pump, there is a pressure gauge indicating a
pressure pn . Determine:

– the power of the pump installed in the circuit, considering a total efficiency equal
to η.

– The horizontal component of the force acting on the curve delimited by sections
1 and 2.

Assume Q = (3 + 0.1 Cu) l s−1, L = (
10 + 0.1 Cpu

)
m, D = (40 + Cu)mm,

k = (80 + Cu) m1/3 s−1, L1 = (
6 + 0.1 Cpu

)
m, ξ = 0.3, d = 15mm, L2 =(

5 + 0.1 Cpu
)
m, pn = 3 105 Pa, ν = 10−6 m2 s−1, γw = 9806Nm−3.

Solution Since no variation of elevation head occurs, the pump prevalence bal-
ances only the concentrated and distributed energy losses:

Cu and Cpu , that are two integer numbers between 0 and 9, for example, the last and second-last
digit of the registration number.
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Fig. 6.1 Schematic of the
recirculation circuit

L
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T
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L
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d
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ΔH = 410/3

π2k2D5.33
(4L + 2L1) Q

2
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distributed loss in the ducts

of diameter D

+ 410/3

π2k2d5.33
L2

(
Q

2

)2

︸ ︷︷ ︸
distributed loss in the ducts

of diameter d

+ 4ξ
16Q2

(
πD2

)2
1

2g
︸ ︷︷ ︸
concentrated loss

in the curves

+ 16Q2

(
πD2

)2
1

2g
︸ ︷︷ ︸

outlet loss in the

left collector

+ 0.5
16

(
Q

/
2
)2

(
πd2

)2
1

2g
︸ ︷︷ ︸
inlet loss in the duct

of diameter d

+ 16
(
Q

/
2
)2

(
πd2

)2
1

2g
︸ ︷︷ ︸
outlet loss in the

right collector

+ 0.5
16Q2

(
πD2

)2
1

2g
︸ ︷︷ ︸

inlet loss in the duct

of diameter D

.

The power of the pump can be expressed as

P = γwQ ΔH

η
.

For the calculation of the force acting on the curve, we apply the linear momentum
balance to the control volume delimited by sections 1 and 2 and by the walls of the
curve, see Fig. 6.2:

�G + ΠΠΠ + �I + M1 − M2 = 0 → −F + ΠΠΠ1 + ΠΠΠ2 + M1 − M2 = 0,

where −F is the force exerted by the curve on the control volume. The weight term
G in the horizontal plane is null.
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Fig. 6.2 Schematic for
calculating the forces acting
on the curve

Π1

1

2

Π2

M1

M2

y

x

-F

1

2

The calculation of the forces ΠΠΠ1 and ΠΠΠ2 requires the knowledge of the pressure
in section 1 and section 2. We use the energy balance to evaluate the total head in
section 1 starting from section N, where the pressure head is known:

H1 = HN − 410/3

π2k2D5.33
(2L) Q2

︸ ︷︷ ︸
distributed loss in the ducts

of diameter D

− ξ
16Q2

(
πD2

)2
1

2g
︸ ︷︷ ︸
concentrated loss

in the curve

→

��z1 + p1
γw

+
�
�
�V 2

2g
= ��zn + pn

γw
+

�
�
�V 2

2g
− 410/3

π2k2D5.33
(2L) Q2

︸ ︷︷ ︸
distributed loss in the

ducts of diameter D

− ξ
16Q2

(
πD2

)2
1

2g
︸ ︷︷ ︸
concentrated loss

in the curve

.

In a similar manner, the pressure acting in section 2 is calculated starting from
the total head in section 1:

H2 = H1 − ξ
16Q2

(
πD2

)2
1

2g
︸ ︷︷ ︸
concentrated loss

in the curve

→
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��z2 + p2
γw

+
�
�
�V 2

2g
= ��z1 + p1

γw
+

�
�
�V 2

2g
− ξ

16Q2

(
πD2

)2
1

2g
︸ ︷︷ ︸
concentrated loss

in the curve

.

The incomingmomentumfluxM1 is equal, inmagnitude, to the outgoingmomen-
tum flux M2:

|M1| = |M2| = ρ
4Q2

πD2
.

Applying the linear momentum balance in the y-direction, yields

Fy = p1
πD2

4
+ ρ

4Q2

πD2
,

in the positive direction of the y axis.
In the x direction, yields

Fx = p2
πD2

4
+ ρ

4Q2

πD2
,

in the positive direction of the x axis.

ForCu = Cpu = 0 it resultsQ = 3 l s−1, L = 10m,D = 40mm, k = 80m1/3 s−1,
L1 = 6m, ξ = 0.3, d = 15mm, L2 = 5m, pn = 3 105 Pa, ν = 10−6 m2 s−1,
γw = 9806Nm−3, ρ = 1000 kgm−3,

ΔH = 410/3

π2 802 0.045.33
(4 10 + 2 6)

(
3 10−3

)2

︸ ︷︷ ︸
distributed loss in the ducts of diameter D

+ 410/3

π2 802 0.0155.33

(
3 10−3

2

)2

5
︸ ︷︷ ︸

distributed loss in the ducts of diameter d

+ 4 0.3
16

(
3 10−3

)2

(
π 0.042

)2
1

2 9.806
︸ ︷︷ ︸

concentrated loss in the curves

+ 16
(
3 10−3

)2

(
π 0.042

)2
1

2 9.806
︸ ︷︷ ︸

outlet loss in the left collector

+ 0.5
16

(
3 10−3

/
2
)2

(
π 0.0152

)2
1

2 9.806
︸ ︷︷ ︸

inlet loss in the duct of diameter d

+ 16
(
3 10−3

/
2
)2

(
π 0.0152

)2
1

2 9.806
︸ ︷︷ ︸

outlet loss in the right collector
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+ 0.5
16

(
3 10−3

)2

(
π 0.042

)2
1

2 9.806
︸ ︷︷ ︸

inlet loss in the duct of diameter D

=

21.26 + 95.24 + 0.35 + 0.29 + 1.84 + 3.67 + 0.14 = 122.79m,

∴ P = γwQ ΔH

η
= 9806 0.003 122.79

0.75
= 4.82kW,

p1 = pn − γw
410/3

π2k2D5.33
(2L) Q2 − γwξ

16Q2

(
πD2

)2
1

2g
=

3 105 − 9806
410/3

802 0.045.33
(2 10)

(
3 10−3

)2

− 9806 0.3
16

(
3 10−3

)2

(
π 0.042

)2
1

2 9.806
= 218973Pa,

p2 = p1 − γwξ
16Q2

(
πD2

)2
1

2g
=

218 973 − 9806 0.3
16

(
3 10−3

)2

(
π 0.042

)2
1

2 9.806
= 218118Pa,

∴ Fy = p1
πD2

4
+ ρ

4Q2

πD2
=

218 973
π 0.042

4
+ 1000

4
(
3 10−3

)2

π 0.042
= 282N,

∴ Fx = p2
πD2

4
+ ρ

4Q2

πD2
=

218 118
π 0.042

4
+ 1000

4
(
3 10−3

)2

π 0.042
= 281N.

Exercise 6.2 In the plant in Fig. 6.3 the two tanks are pressurized and connected by
a steel pipe with a diameter of D = 50mm. The reading of the manometers (gage
pressure) is equal to pA = (15 + Cu/10) 105 Pa and pB = (8 + Cpu/10) 105 Pa,
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Fig. 6.3 Plant with two
pressurized tanks connected
by a pipeline with a control
valve

zA

pA

pB

air

air

γw

water

water

zB

L1

L2

γw

and the levels are equal to zA = (30 + Cu)m and zB = (40 + Cu)m, respectively.
A valve separates the pipeline into two ducts of length L1 = (35 + Cu) m and
L2 = (30 + Cu) m.

– Calculate the flow rate if the valve is fully open.
– Calculate the flow rate if the valve is partially open, with an opening degree

η = 0.5.
– For the last configuration, draw the energy grade line.

For the pipeline, assume k = 90m1/3 s−1. The fluid is water with specific grav-
ity γw = 9800Nm−3. The concentrated energy losses coefficients are ξin = 0.5,
ξout = 1 and ξc = 0.3. The energy losses in the valve are related to the opening
degree of opening according to the following relationship: ΔH = ξV 2/(2g), with
ξ = (1/η − 1)2.

Solution The energy balance equation for the system is

zA + pA
γw

− zB − pB
γw

= J1L1 + J2L2 +
[

ξin + ξout + 2ξc +
(
1

η
− 1

)2
]
V 2

2g
,

where ξin , ξout and ξc are the energy loss coefficients at the inlet, outlet and in the
curve, respectively.

The energy loss in the valve is equal to

ΔHv =
(
1

η
− 1

)2 V 2

2g
.

The distributed energy loss per unit length is equal to

J1 ≡ J2 = 44/3V 2

k2D4/3
,
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hence,

V =

√√√√
√√√√

2g

(
zA + pA

γw
− zB − pB

γw

)

[

2g (L1 + L2)
44/3

k2D4/3
+ ξin + ξout + 2ξc +

(
1

η
− 1

)2
] .

The flow rate is equal to

Q = V
πD2

4
.

For Cu = Cpu = 0 it results D = 50mm, pA = 1.5 106 Pa, pB = 8 105 Pa,
zA = 30m, zB = 40m, L1 = 35m, L2 = 30m.

For η = 1 (completely open valve), it results

V =

√√
√√√√√√

2g

(
zA + pA

γw
− zB − pB

γw

)

[

2g (L1 + L2)
44/3

k2D4/3 + ξin + ξout + 2ξc +
(
1

η
− 1

)2
] =

√√√√√√√√√

2 9.806

(

30 + 15 105

9800
− 40 − 8 105

9800

)

[

2 9.806 (35 + 30)
44/3

902 0.054/3
+ 0.5 + 1 + 2 0.3 +

(
1

1
− 1

)2
]

= 4.62ms−1.

The flow rate is equal to

∴ Q = V
πD2

4
= 4.62

π 0.052

4
= 9.1 l s−1.

For η = 0.5 (half-opened valve), results

V =

√√√√
√√√√

2g

(
zA + pA

γw
− zB − pB

γw

)

[

2g (L1 + L2)
44/3

k2D4/3
+ ξin + ξout + 2ξc +

(
1

η
− 1

)2
] =

√√
√√√√√√

2 9.806

(
30 + 15 105

9800
− 40 − 8 105

9800

)

[

2 9.806 (35 + 30)
44/3

902 0.054/3
+ 0.5 + 1 + 2 0.3 +

(
1

0.5
− 1

)2
]

= 4.58ms−1,
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Fig. 6.4 Energy grade line
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∴ Q = V
πD2

4
= 4.58

π 0.052

4
= 9.0 l s−1.

The velocity head is equal to

V 2

2g
= 4.582

2 9.806
= 1.07m.

The energy loss in the valve is equal to

ΔHv =
(
1

η
− 1

)2 V 2

2g
=

(
1

0.5
− 1

)2 4.582

2 9.806
= 1.07m.

The energy grade line is shown in Fig. 6.4.

Exercise 6.3 In the closed circuit system in Fig. 6.5, which lays in the horizontal
plane, aVenturimeter is installed for themeasurement of the flow rate. The indication
of the differential pressure gauge is equal to Δp = (0.05 + 0.005 Cu) 105 Pa and
the Venturi meter velocity coefficient is equal to Cv = 0.984. The diameter of the
throat is d = (50 + 5 Cpu)mm, the diameter of the entry section, coinciding with
the actual diameter of the pipeline, is D = (75 + 5 Cpu)mm. The length of the steel
duct, with aGauckler–Strickler coefficient k = 90m1/3 s−1, is L = (25 + 10 Cu)m.
The concentrated loss coefficient for each curve is ξc = 0.3, the concentrated loss
coefficient for the heat exchanger is ξs = 1.65, the energy loss in the Venturi meter
is given by the following expression:
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Fig. 6.5 Closed circuit
system with heat exchanger

differential
pressure gauge

differential
pressure gauge Venturi meter

heat exchanger

pump

d

D

Venturi meter

ΔHVenturi =
[

0.218 − 0.42
d

D
+ 0.38

(
d

D

)2
]

Δp

γ
,

where Δp is the difference in pressure indicated by the differential pressure gauge.

– Calculate the flow rate in permanent flow condition.
– Calculate the power of the pump.

The fluid is water with γw = 9806Nm−3, the efficiency of the pump is η = 0.8.

Solution Applying Bernoulli’s theorem between the entry section and the throat,
we obtain the following expression of the flow rate through the Venturimeter:

Q = Cv
πd2

4

√√√√√
√√√

2gΔp

γw

1 −
(
d

D

)4 ,

where Cv is the discharge coefficient which embeds the dissipations, Δp is the pres-
sure difference at the pressure tappings. The pump prevalence must only balance the
concentrated and distributed energy losses, and is equal to

ΔH = J L +
∑

ξc
V 2

2g
+ ξs

V 2

2g
+ ΔHVenturi =

44/3Q2

k2D4/3

(
πD2

4

)2 L + (4ξc + ξs)
Q2

2g

(
πD2

4

)2

+
[

0.218 − 0.42
d

D
+ 0.38

(
d

D

)2
]

Δp

γw
.
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The pump power is equal to

P = γwQ ΔH

η
.

For Cu = Cpu = 0 it results Δp = 0.05 105 Pa, d = 50mm, D = 75mm,
L = 25m,

∴ Q = Cv
πd2

4

√√√
√√√√√

2gΔp

γw

1 −
(
d

D

)4 =

0.984
π 0.052

4

√√√
√√√√√

2 9.806 0.05 105

9806

1 −
(

0.05

0.075

)4 = 6.82 10−3 m3 s−1.

The average velocity of the water in the pipeline is V = 4Q/(πD2) = 4 6.82
10−3/(π 0.0752) = 1.54ms−1. The energy loss in the Venturi meter is equal to

ΔHVenturi =
[

0.218 − 0.42
d

D
+ 0.38

(
d

D

)2
]

Δp

γw
=

[

0.218 − 0.42
0.05

0.075
+ 0.38

(
0.05

0.075

)2
]

0.05 105

9806
= 0.05m,

and the energy loss in the circuit is equal to

ΔH = 44/3Q2

k2D4/3

(
πD2

4

)2 L + (4ξc + ξs)
Q2

2g

(
πD2

4

)2 + ΔHVenturi =

Q2

(
πD2

4

)2

(
44/3L

k2D4/3
+ 4ξc + ξs

2g

)
+ ΔHVenturi =

(
6.82 10−3

)2

(
π 0.0752

4

)2

(
44/3 25

902 0.0754/3
+ 4 0.3 + 1.65

2 9.806

)
+ 0.05 = 1.87m.
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The pump power is equal to

∴ P = γwQ ΔH

η
= 9806 6.82 10−3 1.87

0.8
= 156W.

Exercise 6.4 In the plant in Fig. 6.6 water is pumped into a conduit 60m long, with
a diameter D = 30mm and a relative roughness equal to 0.01. The water passes
through a filter with a loss coefficient of 12.0, and through five elbows with a loss
coefficient of 1.5 for each elbow. The loss coefficients at the inlet and at the outlet are
equal to 0.8 and 1.0, respectively. The valve has a loss coefficient of 6.0. Calculate:

– the flow rate in the circuit, if the power transferred to the fluid by the pump is
270W.

– The ratio of concentrated versus distributed energy losses.

SolutionThe pumpprevalencemust balance only the distributed and concentrated
energy losses in the circuit, hence

ΔH = (
ξin + 5ξc + ξ f ilter + ξv + ξout

) V 2

2g
+ λ

V 2

2g

L

D
,

and, as a function of the flow rate,

ΔH =
(

ξin + 5ξc + ξ f ilter + ξv + ξout + λ
L

D

)
Q2

2gΩ2
,

where Ω = πD2/4.
The power transferred to the current is equal to

P = γwQ ΔH,

Fig. 6.6 Filtering circuit

L D= 60 m, = 30 mm
= 0.01/D

ξv = 6.0

ξfilter= 12.0

ξc = 1.5 ξout = 1.0

ξin = 0.8

pump

valve

filter
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hence,

P = γwQ ΔH ≡
(

ξin + 5ξc + ξ f ilter + ξv + ξout + λ
L

D

)
γwQ3

2gΩ2
.

Solving with respect to Q, yields

Q =

⎡

⎢⎢
⎣

2gΩ2P

γw

(
ξin + 5ξc + ξ f ilter + ξv + ξout + λ

L

D

)

⎤

⎥⎥
⎦

1/3

,

where the friction factor λ depends on Q. The equation can be solved iteratively
by assuming a first attempt value of the friction factor equal to its asymptotic value
(Re → ∞),

λ = λ∞ = 0.038.

By substituting the numerical values, yields

∴ Q =
⎡

⎢⎢
⎣

2 9.806
(
π 0.25 0.032

)2
270

9806

(
0.8 + 5 1.5 + 12.0 + 6.0 + 1.0 + 0.038

60

0.03

)

⎤

⎥⎥
⎦

1/3

= 1.38 l s−1.

The average velocity in the pipe is equal to

V = 4Q

πD2
= 4 0.00138

π 0.032
= 1.95ms−1,

with a Reynolds number

Re = V D

ν
= 1.95 0.03

10−6 = 58 500.

The flow regime is transitional. The correct friction factor is calculated by
iteration and it assumes a value equal to λ = 0.039, with a corresponding flow rate
Q = 1.37 l s−1.

The ratio between the concentrated and distributed energy losses is equal to

∴ ξin + 5ξc + ξ f ilter + ξv + ξout

λ
L

D

= 0.8 + 5 1.5 + 12.0 + 6.0 + 1.0

0.039
60

0.03

= 0.35.



Chapter 7
Circuits with Hydraulic Machines:
Pumps and Turbines

In some hydraulic circuits, power is exchanged between the current and themachines.
Pumps supply energy to the current and are called energy absorption devices, and
are inserted in order to increase the head; turbines subtract energy from the current,
usually transferring it to an electric generator, and are called energy production
devices. The energy grade line has a jump across the machine. The characteristics of
the machine are suggested by the general characteristics of the plant and the design
is optimal, with the aim of minimizing costs and maximizing efficiency.

In the energy balance, the pump increases the head according to a performance
curve (or characteristic curve), a function that relates head, flow rate, speed of rota-
tion, with an efficiency closely linked to the mechanical design of the components.
The operating point is obtained as the intersection between the system curve and the
performance curve: the system curve is representative of the head required to modify
the static pressure, the dynamic pressure, the elevation of the fluid and to overcome
the losses. However, for simplicity it is often assumed, in the exercises, that the pump
is ideal, with a constant efficiency.

The turbines reduce the head and generate energy according to an efficiency curve,
where the rotation rate is set according to the characteristics of the electric generator
and the frequency of generated alternating current (50Hz in Europe, 60Hz in the
USA). A distinction is made between the gross head, which is the difference in level
between the free surface level of the upstream tank and the free surface level of the
downstream channel (or lake, or tank); and the net head, which is the difference
between the immediately upstream section energy grade line and the outlet section
of the draught pipe (or, in some cases, the immediately downstream section energy
grade line). The draft pipe is designed as a diffuser to reduce energy losses. The
difference between the gross head and the neat head is due to energy losses in the
external hydraulic circuit. This difference is a function of the characteristics of the

Cu and Cpu , that are two integer numbers between 0 and 9, for example, the last and second-last
digit of the registration number.
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external circuits, which is designed in order to achieve the maximum economic
advantage.

Exercise 7.1 A cast-iron pipe (ε = 0.25mm) consisting of a series of two ducts,
with length L1 = (20 + Cu) m, L2 = (35 + Cpu

)
m, and diameter D1 = 80mm,

D2 = 60mm, delivers water from the tank in Fig. 7.1. Notice that the two ducts
represent the suction and the discharge lines of a booster pump.

The tank contains water at 15 ◦C, with ρ = 999.1 kgm−3, μ = 1.138 10−3 Pa s,
and with depth h = (20 + Cu) m.

– Calculate the pump head that is required for a flow rate Q = 16 l s−1.
– Calculate the corresponding pump power, assuming an efficiency η = 0.75.
– Calculate the pressure in the pipeline immediately upstream of the pump.

Assume loss coefficients at the inlet and outlet sections equal to ξin = 0.5 and
ξout = 1.4, respectively. For the interpretation of ξout , see the comment in Exer-
cise5.1.

Solution The energy balance from the tank to the outflow section is

h + ΔHpump = ξin
V 2
1

2g
+ λ1

V 2
1

2g

L1

D1
+ λ2

V 2
2

2g

L2

D2
+ ξout

V 2
2

2g
,

where ΔHpump is the head of the pump. The velocities in the two pipe sections can
be expressed as a function of the flow rate as

V1 = 4Q

πD2
1

, V2 = 4Q

πD2
2

.

For the calculation of the friction factors, the Reynolds numbers to be used in the
Moody chart, or in the Colebrook–White equation, are:

Re1 = ρV1D1

μ
, Re2 = ρV2D2

μ
.

L1 L2

h water

D1 D2

Fig. 7.1 Tank with booster pump



7 Circuits with Hydraulic Machines: Pumps and Turbines 247

Once the required pump head has been calculated, the power is equal to

P = γwQΔHpump

η
.

For the calculation of the pressure in the pipeline in the section immediately
upstream of the pump, we apply the energy balance equation between the tank and
that section:

zt + pt
γw︸ ︷︷ ︸

h

+
�
�
�V 2
t

2g
− ξin

V 2
1

2g
− λ1

V 2
1

2g

L1

D1
= ��zu + pu

γw
+ V 2

1

2g
→

pu = γw

[
h − (1 + ξin)

V 2
1

2g
− λ1

V 2
1

2g

L1

D1

]
,

where zt and pt/γw are the elevation head and pressure head for a particle in the tank
moving on a pathline.

For Cu = Cpu = 0 it results ε = 0.25mm, L1 = 20m, L2 = 35m,
D1 = 80mm, D2 = 60mm, ρ = 999.1 kgm−3, γw ≡ gρ = 9.806 999.1Nm−3,
μ = 1.138 10−3 Pa s, h = 20m.

V1 = 4Q

πD2
1

= 4 16 10−3

π 0.082
= 3.18 ms−1,

V2 = 4Q

πD2
2

= 4 16 10−3

π 0.062
= 5.66 ms−1,

Re1 = ρV1D1

μ
= 999.1 3.18 0.08

1.138 10−3 = 223 000,

Re2 = ρV2D2

μ
= 999.1 5.66 0.06

1.138 10−3 = 298 000.

By solving the Colebrook–White equation:

1√
λ

= −2log10

(
2.51

Re
√

λ
+ 1

3.71

ε

D

)
,

yields
λ1 = 0.027, λ2 = 0.029.
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Hence,

ΔHpump = −h + ξin
V 2
1

2g
+ λ1

V 2
1

2g

L1

D1
+ λ2

V 2
2

2g

L2

D2
+ ξout

V 2
2

2g
=

− 20 + 0.5
3.182

2 9.806
+ 0.027

3.182

2 9.806

20

0.08

+ 0.029
5.662

2 9.806

35

0.06
+ 5.662

2 9.806
= 13.00 m,

∴ P = γwQΔHpump

η
= 9.806 999.1 16 10−3 13.00

0.75
= 2718 W,

∴ pu = γw

[
h − (1 + ξin)

V 2
1

2g
− λ1

V 2
1

2g

L1

D1

]
= 9.806 999.1

(
20 − 1.5

3.182

2 9.806
− 0.027

3.182

2 9.806

20

0.08

)
= 1.54 105 Pa.

Exercise 7.2 In the pumping plant shown in Fig. 7.2, the tank B is pressurized. All
the characteristics of the pipes, the power and the efficiency of the pump are known.

– Calculate the flow rate.
– Draw the energy and the hydraulic grade lines.

The manometer indicates the gage pressure. Numerical data:
ΔHg = (25 + Cpu

)
m, pm = (1 + Cu 0.1) 105 Pa, Da = Dm = 300mm,

εa = εm = 0.2mm, La = 20m, Lm = 400m, P = (50 + Cu) kW, η = 0.75,
γw = 9800Nm−3, ξin = 0.5, ξout = 1, ν = 10−6 m2 s−1.

Solution The power required is equal to

P = γwQ ΔH

η
,

whereΔH is the net head, given by the sum of the elevation head (due to the different
levels of the two tanks), the pressure head (due to the difference of pressure between
the two tanks), and the friction losses:

ΔH = ΔHg + λa
La

Da

V 2
a

2g
+ λm

Lm

Dm

V 2
m

2g
+ ξin

V 2
a

2g
+ ξout

V 2
m

2g
+ pm

γw
,
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or:

ΔH = ΔHg +
(

λ
La + Lm

D
+ ξin + ξout

)
Q2

2g
(
πD2

/
4
)2 + pm

γw
,

where pm is the reading of the manometer (gage). Hence,

P = γwQ ΔH

η
=

1

η
γwQ

[

ΔHg +
(

λ
La + Lm

D
+ ξin + ξout

)
Q2

2g
(
πD2

/
4
)2 + pm

γw

]

.

(7.1)

Equation (7.1) can be solved numerically. As a first approximation, we assume
a fully turbulent flow and we estimate the friction factor with the Moody chart,
Re → ∞, or solving the Prandtl–Nikuradse equation:

1√
λ∞

= −2log10

(
1

3.71

ε

D

)
.

Introducing λ∞ into Eq. (7.1), we can evaluate Q, V , Re and than we check if
the hypothesis of fully turbulent flow is verified. Otherwise, the friction factor is
recalculated on the basis of the Reynolds number with the first iteration values,
using the Moody chart or solving the Colebrook–White equation:

A

B

Hg

LmLa

manometer (gage)pm

Fig. 7.2 Pumping plant



250 7 Circuits with Hydraulic Machines: Pumps and Turbines

A

B

Hg

LmLa

pm
Bp

γ

2g

2g

0.5
2
V 2

g

energy grade line

hydraulic grade line

V 2

V 2

Fig. 7.3 Energy and hydraulic grade lines

1√
λ

= −2log10

(
2.51

Re
√

λ
+ 1

3.71

ε

D

)
.

For Cu = Cpu = 0 it results ΔHg = 25m, pm = 105 Pa, Da = Dm = 300mm,
εa = εm = 0.2mm, La = 20m, Lm = 400m, P = 50 kW, η = 0.75.

As a first approximation, we assume Re → ∞ and, for
ε

D
= 0.2

300
= 6.6 10−4,

results λ∞ = 0.018. Hence,

P =
γwQ

[

ΔHg +
(

λ∞
La + Lm

D
+ 1.5

)
Q2

2g
(
πD2

/
4
)2 + pm

γw

]

η
→

9800 Q

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

25 +
(
0.018

20 + 400

0.3
+ 1.5

)

Q2

2 9.806
(
π 0.32

/
4
)2

+ 105

9800

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

0.75
= 50 000.
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By solving the cubic equation in the flow rate by iteration, yields

∴ Q = 100 l s−1,

and V = 1.42ms−1, Re = 427 000. Substituting Re and ε/D = 6.6 10−4 in the
Colebrook–White equation, yields λ = 0.0187, which is less than 4% greater than
λ∞, hence it is not necessary an iteration.

The energy and the hydraulic grade lines are shown in Fig. 7.3. It should be noted
that, in the present case, ignoring the concentrated energy losses leads to a negligible
overestimation of the flow rate of 0.3%.

Exercise 7.3 The pumping plant shown in Fig. 7.4 should convey the flow rate Q
from tank A to tank B, with a difference of level Y . A pump with a power P is
installed.

– Determine the minimum diameter of the plastic pipeline that is necessary in order
to meet the design requirements. Select the pipe diameter from the commercial
series below listed.

Consider a constant efficiency of the pump η = 0.80. Numerical data:
Y = (10 + Cu) m, P = (5 + Cpu/10

)
kW, L1 = (2 + Cpu/9

)
m, L2 = (25+Cu)m,

ξin = 0.5, ξout = 1.0, total coefficient ξ for concentrated losses in the valves is
ξ = 5.0, Q = (15 + Cpu

)
l s−1, γw = 9806Nm−3. Commercial diameters in mm

(the nominal diameter is the same as the internal diameter): 50, 65, 80, 100, 125,
150, 200, 250.

pipe 1 pipe 2

Y

A

B

Fig. 7.4 Pumping plant
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Solution The power of the pump is equal to

P = γwQ ΔH

η
,

and the energy balance yields

ΔH = Y + 410/3

π2

Q2

k2D16/3
(L1 + L2) + 8Q2

π2D4g
(ξin + ξout + ξ) .

Combining the two expressions, yields

Y + 410/3

π2

Q2

k2D16/3
(L1 + L2) + 8Q2

π2D4g
(ξin + ξout + ξ) − ηP

γwQ
= 0.

From this relationship, by numerical iteration we evaluate the theoretical diameter
D. The commercial pipe with a diameter immediately greater than the theoretical
one will be the solution.

For Cu = Cpu = 0 it results Y = 10m, P = 5 kW, L1 = 2m, L2 = 25m,
ξ = 5.0, Q = 15 l s−1. We assume k = 100m1/3 s−1 for the plastic pipe.

Y + 410/3

π2

Q2

k2D16/3
(L1 + L2) + 8Q2

π2D4g
(ξin + ξout + ξ) − ηP

γwQ
= 0 →

10 + 410/3

π2

0.0152

1002 D16/3
(2 + 25) + 8 0.0152

π2 D4 9.806
(0.5 + 1.0 + 5.0)

− 0.80 5000

9806 0.015
= 0 →

6.2534 10−6

D16/3
+ 1.2089 10−4

D4
− 17.194 = 0

(7.2)

Solving numerically Eq. (7.2), yields D = 0.067m. The commercial diameter
D = 80mm is chosen, with a valve to reduce the flow rate to the target value Q.

Exercise 7.4 In the network shown inFig. 7.5, the pumpabsorbs a power of 8 kWand
has an efficiency η = 0.7. The friction factor of the pipeline is λ = 0.01. The water
flows out of the upper tank through a circular orifice with a diameter d = 100mm.

Calculate:

– the free surface level in the upper tank.
– The flow rate.
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D =2 200 mm

L =2 30 m

d = 100 mm

L =1 6 m

h 
= 1

6.
5 

m

h

D =1 200 mm

Fig. 7.5 Pumping plant

Assume a unitary efflux coefficient for the circular orifice. Assume a unit loss
coefficient at the inlet and outlet, and a loss coefficient equal to 0.1 for each curve.

Solution The pump power is expressed as

P = γwQ ΔH

η
,

and the required net head is

ΔH =
(

λ
L1 + L2

D
+
∑

ξi

)
Q2

2gΩ2
+ h1 + h,

where Ω is the cross-section area of the pipe with diameter D1 = D2 = D =
200mm. In steady condition, the inflow rate in the upper tank is equal to the outflow
rate through the circular orifice, which can be expressed as a function of the level h
as follows:

Q = CQω
√
2gh.

ω is the cross-section area of circular orifice and CQ is the outflow coefficient.
Substituting, yields

γwCQω
√
2gh

[(
λ
L1 + L2

D
+
∑

ξi

)
C2

Qω2

Ω2
h + h1 + h

]

= ηP.
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Inserting the numerical values, results in:

9806 1
π (0.1)2

4

√
2 9.806 h

[(
0.01

6 + 30

0.2
+ 2.2

)
1 (0.1)4

(0.2)4
h + 6.5 + h

]
= 0.7 8000.

(7.3)

Equation (7.3) can be numerically solved and admits the solution h = 2.74 m.
The flow rate is equal to

∴ Q = CQω
√
2gh = 1

π (0.1)2

4

√
2 9.806 2.74 = 57.6 l s−1.

Exercise 7.5 In the pumping plant in Fig. 7.6, tank A is pressurized. All the charac-
teristics of the pipes, the flow rate Q and the efficiency of pump η are known.

– Calculate the power of the pump.
– Draw the energy and the hydraulic grade lines.

Assume ΔHg = (25 + Cpu
)
m, pm = (1 + Cu 0.1) 105 Pa, Da = Dm =

300mm, εa = εm = 0.2mm, La = 20m, Lm = 400m, Q = (80 + Cu) l s−1,
η = 0.75.

Solution The power of the pump is equal to

A

B

Hg

LmLa

pressure gauge
pm

Fig. 7.6 Pumping plant
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Hg

hydraulic grade line

pm

γ

energy grade line

A

B

LmLa

pressure
gauge

pm

Fig. 7.7 Energy and hydraulic grade lines

P = γwQ ΔH

η
,

and the required head is

ΔH = ΔHg + λa
La

Da

V 2
a

2g
+ λm

Lm

Dm

V 2
m

2g
+ ξin

V 2
a

2g
+ ξout

V 2
m

2g
− pm

γw
.

Friction factors are calculated from the Moody chart or solving the Colebrook–
White equation. The Reynolds number is equal to

Re = V D

ν
= 4Q

νπD
,

and the relative roughness is equal to ε/D.
The energy and the hydraulic grade lines are drawn in Fig. 7.7.

For Cu = Cpu = 0 it results ΔHg = 25m, pm = 105 Pa, Da = Dm = 300mm,
εa = εm = 0.2mm, La = 20m, Lm = 400m, Q = 80 l s−1, η = 0.75.

Re = QD

ν

(
πD2

4

) = 0.08 0.3

10−6

(
π 0.32

4

) = 340 000,

ε

D
= 0.2

300
= 6.6 10−4,
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λ = 0.018,

Va = Vm = 4Q

πD2
= 4 0.08

π 0.32
= 1.13 ms−1,

ΔH = ΔHg + λa
La

Da

V 2
a

2g
+ λm

Lm

Dm

V 2
m

2g
+ ξin

V 2
a

2g
+ ξout

V 2
m

2g
− pm

γw
=

25 +

(
0.018

20 + 400

0.3
+ 1.5

)
1.132

2 9.806
− 105

9806
= 16.5 m,

∴ P = γwQ ΔH

η
= 9806 0.08 16.5

0.75
= 17.3 kW.

Exercise 7.6 In the pumping plant in Fig. 7.8, the tank A is pressurized. All the
characteristics of the pipes, the power P of the pump and its efficiency are known.

– Calculate the flow rate.

Assume ΔHg = (25 + Cpu
)
m, pm = (1 + Cu 0.1) 105 Pa, Da = Dm =

300mm, λa = 0.020, λm = 0.015, La = 20m, Lm = 400m, P = 17 kW, η = 0.75.
The fluid is water with γw = 9806Nm−3.

Solution The required net head is

ΔH = ΔHg + λa
La

Da

V 2
a

2g
+ λm

Lm

Dm

V 2
m

2g
+ ξin

V 2
a

2g
+ ξout

V 2
m

2g
− pm

γw
. (7.4)

A

B

Hg

LmLa

pressure gauge
pm

Fig. 7.8 Pumping station
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Equation (7.4) is rewritten as function of the flow rate as follows:

ΔH = ΔHg +
(

λa
La

D
+ λm

Lm

D
+ ξin + ξout

)
Q2

2g

1
(
πD2/4

)2 − pm
γw

.

The pump power is equal to

P = γwQ ΔH

η
.

Replacing the expression of the net head as a function of the flow rate, one can
obtain the following cubic equation, which can be analytically or numerically solved:

γw

(
λa

La

D
+ λm

Lm

D
+ ξin + ξout

)
Q3

2g

1
(
πD2/4

)2

+ γwQ

(
ΔHg − pm

γw

)
− ηP = 0 →

9806

(
0.02

20

0.3
+ 0.015

400

0.3
+ 1.5

)
Q3

2 9.806

1
(
π 0.32/4

)2

+ 9806 Q

(
25 − 1 105

9806

)
− 0.75 17 000 = 0 →

2 284 938 Q3 + 145 150 Q − 12 750 = 0.

The only physically acceptable solution for the flow rate is Q = 79.8 l s−1.

Exercise 7.7 In the hydraulic plant shown in Fig. 7.9, the two tanks are supplied by
two pipes of length LNB = LNC = 300 m and diameter D = 200mm. The pipes are
made of steel with roughness ε = 0.1mm. The concentrated energy losses and the
distributed energy losses from tank A to node N can be ignored.

– Calculate the flow rate to each tank, if the pump net head at the operating point is
ΔH = 26m.

The fluid is water with γw = 9806Nm−3 and ν = 10−6 m2 s−1.

Solution The total head in node N is equal to the sum of the free surface level in
the supply tank A and of the pump head:

HN = ΔH + zA.
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B

zA
23

 m

15
 m C

A N

pump

Fig. 7.9 Pumping station with multiple tanks

The following energy balance equation applies for the pipeline NB (neglecting
the concentrated energy losses):

ΔH + zA − zB = λNB
U 2

NB

2g

LNB

D
,

and for the pipeline NC:

ΔH + zA − zC = λNC
U 2

NC

2g

LNC

D
.

Assuming an asymptotic friction factor λNB∞ = 0.0170 for ε/D = 5 10−4,
yields

U ′
NB =

√
2gD

LNBλNB∞
(ΔH + zA − zB) =

√
2 9.806 0.2

300 0.0170
(26 − 23) = 1.52 ms−1.

The Reynolds number is equal to

Re = UD

ν
= 1.52 0.2

10−6 = 304 000.

After the first iteration the friction factor is equal to λ′′
NB = 0.0181, to which

corresponds an average velocity in the pipe equal to
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U ′′
NB =

√
2gD

LNBλ′′
NB

(ΔH + zA − zB) =
√
2 9.806 0.2

300 0.0181
(26 − 23) = 1.47 ms−1,

and a flow rate

∴ QNB = U ′′
NBπD2

4
= 1.47 π 0.22

4
= 46.2 l s−1.

The relative velocity difference in the two iterations is equal to
(1.52 − 1.47) /1.52 = 3.2%. If such an approximation is considered acceptable
(usually it is), any further iteration is unnecessary.

For the pipeline NC, assuming an asymptotic friction factor λNC∞ = 0.0170 for
ε/D = 5 10−4, yields

U ′
NC =

√
2gD

LNCλNC∞
(ΔH + zA − zC) =

√
2 9.806 0.2

300 0.017
(26 − 15) = 2.91 ms−1.

The Reynolds number is equal to

Re = UD

ν
= 2.91 0.2

10−6 = 582 000.

After the first iteration the friction factor is equal toλ′′
NC = 0.0175,with an average

velocity in the pipe equal to

U ′′
NC =

√
2gD

LNCλ′′
NC

(ΔH + zA − zC) =
√
2 9.806 0.2

300 0.0175
(26 − 15) = 2.87 ms−1,

and a flow rate

∴ QNC = U ′′
NCπD2

4
= 2.87 π 0.22

4
= 90.1 l s−1.

The relative velocity difference in the two iterations is equal to
(2.91 − 2.87) /2.91 = 1.3%. Again, any further iteration is unnecessary.
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The total outflow rate from tank A is equal to

∴ QA = QNC + QNB = 90.1 + 46.2 = 136.3 l s−1.

Exercise 7.8 Water from a lake is pumped into a pressurized tank, which feeds
two pipes of length L1 = 210m, D1 = 150mm and L2 = 360m, D2 = 125mm,
according to the schematic in Fig. 7.10. The roughness of the pipes is ε = 0.1mm
and the characteristic curve of the pump has the following expression:

Hd = 13.5 + 305 Q − 22 200 Q2, Hd in metres and Q in m3 s−1.

– Calculate the flow rate in the pipes.
– Calculate the pump power, if the efficiency is constant and equal to η = 0.6.

Neglect the difference of level between the lake and the outlet section and neglect
the concentrated energy losses, including the outlet losses. Distributed energy losses
from the lake to the tank can also be neglected.

Solution The pump head is necessary to balance the energy losses, which have
the same value in each of the two branches. The following system of equations holds:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hd = 13.5 + 305 Q − 22 200 Q2,

Hd = λ1Q1 |Q1|
2gΩ2

1

L1

D1
,

Hd = λ2Q2 |Q2|
2gΩ2

2

L2

D2
,

Q = Q1 + Q2.

(7.5)

The first attempt value of the friction factors is their asymptotic value for
Re → ∞: for ε/D1 = 6.6 10−4 results λ1∞ = 0.0178; for ε/D2 = 8 10−4 results

L1 = 210 m

D1 = 150 mm

L2 = 360 m

D2

Q1

Q2

air

P

pump

Fig. 7.10 Pumping station
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λ2∞ = 0.0185. The solution of the system of equations is better achieved by reduc-
ing it to an equation in a single unknown. By choosing Q1 as the main unknown and
introducing the symbols

β1 = λ1

2gΩ2
1

L1

D1
, β2 = λ2

2gΩ2
2

L2

D2
,

removing also the absolute value since the direction of the flow is unambiguous, it
is possible to write

Hd = β1Q
2
1, and Hd = β2Q

2
2 → Q2 = Q1

√
β1

β2
.

By eliminating Hd from the first two equations of the system (7.5) and inserting the
continuity equation, the system becomes

⎧
⎪⎪⎨

⎪⎪⎩

β1Q2
1 = 13.5 + 305 (Q1 + Q2) − 22 200 (Q1 + Q2)

2,

Q2 = Q1

√
β1

β2
.

Finally, by eliminating Q2 from the two equations, the following quadratic equation
in the unknown Q1 is obtained:

β1Q
2
1 = 13.5 + 305 Q1

(

1 +
√

β1

β2

)

− 22 200 Q2
1

(

1 +
√

β1

β2

)2

. (7.6)

By introducing the variable χ = 1 +
√

β1

β2
, Eq. (7.6) admits the solutions

Q1 =
305 χ ±

√
3052 χ2 + 4 13.5

(
22 200 χ2 + β1

)

2
(
22 200 χ2 + β1

) .

One of the two solutions is always positive and the other is always negative, and
the first one is admissible. By inserting the numerical values, it results:

β1 = λ1

2gΩ2
1

L1

D1
= 0.0178

2 9.806
(
π 0.152/4

)2
210

0.15
= 4069 s2 m−5,



262 7 Circuits with Hydraulic Machines: Pumps and Turbines

β2 = λ2

2gΩ2
2

L2

D2
= 0.0185

2 9.806
(
π 0.1252/4

)2
360

0.125
= 18 039 s2 m−5,

χ = 1 +
√

β1

β2
= 1 +

√
4069

18 039
= 1.475.

Finally, it results

⎧
⎪⎪⎨

⎪⎪⎩

Q1 = 0.021m3 s−1,

Q2 = Q1

√
β1

β2
= 0.021

√
4069

18 039
= 0.010 m3 s−1.

The corresponding velocities are:

V1 = 4Q1

πD2
1

= 4 0.021

π 0.152
= 1.20 ms−1,

V2 = 4Q2

πD2
2

= 4 0.010

π 0.1252
= 0.80 ms−1,

and Reynolds numbers are equal to:

Re1 = V1D1

ν
= 1.20 0.15

10−6 = 180 000,

Re2 = V2D2

ν
= 0.8 0.125

10−6 = 100 000.

The friction factors of a second iteration are equal to λ1 = 0.0198 and λ2 =
0.0215, and

β1 = λ1

2gΩ2
1

L1

D1
= 0.0198

2 9.806
(
π 0.152/4

)2
210

0.15
= 4526 s2 m−5,

β2 = λ2

2gΩ2
2

L2

D2
= 0.0215

2 9.806
(
π 0.1252/4

)2
360

0.125
= 20 965 s2 m−5,

χ = 1 +
√

β1

β2
= 1 +

√
4526

20 965
= 1.465.

Finally, it results:
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∴

⎧
⎨

⎩

Q1 = 0.0209 m3 s−1,

Q2 = 0.0097 m3 s−1.

Subsequent iterations do not significantly change the result. The pump flow rate
is

∴ Q = Q1 + Q2 = 0.0307m3 s−1,

with a pump head Hd = 1.98m. The required power is equal to:

∴ P = γwQHd

η
= 9806 0.0307 1.98

0.6
= 993W.

Exercise 7.9 In the hydroelectric plant in Fig. 7.11, the gross head is
Y = (200 + 5 Cu) m, and the flow rate is Q. The pipeline has an initial section of
length L1 = (400 + 10 Cpu

)
m, diameter D1 = 800mm, roughness ε1 = 0.2mm,

and a terminal section of length L2 = (25 + Cu) m, diameter D2 = 800mm and
roughness ε2 = 0.2mm. The entrance and exit are rounded, with a loss coefficient
of 0.06. The water is discharged in a tank from which it flows away through a rect-
angular slot, with height a = 0.20m and width b = 1.0m. The vena contracta has a
contraction coefficient Cc = 0.6 and a velocity coefficient Cv = 0.98. The contrac-
tion is only in the upper edge and any lateral contraction is suppressed. In steady
condition, the water level in the tank is equal to h + a = 12.20m.

– Calculate the flow rate.
– Calculate the power of the turbine, if the efficiency of the turbine is ηt = 0.80.
– Calculate the annual revenue with an alternator efficiency ηa = 0.92, if the plant
works 24h a day, 365 days a year, and the selling price of the electricity is
0.08 e kWh−1.

Solution The flow rate can be calculated taking into account the outflow process
from the slot. In steady condition, it results:

Q = CcCvab
√
2g (h + a − Cca).

The energy balance equation reads

Y − Q2

(
λ1

1

2gΩ2
1

L1

D1
+ λ2

1

2gΩ2
2

L2

D2
+ ξin

1

2gΩ2
1

+ ξout
1

2gΩ2
2

)
− ΔH = 0,

where Y is the gross head, ΔH is the net head (corresponding to the head that is
actually available for the turbine). The power of the turbine is equal to
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P = ηtγwQ ΔH,

and the electrical power is equal to

Pe = ηa P,

with an annual revenue equal to

R = PeTCen/1000,

where Pe is expressed in watts, the operating time per year T is in hours, Cen is the
selling price expressed in e kWh−1.

For Cu = Cpu = 0 it results Y = 200m, L1 = 400m, D1 = 800mm,
ε1 = 0.2mm, L2 = 25m, D2 = 800mm, ε2 = 0.2mm, ξin = ξout = 0.06,
a = 0.20m, b = 1.0m, Cc = 0.6, Cv = 0.98, h = 12m.

Ω1 = Ω2 = πD2
1

4
= π 0.82

4
= 0.503 m2,

Q = CcCvab
√
2g (h + a − Cca) = 0.6 0.98 0.20 1.0

√
2 9.806 (12 + 0.2 − 0.6 0.2) = 1.81m3 s−1.

L2

D1 1, ε

D2 2, ε

Y

h

a

L1

turbine

Fig. 7.11 Hydroelectric plant
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The average water velocity in the pipe is equal to

V = 4Q

πD2
1

= 4 1.81

π 0.82
= 3.60 ms−1,

the Reynolds number is equal to

Re = V D1

ν
= 3.60 0.8

10−6 = 2.88 106,

the relative roughness is equal to

ε1

D1
= 0.2

800
= 2.5 10−4.

From the Colebrook–White equation (or from Moody chart) results a friction
factor λ = 0.0147. The net head is equal to:

ΔH = Y − Q2

(
λ1

1

2gΩ2
1

L1

D1
+ λ2

1

2gΩ2
2

L2

D2
+ ξin

1

2gΩ2
1

+ ξout
1

2gΩ2
2

)
=

200 − 1.812

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0.0147
1

2 9.806 0.5032
400

0.8

+0.0147
1

2 9.806 0.5032
25

0.8

+0.06
1

2 9.806 0.5032

+0.06
1

2 9.806 0.5032

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

= 194.8m,

the power is

P = ηtγwQ ΔH = 0.80 9806 1.81 194.8 = 2.76 MW,

the electric power is

Pe = ηa P = 0.92 2.76 = 2.54 MW,

and the annual revenue (gross) is

∴ R = PeTCen = 2540 24 365 0.08 = 1.78 Me a−1.
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Exercise 7.10 In the hydroelectric plant in Fig. 7.12, the pressure drop across
the turbine is equal to Δp = (5 + Cpu/10

)
105 Pa. The gross head is equal to

Y = (70 + Cu) m. The pipelines have lengths L1 = (2000 + 10 Cu) m,
L2 = 200m, L3 = 100m, and diameter D1 = (500 + 10 Cu) mm, D2 = 300mm,
D3 = 300mm.The friction factors for the pipelines areλ1 = 0.02,λ2 = λ3 = 0.015.
Calculate:

– the flow rate.
– The output power of the turbine, if the efficiency of the turbine is 98%.
– The ratio between the theoretical available power and the power of the plant for a
given flow rate.

Solution The head at the inlet of the turbine (ignoring concentrated losses) is
equal to:

Hu = zA − L1 J1 − L2 J2,

where zA is free surface level in tank A measured from a datum. The head at the
outlet section of the turbine is

Hd = zB + L3 J3,

where zB is the free surface level in tank B. The head drop across the turbine can be
expressed as follows:

L1

L2

L3

D1

D2

D3

Y

turbineA

B

Fig. 7.12 Hydroelectric plant
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Hu − Hd = zu + pu
γw

+ V 2
2

2g
− zd − pd

γw
− V 2

3

2g
.

Since zu ≈ zd , and
V 2
2

2g
= V 2

3

2g
, it results

Hu − Hd = pu
γw

− pd
γw

= Δp

γw
,

which represents the net head ΔH . By neglecting the concentrated energy losses,
the energy balance reads

Y = Q2

(
λ1

1

2gΩ2
1

L1

D1
+ λ2

1

2gΩ2
2

L2

D2
+ λ3

1

2gΩ2
3

L3

D3

)
+ Δp

γw
→

Q =

√√√
√√√√

2g

(
Y − Δp

γw

)

λ1
1

Ω2
1

L1

D1
+ λ2

1

Ω2
2

L2

D2
+ λ3

1

Ω2
3

L3

D3

,

where Y = zA − zB is the gross head.
The available power for the turbine is equal to

P = ηγwQ
Δp

γw
,

and the theoretical available power is equal to

Pt = γwQY.

The ratio between the available theoretical power and the real power is equal to

γwQY

ηγwQ
(
Δp
/
γw
) ≡ γwY

η Δp

and it is greater than the unit.

For Cu = Cpu = 0 it results Δp = 5 105 Pa, Y = 70m, L1 = 2000m,
L2 = 200m, L3 = 100m,D1 = 500mm,D2 = 300mm,D3 = 300mm,λ1 = 0.02,
λ2 = λ3 = 0.015.



268 7 Circuits with Hydraulic Machines: Pumps and Turbines

∴ Q =

√√√√√
√√

2g

(
Y − Δp

γw

)

λ1
1

Ω2
1

L1

D1
+ λ2

1

Ω2
2

L2

D2
+ λ3

1

Ω2
3

L3

D3

=

√√√√√
√√√√√√
√√√√

2 9.806

(
70 − 5 105

9806

)

⎡

⎢⎢
⎢⎢⎢
⎣

0.02
16

(
π 0.52

)2
2000

0.5
+ 0.015

16
(
π 0.32

)2
200

0.3

+0.015
16

(
π 0.32

)2
100

0.3

⎤

⎥⎥
⎥⎥⎥
⎦

=

= 0.271 m3 s−1,

∴ P = ηγwQ
Δp

γw
= 0.98 9806 0.271

5 105

9806
= 132.8 kW,

∴ γwY

η Δp
= 9806 70

0.98 5 105
= 1.40.

Exercise 7.11 In the hydroelectric plant in Fig. 7.13, the gross head is
Y = (100 + 5 Cu) m, the pipe is made of steel and has diameter D = 800mm
and length L = (400 + 10 Cu) m. The net head is ΔH = (30 + 5 Cpu

)
m. The

draft tube (diffuser) is horizontal, with inlet diameter Di = D and outlet diameter
Do = 1.5 D. The depth of the centroid of the outlet section is zG = 12m, with
respect to the free surface of the downstream tank.

– Calculate the flow rate Q.
– Calculate the maximum output power with an efficiency η = 0.85.
– Calculate the resulting force acting on the diffuser neglecting the weight of the
fluid.
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The fluid is water with γw = 9806Nm−3. Assume ξin = 0.5 and ξout = 0.06,
while the distributed energy losses in the diffuser are negligible.

Solution The energy balance, ignoring the distributed losses in the diffuser, is

Y = ΔH + λ
V 2

2g

L

D
+ ξin

V 2

2g
+ ξout

V 2
o

2g
,

where ΔH is the net head and Vo is the velocity in the outlet section, calculated on
the basis of the mass conservation equation:

Vo
πD2

o

4
= V

πD2

4
→ Vo = V

D2

D2
o

.

For used steel pipeswith slight rust,we assume an equivalent homogeneous rough-
ness ε = 0.3mm. The friction factor is calculated, by iteration, using the Moody
chart, or the Colebrook–White equation:

1√
λ

= −2log10

(
2.51

Re
√

λ
+ 1

3.71

ε

D

)
.

Since Re is unknown, it is necessary to initially formulate the hypothesis of
fully developed turbulent flow, adopting the asymptotic value of the friction fac-
tor (Prandtl–Nikuradse’s equation):

λ∞ =
[
−2log10

(
1

3.71

ε

D

)]−2

.

The value of λ∞ allows a first estimate of the velocity:

L

Y

ZG

Do

Di

diffuser

turbineD

Fig. 7.13 Hydroelectric plant
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V =
√√√√√

2g (Y − ΔH)
(

λ∞
L

D
+ ξin + ξout

D4

D4
o

) ,

which, in turn, allows the evaluation of the Reynolds number and then the value of
the first correction of λ. The correct value of the velocity can be obtained by means
of further iterations.

Assuming a fully developed turbulent flow, one can alternatively adopt the Chézy
formula with Gauckler–Strickler roughness coefficient, rewriting the energy balance
equation in the following form:

Y = ΔH +

⎡

⎢
⎢⎢
⎣

1

k2
(
D

4

)4/3 L + ξin

2g
+ ξout

2g

D4

D4
o

⎤

⎥
⎥⎥
⎦
V 2 →

V =
√√
√√√√√
√

Y − ΔH

1

k2
(
D

4

)4/3 L + ξin

2g
+ ξout

2g

D4

D4
o

.

For used steel pipes with slight rust, the Gauckler–Strickler coefficient can be
assumed to be equal to k = 100m1/3 s−1 or less. The maximum output power is
equal to

P = γwQ ΔHη.

The force on the diffuser is calculated by applying the momentum balance to the
dashed control volume in Fig. 7.14:

G + ΠΠΠ + �I + M1 − M2 = 0.

In the horizontal direction, it results

Π0x + Π1x − Π2x + M1x − M2x = 0,

that is:

Π0x = −pGuΩu + pGdΩd − ρ
Q2

Ωu
+ ρ

Q2

Ωd
.

Π0x = −Fx is the force exerted by the diffuser on the control volume, opposite
to the force Fx exerted on the diffuser. We have assumed the coefficients of the
momentum flux equal to 1. The pressure values refer to the centroids of the upstream
and downstream sections, in the hypothesis of rectilinear and parallel trajectories and,
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Fig. 7.14 Schematic for
calculating the force on the
diffuser

Do

Di

diffuser

energy grade line

hydraulic grade line

A B

ZG

x

therefore, of hydrostatic distribution of the pressure. The pressure in the upstream
section is calculated by applying Bernoulli’s theorem to any trajectory between the
upstream section (section A) and the downstream section (section B):

zu + pu
γw

+ V 2
u

2g
= zd + pd

γw
+ V 2

d

2g
,

and, for a trajectory through both centroids:

pGu = pGd + ρ
V 2
d

2
− ρ

V 2
u

2
= pGd + ρ

Q2

2

(
1

Ω2
d

− 1

Ω2
u

.

)

The pressure in the centroid of the downstream section is equal to

pGd = γwzG.

Rigorously, the pressure forces are applied in the centres of pressure, which are
deeper than the centroids, while the momentum flows are barycentric vectors. The
residual torque is balanced by a suitable pressure distribution at the side walls.

For Cu = Cpu = 0 it results Y = 100m, D = 800mm, L = 400m,ΔH = 30m.

Ωu = πD2

4
= π 0.82

4
= 0.502m2,

Ωd = π(1.5D)2

4
= π 1.22

4
= 1.131m2.
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The first attempt value of V is calculated assuming λ∞ = 0.0157, and results
V = 12.54 m s−1.After some iterations,we obtainλ = 0.016 andV = 12.52 ms−1,
and Q = 6.29 m3 s−1 is then calculated. The power is

∴ P = γwQ ΔHη = 9806 6.29 30 0.85 = 1.57 MW.

The pressure in the centroid of the downstream section is equal to

pGd = γwzG = 9806 12 = 1.176 105 Pa.

The upstream pressure is equal to

pGu = pGd + ρ
Q2

2

(
1

Ω2
d

− 1

Ω2
u

)
=

117 600 + 1000
6.292

2

(
1

1.1312
− 1

0.5022

)
= 0.553 105 Pa,

(7.7)

which is less than the downstream pressure. The horizontal force on the diffuser is
equal to

∴ Fx ≡ −Π0x = pGuΩu − pGdΩd + ρ
Q2

Ωu
− ρ

Q2

Ωd
=

55 280 0.502 − 117 600 1.131 + 1000
6.292

0.502
− 1000

6.292

1.131
=

− 61.87kN,

pointing to the left.
Similar results are obtained by calculating the flow rate with the Chézy formula.

Exercise 7.12 In the hydroelectric power plant in Fig. 7.15 there is a pipe of diameter
D = (200 + 10 Cpu

)
mm and roughness ε = 0.2mm. The flow rate is equal to

Q = (50 + 2 Cu) l s−1. The pipe sections have lengths L1 = (400 + 10 Cu) m,
L2 = (300 + 20 Cu) m, L3 = 30m, respectively. The elevations of the pump, of
the pipeline vertex, of the turbine and of the free surface in the downstream reservoir
are equal to zP = 25m, zv = 250m, zT = 16m, zs = 15m, respectively. The pump
has an efficiencyηP = 0.85 and the turbine has an efficiencyηT = 0.75. The pressure
upstream of the pump is pu = 1.5 105 Pa.

– Design the pump so that, at vertex V, the pressure is pv ≥ 0.5 105 Pa.
– Calculate the maximum power of the turbine.
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zP

zv

zT zs

L
3

pump turbine

T

V

L
2

L1

Fig. 7.15 Hydraulic circuit with pump and turbine

– Draw the hydraulic and the energy grade lines.

The fluid is water with γw = 9806Nm−3. Neglect the concentrated pressure
losses, except for the outlet loss in the tank.

Solution To calculate the power of the pump, we need to evaluate the head Hd

necessary to meet the required condition in the vertex. The energy balance yields

zP + pu
γw

+ V 2

2g
+ Hd = zv + pv

γw
+ V 2

2g
+ λ

V 2

2g

L1

D
.

The average water velocity in the pipe is equal to

V = 4Q

πD2
,

and the friction factor is calculated fromMoody chart or from the Colebrook–White
equation. The power of the pump is equal to

PP = γwQHd

ηp
.

The net head, equal to the difference between the head upstream and downstream
of the turbine, is equal to

ΔH = zv + pv
γw

+ V 2

2g
− λ

V 2

2g

L2

D
︸ ︷︷ ︸

upstream head

−
(
zs + λ

V 2

2g

L3

D
+ V 2

2g

)

︸ ︷︷ ︸
downstream head

.

The output power is equal to

PT = ηT γwQ ΔH.

For Cu = Cpu = 0 it results D = 200mm, Q = 50 l s−1, L1 = 400m,
L2 = 300m, L3 = 30m.
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Fig. 7.16 Hydraulic and energy grade lines

The average velocity in the pipe is equal to

V = 4Q

πD2
= 4 50 10−3

π 0.22
= 1.6 m s−1,

the Reynolds number is

Re = V D

ν
= 1.6 0.2

10−6 = 320 000.

From Moody chart, for ε/D = 0.2/200 = 10−3 and Re = 320 000 results
λ = 0.0205. The required net head is equal to

Hd = zv + pv
γw

+
�
�
�V 2

2g
+ λ

V 2

2g

L1

D
−
(

zP + pu
γw

+
�
�
�V 2

2g

)

=

250 + 0.5 105

9806
+ 0.0205

1.62

2 9.806

400

0.2

−
(
25 + 1.5 105

9806

)
= 220.15 m.

The power of the pump must be equal to

∴ PP = γwQHd

ηp
= 9806 0.05 220.15

0.85
= 127.0 kW.

The net head is
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ΔH = zv + pv
γw

+
�
�
�V 2

2g
− λ

V 2

2g

L2

D
︸ ︷︷ ︸

upstream head

−
(

zs + λ
V 2

2g

L3

D
+

�
�
�V 2

2g

)

︸ ︷︷ ︸
downstream head

=

250 + 0.5 105

9806
− 0.0205

1.62

2 9.806

300

0.2

−
(
15 + 0.0205

1.62

2 9.806

30

0.2

)
= 235.72 m.

The maximum power of the turbine is equal to

∴ PT = ηT γwQ ΔH = 0.75 9806 0.05 235.72 = 86.7 kW.

The hydraulic and the energy grade lines are shown in Fig. 7.16.
This plant is often used for aqueducts that have to cross a hill with a strong

difference in level: the energy produced by the turbine is used to partially power the
pump, reducing operating costs.

Exercise 7.13 In the plant in Fig. 7.17, the gross head is Y = (100 + 5 Cu) m, the
pipes are made of steel with diameter D = 800 mm and length
L1 = (400 + 10 Cu) m and L2 = (100 + 8 Cu) m. The net head is
ΔH = (30 + 5 Cpu

)
m.

– Calculate the flow rate Q.
– Calculate the maximum output power with an efficiency η = 0.85.
– Draw the hydraulic and the energy grade lines.

The fluid is water. Assume ξin = 0.5, ξout = 1.0.

Solution The required gross head is

Y = ΔH + λ1
V 2
1

2g

L1

D1
+ λ2

V 2
2

2g

L2

D1
+ ξin

V 2
1

2g
+ ξout

V 2
2

2g
,

whereΔH is the net head. If the diameter of the pipes is uniform, the energy balance
equation reduces to

Y = ΔH +
(

λ
L1 + L2

D
+ ξin + ξout

)
V 2

2g
.

For steel pipes in use with slight rust, we assume an equivalent homogeneous
roughness ε = 0.3 mm. The friction factor is calculated by iteration using either the
Moody chart or the Colebrook–White equation:
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1√
λ

= −2log10

(
2.51

Re
√

λ
+ 1

3.71

ε

D

)
.

Being Re unknown, it is necessary to initially formulate the hypothesis of fully
developed turbulence adopting the asymptotic value of the friction factor:

λ∞ =
[
−2log10

(
1

3.71

ε

D

)]−2

.

This value gives a first estimate of the velocity,

V =
√√√√√

2g (Y − ΔH)
(

λ∞
L1 + L2

D
+ ξin + ξout

) ,

which will be used to evaluate the Reynolds number and to calculate a new value of
λ. The process is iterated to reach the correct value of the velocity. Assuming a fully
developed turbulent flow, we can alternatively adopt the Chézy formula and rewrite
the energy balance equation in the following form:

Y = ΔH +
[

1

k2
(
D
/
4
)4/3 (L1 + L2) + ξin + ξout

2g

]

V 2.

For steel pipes in use with slight rust, the Gauckler–Strickler coefficient can be
assumed to be equal to k = 100m1/3 s−1. The maximum output power is equal to

P = γwQ ΔHη.

For Cu = Cpu = 0 it results:

L1

Y

L2

turbine

Fig. 7.17 Hydroelectric plant
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Fig. 7.18 Hydraulic and energy grade lines

– λ = 0.0157, V = 11.0 ms−1, Q = 5.53 m3 s−1, P = 1.384 MW, applying the
Colebrook–White formula.

– V = 11.79 ms−1, Q = 5.92 m3 s−1, P = 1.481 MW, applying Chézy formula
with Gauckler–Strickler coefficient.

The hydraulic grade line is shown in Fig. 7.18.



Chapter 8
Hydraulic Transients

The flow regime in hydraulic plants is often unsteady with frequent variations of
flow rate due to opening/closing valves, pumps, turbines. The inertia of the fluid
must be included in computations, and the induced variations of pressure can be
so high to excite the fluid compressibility. According to the dominant aspect, a
broad classification of unsteady phenomena is in (i) mass oscillations and (ii) elastic
oscillations, although both phenomena are generally present at the same time, but
with well different time scales.

Mass oscillations can reduce to simple unsteady flows where the inertia itself is
negligible and mass conservation is enough to properly describe the problem: a tank
with an outflow reduces the fluid level and, if outflow is controlled by gravity (e.g.,
an orifice), reduces the head and the flow rate in time; it is not necessary to consider
inertia. In other situations, like a surge tank or a pressurized tank with the aim of
reducing excessive pressure during a decrease of the demand, or to favour water
supply if the demand abruptly increases, the inertia of the fluid must be included,
although elastic waves are still neglected. They are neglected because their time scale
is much lower than mass oscillations time scale.

In other conditions, elastic waves propagation analysis is compulsory, accounting
for fluid compressibility and the characteristics of the pipe controlling the celerity of
these waves, usually several hundreds meters per second. This last case is commonly
defined as waterhammer: elastic waves propagate pressure and velocity variations,
and interacts with tanks, junctions, valves, with reflection, transmission and dissipa-
tion effects.Waterhammer has been studied in detail theoretically and experimentally,
since it is quite common in pumping plants and hydroelectric plants. Several methods
of solution are available, most of them amenable of numerical integration.

We propose a series of exercises of increasing complexity which can be solved
without requiring a numerical code, with the use of the Allievi interlocking equations
and of the method of characteristics for the waterhammer analysis.

Cu and Cpu , that are two integer numbers between 0 and 9, for example, the last and second-last
digit of the registration number.
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Fig. 8.1 Siphon between two tanks

Exercise 8.1 The siphon in Fig. 8.1 is a series of pipelines with a Gauckler–Strickler
roughness k = 90m1/3 s−1. The pipelines have length LAB = 4m, LBC = 3m,
LCD = 8m, LDE = 3.5m, LEF = 2m and diameter D = 300mm.

– Calculate the time required for filling tank No 2.

Assume a loss coefficient at the inlet and at the outlet equal to 1.0 and a loss
coefficient 0.1 for each curve. The fluid is water at a temperature of 20 ◦C, with a
vapour pressure of 2314Pa.

SolutionWe suppose that the absolute pressure in vertex C is initially greater than the
vapour pressure, and the pipe cross-section is fully occupied by the water. Applying
the energy balance equation, yields

z1 − zs = Q2

2gΩ2

∑
ξi + 410/3

π2k2
Q2D−5.33

∑
Li ,

where z1 = z f 1 + h1.
By introducing the symbol

β =
∑ ξi

2gΩ2
+ 410/3

π2k2
D−5.33

∑
Li ,
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results in
z1 − zs = βQ2,

or

Q =
√
z1 − zs

β
.

By inserting the numerical values, yields

β = 2.4
1.0

2 9.806

(
π 0.32

4

)2

+ 410/3

π2 902
0.3−5.33 20.5 = 40.44 s2 m−5.

The initial flow rate is equal to

Q =
√
z1 − zs

β
=

√
8 + 4 − 4

40.44
= 0.445 m3 s−1,

with an average velocity in the pipe equal to

V = 4Q

πD2
= 4 0.445

π 0.32
= 6.3 m s−1.

The pressure in vertex C is calculated by applying the Bernoulli’s theorem for a
path that starts from a point where the fluid is at rest in tank No 1:

z1 + p1
γw

+
�
�
�V 2
1

2g
= zC + pC

γw
+ V 2

2g
+ (ξin + ξc)

V 2

2g
+ 410/3

π2k2
Q2D−5.33 (LAB + LBC) ,

hence

pC = γw

[
z f 1 + h1 − zC − V 2

2g

− (ξin + ξc)
V 2

2g
− 410/3

π2k2
Q2D−5.33 (LAB + LBC)

]
→

pC = 9806

⎡

⎢⎢⎣
8 + 4 − 13 − 6.32

2 9.806
− (1.0 + 0.1)

6.32

2 9.806

− 410/3

π2 902

(
π 0.32

4

)2

6.32 0.3−5.33 (4 + 3)

⎤

⎥⎥⎦

= −62 060 Pa.



282 8 Hydraulic Transients

The absolute pressure in C is equal to

p∗
C = p∗

atm + pC = 101 300 − 62 060 = 39 240 Pa > 2314 Pa.

This pressure is greater than the vapour pressure and the initial hypothesis (pipe
cross-section fully occupied by the water) is verified.

Applying mass conservation for tank No 1 yields

A1
dh1
dt

= −
√
z1 − zs

β
.

Introducing the variable ζ1 = z1 − zs , yields

A1
dζ1
dt

= −
√

ζ1

β
= −kζ 1/2

1 ,

where

k = 1√
β

= 1√
40.44

= 0.157m5/2 s−1,

which, upon integration, yields

ζ1(t)∫

ζ1(t0)

dζ1

ζ
1/2
1

= − k

A1

t∫

t0

dt → 2ζ 1/2
1

∣∣∣
ζ1(t)

ζ1(t0)
=−k

A1
t |tt0 →

t − t0 = −2A1

k

[√
ζ1(t) − √

ζ1(t0)
]
. (8.1)

The outflow process changes when the outlet section of the siphon is submerged
(submergence limit condition), due to the rising level in tank No 2. This occurs when
a volume of water equal to

W = A2
(
zs − z f 2

) = 2 (4 − 1) = 6m3

has been transferred from one tank to the other, and corresponds to a lowering of
level in tank No 1 equal to

Δh = W

A1
= 6

4
= 1.5m.

In summary, it results

ζ1(t0) = z1 − zs ≡ z f 1 + h1 − zs = 8 + 4 − 4 = 8m,

ζ1(t) = z′
1 − zs ≡ z f 1 + h1 − Δh − zs = 8 + 4 − 1.5 − 4 = 6.5m.
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By inserting the numerical values in Eq. (8.1), yields

t − t0 = −2A1

k

[√
ζ1(t) − √

ζ1(t0)
]

= − 2 4

0.1571

(√
6.5 − √

8
)

= 14.2 s.

Once the submergence limit is exceeded, the available head is equal to the differ-
ence between the levels of the two tanks, and the energy balance equation is

z1 − z2 = βQ2 → Q =
√
z1 − z2

β
.

The mass conservation equation requires that

A1
dh1
dt

= −
√
z1 − z2

β
= −k

√
z1 − z2.

The levels of free surface in the tanks are linked by the following relationship:

A1dz1 = −A2dz2,

and, upon integration

z2 = − A1

A2
z1 + const.

The mass conservation equation can be rewritten as

A1
dh1
dt

= −k
√
z1 (1 + A1/A2) − const. ≡

− k
√(

z f 1 + h1
)
(1 + A1/A2) − const.

By inserting the auxiliary variable

ξ1 = (
z f 1 + h1

)
(1 + A1/A2) − const.,

differentiating, yields
dξ1
dt

= dh1
dt

(1 + A1/A2) ,

or
A1

(1 + A1/A2)

dξ1
dt

= −k
√

ξ1.

The result of the integration gives, in implicit form, the level change in tank No 1:

t − t0 = − 2A1

k (1 + A1/A2)

[√
ξ1(t) − √

ξ1(t0)
]
.
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Fig. 8.2 Tank and pipeline with gate valve at the outlet section

Exercise 8.2 The outlet valve in section B (see Fig. 8.2) of a steel pipe L = 3000m
long, diameter D = 0.1m and thickness δ = 5mm, is closed in 2 s, causing a retar-
dation of the flow velocity of the water from U0 = 1.5m s−1 to Uf = 1.0m s−1.

– Calculate the rise in pressure neglecting compressibility of the water and assuming
that the pipe is rigid.

Solution The energy balance equation in unsteady flow is

∂H

∂s
+ 1

g

∂U

∂t
+ J = 0.

If we assume an instantaneous propagation of the perturbations and neglect the
dissipations, it results

dH

ds
= −1

g

dU

dt
,

where velocity and energy head depend only on time. Integrating, yields

∫ Hf

H0

dH = −1

g

dU

dt

∫ L

0
ds → Hf − H0 = − L

g

dU

dt
→ p f − p0 ≈ −ρL

dU

dt
,

where we have neglected the velocity head. Inserting the numerical values, yields

∴ p f − p0 = −ρL
dU

dt
= −1000 3000

1.0 − 1.5

2
= 7.5 105 Pa.

According to this model, the rise in pressure propagates instantaneously in the pipe
and the deceleration of the fluid is spatially uniform, with a hydraulic head varying
in time but not in space. The rise in pressure is modest, hence the hypotheses of
incompressible fluid and rigid pipe are reasonable. With this simplified model, an
instantaneous closure results in an infinite pressure rise.

If we extend the analysis by including the elastic behaviour of the fluid and of the
pipe, we find that the celerity of propagation of the perturbation is
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c =

√
ε

ρ
√
1 + ε

E

D

δ

,

where ε = 2 109 Pa is the bulk modulus of water, and E = 2.07 1011 Pa is the
Young modulus of steel. Hence,

c =

√
ε

ρ
√
1 + ε

E

D

δ

=

√
2 109

1000√
1 + 2 109

2.07 1011
0.1

0.005

= 1295m s−1,

where we have assumed that the pipe is thin-wall (the stresses and the deformations
are in membrane regime) and unconstrained. The phase duration, referred to the gate
valve section, is equal to

θ = 2L

c
= 2 3000

1295
= 4.63 s.

At the end of the manouvre of 2 s, the reflected wave has not yet reached the gate,
hence the pressure rise can be computed as

p f − p0 = −ρc(Uf −U0) = −1000 1295 (1.0 − 1.5) = 6.48 105 Pa,

a value slightly less than the rise in pressure computed by neglecting the elastic
waves. The rise in pressure propagates in the pipe with a celerity c, hence the head
is space- and time-varying.

Exercise 8.3 We consider a tank with constant level, with a pipe controlled by a
valve in section B (see Fig. 8.3). The steel pipe is L = 150m long, with diameter
D = 0.1m and relative roughness ε/D = 0.002. The head is h0 = 10m, the valve
is initially closed and then it is instantaneously opened.

– Calculate the time required to reach the steady state.

Solution The energy balance equation in unsteady flow is

∂H

∂s
+ 1

g

∂U

∂t
+ J = 0.

Assuming an instantaneous propagation of the perturbations (anelastic model), the
variables do not depend on s, hence, upon integration, it results
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Fig. 8.3 Tank and pipeline with gate valve initially closed

U 2

2g
+ kU 2 − h0 = − L

g

dU

dt
, (8.2)

where kU 2 are the energy losses, concentrated and distributed. Considering
λ = λ∞ = 0.023 and assuming an inlet coefficient of energy loss ξin = 0.5 results in

k = λ∞L

2gD
+ ξin

2g
= 0.023 150

2 9.806 0.1
+ 0.5

2 9.806
= 1.83m−1 s2.

In regime conditions results dU/dt = 0 and the fluid velocity is

U0 =
√

2gh0
1 + 2gk

=
√

2 9.806 10

1 + 2 9.806 1.83
= 2.30 m s−1.

Equation (8.2) can be written as

dU

dt
= gh0

L

(
1 − U 2

U 2
0

)
,

that, upon integration, yields

U = U0 tanh

(
gh0t

LU0

)
.

The regime is reached only asymptotically. If we assume that the regime condition
corresponds to U = 0.99U0, the required time is

∴ t = 2.65
LU0

gh0
= 2.65

150 2.30

9.806 10
= 9.3 s.

Ifwe include the elastic behaviour of thefluid andof the pipe, the regimevelocity is
reachedwith a series of oscillations of velocity and pressure, being the first oscillation
a pressure reduction. These oscillations are progressively damped, even neglecting
dissipations since the system is open. Figure8.4 shows the time series of velocity
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Fig. 8.4 Velocity in the
terminal section. The red
dashed line refers to the
anelastic model, the blue line
includes elastic waves
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in the terminal section, computed according to an anelastic model (red dashed line)
and including elastic waves propagating with a celerity c = 1296m s−1.

Exercise 8.4 A steel pipeline is connected to an upstream tank characterized by a
constant water level, and to a gate valve, with outflow in atmosphere, see Fig. 8.5. The
diameter is D = (

1000 + 10 Cpu
)
mm, thewall thickness is δ = 12mm, the length

is equal to L = 2000m. Starting from a permanent flow condition with a flow rate
Q = 2m3 s−1, a gate valve is closed with a linear variation in a time τ = 4 (2L/c) s,
where c is the celerity of the perturbations.

Using the equations of Allievi, for the entire duration of the closure manoeuvre
and for a subsequent phase calculate:

– the head in the outlet section in the full-phase and half-phase times, collecting the
results in a diagram.

– Compare the maximum overpressure with the value given by theMichaud–Allievi
formula.

– Draw the head diagram in the cross-section with abscissa L/2.

Assume a water isentropic bulk modulus ε = 2 109 Pa, and the Young modulus
of steel E = 2.07 1011 Pa. Neglect energy losses and refer the head to the outflow
cross-section, where h0 = (400 + 10 Cu) m.

Solution Before starting computations, we describe the physical process.

• A steady-state velocityU0 exists throughout, the hydraulic grade line is horizontal
since we are neglecting losses, and the valve is progressively closed in a finite time
τ starting at time 0.

• As a consequence of valve closure, a wave rises and travels upstream at speed
c, and behind the wave the velocity is less than U0, the pressure rises, the liquid
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Fig. 8.5 Tank and pipeline with gate valve at the outlet section

is compressed, and the pipe is slightly expanded radially and possibly longitudi-
nally, depending on the constraints. The wave shape and amplitude is continuously
modulated by the manoeuvre.

• The wave reaches the reservoir at time L/c, the pipe pressure reduces to the
reservoir pressure. A new wave arises propagating downstream to the valve, with
shape depending on the shape of the manoeuvre at an earlier time of L/c.

• The modulated wave reaches the valve at time θ = 2L/c and determines a veloc-
ity with magnitude depending on the degree of closure of the valve and on the
instantaneous head.

• The process continues for ever since we are neglecting losses and the system is
closed.

If the pressure behind the wave reduces to vapour pressure, cavitation will occur, a
condition termed “column separation”.

Assuming Cu = Cpu = 0, it results D = 1000mm and h0 = 400m. The average
velocity in the pipeline, in permanent flow condition, is equal to

U0 = 4Q

πD2
= 4 2

π 1.02
= 2.55m s−1.

Assuming a cylindrical circular pipe made of linear elastic material, behaving like
a membrane, the relative celerity of the perturbations is equal to

c =

√
ε

ρ
√
1 + ς

ε

E

D

δ

,
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where ς is a dimensionless parameter that takes into account the type of constraint
of the conduct. This parameter has the following expressions:

ς = 5/4 − ν → for upstream anchored pipe and free to deform longitudinally,
ς = 1 − ν2 → for pipe with precluded longitudinal deformation,
ς = 1 → for pipe with free longitudinal deformation,

where ν is the Poisson coefficient of the pipe material. Assuming that the last con-
dition applies, the celerity is equal to

c =

√
ε

ρ
√
1 + ς

ε

E

D

δ

=

√
2 109

1000√
1 + 1

2 109

2.07 1011
1.0

0.012

= 1053 m s−1.

The phase duration, referred to the gate valve section, is equal to

θ = 2L

c
= 2 2000

1053
= 3.8 s.

Since τ > θ , the manoeuvre is “slow”, that means that the reflected wave reaches
the gate before the end of the manouvre. In order to apply the interlocking equations
of Allievi, we need a list of the values of the opening of the gate at full-phase and at
half-phase times, see Tables8.1 and 8.2.

Table 8.1 Ratio of opening
of the gate valve at full-phase
times

t/θ η

0.0 1.00

1.0 0.75

2.0 0.50

3.0 0.25

4.0 0.00

5.0 0.00

Table 8.2 Ratio of opening
of the gate valve at half-phase
times

t/θ η

0.5 0.875

1.5 0.625

2.5 0.375

3.5 0.125

4.5 0
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The interlocking equations of Allievi have the following expression:

z2i + z2i−1 − 2 = 2Al (ηi−1zi−1 − ηi zi ) ,

where Al is the Allievi number, defined as

Al = U0c

2gh0
,

and

zi =
√

hi
h0

, ηi = ωi

ω0
, η0 = 1, ti+1 = ti + θ,

where ω is the gate opening area.
For the present case, it results

Al = U0c

2gh0
= 2.55 1053

2 9.806 400
= 0.3418.

We choose the time 0 < t1 ≤ θ equal to t1 = θ ; hence, t2 = t1 + θ = 2θ , ti =
ti−1 + θ = iθ . The ratio of opening can be calculated from the linear closure law of
the gate valve: ⎧

⎪⎨

⎪⎩

η = 1 − t

τ
for 0 ≤ t ≤ τ,

η = 0 for t > τ.

Considering the series of full-phase times, at the time t1 the Allievi’s equation
becomes

z21 + z20 − 2 = 2Al (η0z0 − η1z1) →

z21 + 1 − 2 = 2 0.3418 (1 − 0.75 z1) →

z21 + 0.5127 z1 − 1.6836 = 0,

which admits two solutions, the physically acceptable one is z1 = 1.0663.
At the time t2 the Allievi’s equation becomes

z22 + z21 − 2 = 2Al (η1z1 − η2z2) →

z22 + 1.06632 − 2 = 2 0.3418 (0.75 1.0663 − 0.5 z2) →

z22 + 0.3418 z2 − 1.4097 = 0,

which admits the physically acceptable solution z2 = 1.0287.
A similar procedure applies for the calculation at the half-phase instants.
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Table 8.3 Calculation results in the outlet section

t/θ z
h (t/θ, 0)

h0
h (t/θ, 0) (m)

1 1.0663 1.1369 454.8

2 1.0287 1.0581 423.3

3 1.0550 1.1131 445.2

4 1.0330 1.0672 426.9

5 0.9658 0.9328 373.1

0.5 1.0325 1.0660 426.4

1.5 1.0502 1.1029 441.1

2.5 1.0390 1.0795 431.8

3.5 1.0475 1.0973 438.9

4.5 0.9961 0.9922 396.9

Fig. 8.6 Time series of the
head in the outlet section.
The symbols are the results
of the manual calculation,
the line is the automatic
numerical model output
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The results are listed in Table8.3; Fig. 8.6 shows the head (dimensionless) in the
outlet section. The continuous line is the numerical computation result, the symbols
are the values from the manual calculation.

The maximum head is reached at the end of the first phase, and it is equal to
454.8m.

The Michaud–Allievi’s formula (also known as Joukowsky’s formula) assumes
a closure manoeuvre with a linear reduction of fluid velocity, whereas the analysis
carried out with the Allievi interlocking equations assumes a closuremanoeuvre with
a linear reduction of the degree of opening. The Michaud–Allievi’s formula gives,
at the end of the first phase, an overhead in the outlet section equal to

Δh = c

g
U0

θ

τ
= c

g
U0

1

4
.

By inserting the numerical values yields
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Fig. 8.7 Time series of the
non dimensional head in the
outlet section. The conti-
nuous line is for a gate
closing linearly, the dashed
line is for a linear variation
of the velocity in the outlet
section

0 1 2 3 4 5 6 7 8 9 10
0.90

0.95

1.00

1.05

1.10

1.20

t/ θ
h/

h 0

1.15

Δh = c

g
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4
= 1053

9.806
2.55

1

4
= 68.5m,

corresponding to a hydraulic head h = h0 + Δh = 468.5m.
This last value is higher than the one obtained assuming a closure linear in the

degree of opening, that is equal to 454.8m. The comparison between the two dif-
ferent manoeuvres is shown in Fig. 8.7. It can be demonstrated that for each closure
manoeuvre which is linear in the velocity and which lasts for a time interval that is a
multiple of the phase duration, the combination of direct and reflected waves is such
as to cancel them after the end of the closure, with a null residual head overpressure.

In order to calculate the time series of the head in the intermediate section
x = L/2, it is necessary to calculate the value assumed by the function F (direct
wave, propagating upstream) and by the function f (reflected wave, propagating
downstream).

We remind that

h(t, x) − h0 = F
(
t − x

c

)
− f

(
t + x

c

)
.

At the time t1, t2, . . . , ti and for the outlet section (x = 0), it results:

h(ti , 0)︸ ︷︷ ︸
hi

−h0 = F(ti )︸ ︷︷ ︸
Fi

− f (ti )︸︷︷︸
fi

.

Furthermore, considering the upstream boundary condition, where the head is
invariant,

h(t, L) − h0 = F

(
t − L

c

)
− f

(
t + L

c

)
= 0,

yields
fi = Fi−1.
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Table 8.4 Results of themanual calculation for the intermediate section. h1/2 is the head at x = L/2

t/θ
F(t/θ)

h0
− f (t/θ)

h0

F(t/θ − 0.25)

h0
− f (t/θ + 0.25)

h0

h1/2(t/θ) − h0
h0

h1/2(t/θ)

(m)

1 0.1369 0 0.10145 −0.033 0.06845 427.4

2 0.1950 −0.1369 0.18195 −0.1529 0.02905 411.6

3 0.3082 −0.1950 0.27825 −0.22165 0.0566 422.6

4 0.3753 −0.3082 0.3605 −0.32695 0.03355 413.4

5 0.3082 −0.3753 0.323

0.5 0.0660 0 0.033 0 0.033 413.2

1.5 0.1689 −0.0660 0.1529 −0.10145 0.05145 420.6

2.5 0.2483 −0.1689 0.22165 −0.18195 0.0397 415.9

3.5 0.3457 −0.2483 0.32695 −0.27825 0.0487 419.5

4.5 0.3378 −0.3457 0.35655 −0.3605 −0.00395 398.4

Therefore, it is possible to write the following expression:

hi − h0 = Fi − Fi−1 → Fi = hi − h0 + Fi−1,

where Fi represents the direct wave, propagating upstream, in the section of the
valve (x = 0) calculated at the time ti ; fi represents the reflected wave, propagating
downstream, in the section of the valve (x = 0) calculated at the time ti . In the inter-
mediate section, the two functions are out of phase, in advance and late, respectively,

by a time interval of a quarter of phase, t = L/2

c
. Hence, the head in the intermediate

section has the following expression:

h

(
t,

L

2

)
− h0 = F

(
t − L

2c

)
− f

(
t + L

2c

)
.

By expressing time in dimensionless form with respect to the phase duration, it
results:

h

(
t

θ
,
L

2

)
− h0 = F

(
t

θ
− 0.25

)
− f

(
t

θ
+ 0.25

)
.

The function F(t/θ − 0.25) is calculated by linear interpolation of the two clos-
est values, in excess and in defect, to the time t − 0.25θ . A similar calculation is
performed for the function f (t/θ + 0.25).

The results are listed in Table8.4 and Table8.5 lists the results of numerical
computation. The differences between the values in the two tables are negligible.

Figure8.8 shows the excess of head (dimensionless) in the intermediate section.
The dashed curves represent the two functions F and f , that are phase-shifted by a
quarter of the phase duration.
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Table 8.5 Results of the numerical computation for the intermediate section. h1/2 is the head at
x = L/2

t/θ
F(t/θ)

h0
− f (t/θ)

h0

F(t/θ − 0.25)

h0
− f (t/θ + 0.25)

h0

h1/2(t/θ) − h0
h0

h1/2(t/θ)

(m)

1 0.1369 0 0.1008 −0.0324 0.0684 427.4

2 0.1950 −0.1369 0.1828 −0.1535 0.0293 411.7

3 0.3082 −0.1950 0.2773 −0.2210 0.0563 422.5

4 0.3753 −0.3082 0.3617 −0.3277 0.0340 413.6

5 0.3082 −0.3753 0.3212 −0.3566 −0.0354 385.8

0.5 0.0660 0 0.0324 0 0.0324 412.9

1.5 0.1689 −0.0660 0.1535 −0.1008 0.0527 421.1

2.5 0.2483 −0.1689 0.2210 −0.1828 0.0382 415.2

3.5 0.3457 −0.2483 0.3277 −0.2773 0.0504 420.2

4.5 0.3378 −0.3457 0.3566 −0.3617 −0.0051 397.9

Fig. 8.8 Diagram for the
calculation of the head
excess in the intermediate
section
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If we are also interested to the velocity evolution in time, we can use the following
equation

U (t, x) −U0 = −g

c

[
F
(
t − x

c

)
+ f

(
t + x

c

)]
.

Once the two functions F and f have been obtained, the computation of U (t, x) is
immediate. Figure8.9 shows the dimensionless velocity for the inlet, the outlet and
the intermediate sections. We notice that the oscillations are not damped, since no
dissipation occurs and the system is closed.
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Fig. 8.9 Diagram for the calculation of the water velocity in the outlet section (bold line), at
x = L/2 (dashed line), and at the inlet section (dash-dotted line)

Exercise 8.5 In the plant in Fig. 8.10 the pipe has length L = (4000 + 100 Cu) m,
diameter D = (

500 + 10 Cpu
)
mm, thickness δ = 10mm and Gauckler–Strickler

coefficient k = 90m1/3 s−1. The head is h0 = 100m.

– Calculate the permanent flow rate.
– Calculate the maximum overpressure in the outlet section for a slow closure
manoeuvre which lasts twice the phase duration, neglecting the energy losses.

Assume a water isentropic bulk modulus ε = 2 109 Pa, and the Young modulus
of steel E = 2.07 1011 Pa. Neglect energy losses and refer the head to the outflow
cross-section.

Solution The permanent flow rate is calculated by applying the energy balance
equation:

zA + pA
γw

+
�
�
�U 2
A

2g
= zB + pB

γw
+ U 2

0

2g
+ J L + ∑

ξi
U 2

0

2g
→

h0 = Q2

2g

(
πD2

4

)2 + Q2

k2
(
D

4

)4/3 (
πD2

4

)2 L ,

where we have neglected the concentrated energy loss at the entrance. The solution
for the flow rate is
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L,D,δ
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x

Fig. 8.10 Tank and pipeline with gate valve at the outlet section

Q =
√√√√√√√√

h0
L

k2
(
D

4

)4/3 (
πD2

4

)2 + 1

2g

(
πD2

4

)2

.

For Cu = Cpu = 0 it results L = 4000m, D = 500mm, and

∴ Q=
√√√√√√√√

100
4000

902
(
0.5

4

)4/3 (
π 0.52

4

)2 + 1

2 9.806

(
π 0.52

4

)2

= 0.70m3 s−1,

U0 = 4Q

πD2
= 4 0.70

π 0.52
= 3.57m s−1.

The celerity of the perturbations is equal to

c =
√√√√

ε/ρ

1 + εD

Eδ

=
√√√√√

2.14 109/1000

1 + 2.14 109 0.5

2.0 1011 0.01

= 1180m s−1,

and the phase duration is equal to
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Fig. 8.11 Time series of the
opening degree of the valve
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= 2 4000
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= 6.78 s.

The duration of the closure manoeuvre is equal to

τ = 2θ = 13.56 s.

The Allievi interlocking equations have the following expression

z2i + z2i−1 − 2 = 2Al (ηi−1zi−1 − ηi zi ) ,

where Al = U0c

2gh0
is the Allievi number and

zi =
√

hi
h0

, ηi = ωi

ω0
.

For the present case, it results

Al = U0c

2gh0
= 3.57 1180

2 9.806 100
= 2.148.

We choose the time 0 < t1 ≤ θ with t1 = 0.5 θ = 3.39 s; hence t2 = t1 + θ =
10.17 s, t3 = t2 + θ = 16.95 s. The degree of opening can be calculated from the
linear closure law of the gate:

⎧
⎪⎨

⎪⎩

η = 1 − t

τ
for 0 ≤ t ≤ τ,

η = 0 for t > τ,

and is shown inFig. 8.11.Thevalues of the degree of opening at the timeof calculation
are listed in Table8.6.

The initial condition is z0 = 1 and
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Table 8.6 Time series of the
degree of opening of the gate,
half-phase times

t0 = 0 s η0 = 1

t1 = 3.39 s η1 = 0.75

t2 = 10.17 s η2 = 0.25

t3 = 16.95 s η3 = 0

Table 8.7 Time series of the
degree of opening of the gate,
full-phase times

t ′1 = 6.78 s η′
1 = 0.50

t ′2 = 13.56 s η′
2 = 0

t ′3 = 20.34 s η′
3 = 0

z21 + z20 − 2 = 2Al (η0z0 − η1z1) → z21 + 2Alη1z1 − 1 − 2Al = 0.

By inserting the numerical values yields

z21 + 2 2.148 0.75 z1 − 1 − 2 2.148 = 0 → z21 + 3.2225 z1 − 5.296 = 0,

which leads to the solution z1 = 1.198.
At the time t2, it results:

z22 + z21 − 2 = 2Al (η1z1 − η2z2) .

By inserting the numerical values, it results:

z22 + (1.198)2 − 2 − 2 2.148 0.75 1.198 + 2 2.148 0.25 z2 = 0 →

z22 + 1.074 z2 − 4.4248 = 0,

which leads to the solution z2 = 1.634.
At the time t3, it results:

z23 + z22 − 2 = 2Al (η2z2 − η3z3) ,

and:

z23 + (1.634)2 − 2 − 2 2.148 0.25 1.634 = 0 → z23 − 1.085 = 0,

which leads to the solution z3 = 1.0416.

We then choose the time 0 < t ′1 ≤ θ with t ′1 = θ = 6.78 s; hence, t ′2 = t ′1 + θ =
13.56 s, t ′3 = t ′2 + θ = 20.34 s. The degree of opening can be calculated from the
linear closure law. The values are given in Table8.7. Furthermore, z′

0 = 1, η′
0 = 1.

At the time t ′1 it is:

z′2
1 + z′2

0 − 2 = 2Al
(
η′
0z

′
0 − η′

1z
′
1

) → z′2
1 + 2Alη′

1z
′
1 − 1 − 2Al = 0,
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Table 8.8 Summary table of the results

t0 = 0 s η0 = 1 z0 = 1 h0 = 100m

t1 = 3.39 s η1 = 0.75 z1 = 1.198 h1 = 144 m

t ′1 = 6.78 s η′
1 = 0.5 z′1 = 1.466 h′

1 = 215m

t2 = 10.17 s η2 = 0.25 z2 = 1.634 h2 = 267m

t ′2 = 13.56 s η′
2 = 0 z′2 = 1.732 h′

2 = 300m

t3 = 16.95 s η3 = 0 z3 = 1.042 h3 = 108m

t ′3 = 20.34 s η′
3 = 0

and, by inserting the numerical values yields

z′2
1 + 2 2.148 0.50 z′

1 − 1 − 2 2.148 = 0 → z′2
1 + 2.148 z′

1 − 5.296 = 0,

which leads to the solution z′
1 = 1.4656.

At the time t ′2 it is:

z′2
2 + z′2

1 − 2 = 2Al
(
η′
1z

′
1 − η′

2z
′
2

)
.

Inserting the numerical values, it results:

z′2
2 + (1.4656)2 − 2 − 2 2.148 0.5 1.4656 = 0 → z′2

2 − 3.0 = 0,

which leads to the solution z′
2 = 1.732.

At the time t ′3 it is:

z′2
3 + z′2

2 − 2 = 2Al
(
η′
2z

′
2 − η′

3z
′
3

)
.

Inserting the numerical values, it results:

z′2
3 + (1.732)2 − 2 = 0 → z′2

3 = −1.

This last result is equivalent to h′
3 = −h0.

The computed values are listed in Table8.8 and are shown in Fig. 8.12. The last
value (and any other head value lower than−10.33m) is not admissible: theminimum
absolute pressure value is limited to the vapour pressure by the cavitation.
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Fig. 8.12 Hydraulic head in the outlet section. Symbols are manual calculation results, curves are
numerical code results. After reaching the cavitation limit, the model is no longer valid (dashed
line)
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Fig. 8.13 Tank and pipeline with gate valve at the outlet

Exercise 8.6 In the system shown in Fig. 8.13, the initial flow rate, when the gate
valve is fully open, is Q0 = 1m3 s−1, with an average velocity U0 = 2m s−1. The
pipe is made of steel with a thickness δ = 10mm, and length L = 1000m. The head
is h0 = 100m.

– Calculate the head rise at the valve, if the gate area is uniformly reduced to zero
in 4 s. Use the Allievi interlocking equations, starting at the time t1 = 0.5 s, and
for the time interval from 0 to three phases.

Assume a water isentropic bulk modulus ε = 2 109 Pa, a steel Young modulus
E = 2.1 1011 Pa. Neglect pressure losses.

Solution The diameter of the pipe is equal to:
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D =
√
4Q0

πU0
=

√
4 1.0

π 2.0
= 0.8m.

The celerity of perturbation is equal to:

c =

√
ε

ρ
√
1 + ε

E

D

δ

=

√
2 109

1000√
1 + 2 109

2.1 1011
0.8

0.010

= 1065m s−1,

and the phase duration is equal to:

θ = 2L

c
= 2 1000

1065
= 1.88 s.

Since τ > θ , the closure manoeuvre is slow. The Allievi interlocking equations have
the following expression:

z2i + z2i−1 − 2 = 2Al (ηi−1zi−1 − ηi zi ) ,

where Al is the Allievi number equal to Al = U0c

2gh0
; furthermore, zi =

√
hi
h0

,

ηi = ωi

ω0
, and ωi is the opening area of the gate at the i-time. For the present case,

results:

Al = U0c

2gh0
= 2 1065

2 9.806 100
= 1.086.

We choose the time 0 < t1 ≤ θ with t1 = 0.5 s; then t2 = t1 + θ = 2.38 s, t3 =
t2 + θ = 4.26 s and t4 = t3 + θ = 6.14 s. The degree of opening can be calculated
from the linear closure equation of the gate valve, is shown in Fig. 8.14 and is listed
in Table8.9: ⎧

⎪⎨

⎪⎩

η = 1 − t

τ
for 0 ≤ t ≤ τ,

η = 0 for t > τ,

with the additional initial condition

z0 = 1, η0 = 1.

At the time t1, results:

z21 + z20 − 2 = 2Al (η0z0 − η1z1) → z21 + 2Alη1z1 − 1 − 2Al = 0.
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Fig. 8.14 Time series of the
opening degree of the valve

0 1 2 3 4 5 6

0.5

1.5

t (s)

η1

η2

η0=1

η η3 4= =0

Table 8.9 Degree of opening
of the gate at the calculation
instants

t0 = 0 s η0 = 1

t1 = 0.5 s η1 = 0.875

t2 = 2.38 s η2 = 0.405

t3 = 4.26 s η3 = 0

t4 = 6.14 s η4 = 0

Inserting the numerical values yields:

z21 + 2 1.086 0.875 z1 − 1 − 2 1.086 = 0 → z21 + 1.9005 z1 − 3.172 = 0,

which leads to the solution z1 = 1.069.
At the time t2, it results:

z22 + z21 − 2 = 2Al (η1z1 − η2z2) .

Inserting the numerical values yields:

z22 + (1.069)2 − 2 − 2 1.086 0.875 1.069 + 2 1.086 0.405 z2 = 0,

that is z22 + 0.88 z2 − 2.888 = 0, which leads to the solution z2 = 1.315.
At the time t3, it results:

z23 + z22 − 2 = 2Al (η2z2 − η3z3) .

Inserting the numerical values yields:

z23 + (1.315)2 − 2 − 2 1.086 0.405 1.315 = 0,

that is z23 − 1.428 = 0, which leads to the solution z3 = 1.195.
At the time t4, it results:

z24 + z23 − 2 = 2Al (η3z3 − η4z4) .
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Table 8.10 Summary table of the results

t (s) η z h (m)

0 1 1 100

0.5 0.875 1.069 114

2.38 0.405 1.315 173

4.26 0 1.195 143

6.14 0 0.756 57

Fig. 8.15 Head in the outlet
section. The continuous
curve is the result of a
numerical computation,
symbols are the manual
calculation results and refer
to t = 0.5, 2.38, 4.26, 6.14 s
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Inserting the numerical values, yields:

z24 − 0.572 = 0,

which leads to the solution z4 = 0.756.
The results are listed in Table8.10 and are plotted in Fig. 8.15.

Exercise 8.7 In the system in Fig. 8.16, the flow rate in stationary condition is
Q0 = 1.5m3 s−1 with an average velocity in the pipe U0 = 2m s−1. The pipeline
is made of steel with a thickness δ = 15mm, a length L = 800m and h0 = 100m.

– Calculate the celerity of propagation of the pressure disturbance and the phase
duration of the pipeline, θ .

– Calculate the pressure rise at the outlet section for a linear opening manoeuvre of
duration τ = 3 s. Use the Allievi interlocking equations, starting from t1 = 0.5 s
and for the interval up to three phases.

– Calculate the minimum value of the head at t = θ .

Assume a water isentropic bulk modulus ε = 2 109 Pa, a steel Young modulus
E = 2.1 1011 Pa. Neglect energy losses.
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Fig. 8.16 Tank and pipeline with gate valve at the outlet section

Solution The diameter of the pipe is equal to:

D =
√
4Q0

πU0
=

√
4 1.5

π 2
= 0.98m ≈ 1.0m.

The celerity of the perturbations is equal to:

c =

√
ε

ρ
√
1 + ε

E

D

δ

=

√
2 109

1000√
1 + 2 109

2.1 1011
1

0.015

= 1106m s−1,

and the phase duration of the pipeline is equal to:

θ = 2L

c
= 2 800

1106
= 1.45 s.

Since τ > θ , the manouvre is slow. The Allievi interlocking equations have the
following expression:

z2i + z2i−1 − 2 = 2Al (ηi−1zi−1 − ηi zi ) ,

where Al is the Allievi number, defined as Al = U0c

2gh0
; furthermore zi =

√
hi
h0

,

ηi = ωi

ω0
.

For the present case, it results:
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Fig. 8.17 Time series of the
opening degree of the valve
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Table 8.11 Time series of
the opening degree of the gate

t0 = 0 s η0 = 0

t1 = 0.5 s η1 = 0.166

t2 = 1.95 s η2 = 0.65

t3 = 3.4 s η3 = 1

t4 = 4.85 s η4 = 1

Al = U0c

2gh0
= 2 1106

2 9.806 100
= 1.128.

We choose the time 0 < t1 ≤ θ with t1 = 0.5 s; then t2 = t1 + θ = 1.95 s, t3 =
t2 + θ = 3.4 s and t4 = t3 + θ = 4.85 s. The degree of opening can be calculated
from the linear closure equation of the gate valve, is shown in Fig. 8.17 and listed in
Table8.11: ⎧

⎪⎨

⎪⎩

η = t

τ
for 0 ≤ t ≤ τ,

η = 1 for t > τ.

The initial condition is z0 = 1. At the time t1, it results:

z21 + z20 − 2 = 2Al (η0z0 − η1z1) → z21 + 2Alη1z1 − 1 = 0.

Inserting the numerical values, results:

z21 + 2 1.128 0.1666 z1 − 1 = 0 → z21 + 0.37581 z1 − 1 = 0,

which leads to the solution z1 = 0.829.
A the time t2, it results:

z22 + z21 − 2 = 2Al (η1z1 − η2z2) .

Inserting the numerical values, results:

z22 + (0.829)2 − 2 − 2 1.128 0.1666 0.829 + 2 1.128 0.65 z2 = 0,
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Table 8.12 Summary table of the results

t (s) η z h (m)

0 0 1 100

0.5 0.166 0.829 68.8

1.95 0.65 0.737 54.3

3.4 1 0.824 67.9

4.85 1 0.982 96.4

Fig. 8.18 Head in the outlet
section. The continuous
curve is the result of an
automatic calculation
procedure, symbols are
values manually calculated
at t = 0.5, 1.45, 1.95, 3.4,
4.85 s
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that is z22 + 1.466 z2 − 1.623 = 0, which leads to the solution z2 = 0.737.
At the time t3, it results:

z23 + z22 − 2 = 2Al (η2z2 − η3z3) .

Inserting the numerical values, results:

z23 + (0.737)2 − 2 − 2 1.1128 0.65 0.737 + 2 1.1128 1 z3 = 0,

that is z23 − 2.256 z3 − 2.537 = 0, which leads to the solution z3 = 0.824.
At the time t4, it results:

z24 + z23 − 2 = 2Al (η3z3 − η4z4) .

Inserting the numerical values, results:

z24 + 2.256 z4 − 3.18 = 0,

which leads to the solution z4 = 0.982.
The calculated values are listed in Table8.12.
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Fig. 8.19 Velocity in the
outlet section (bold line) and
in the inlet section (dashed
line)
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The minimum value of the head occurs at the time t = θ = 1.45 s, with ηmin =
0.4833. By substituting in the Allievi interlocking equation, results:

z2min + z20 − 2 = 2Al (η0z0 − ηminzmin) → z2min + 2Alηminzmin − 1 = 0.

Inserting the numerical values, results:

z2min + 2 1.128 0.4833 zmin − 1 = 0 → z2min + 1.09 zmin − 1 = 0,

that leads to the solution zmin = 0.593, corresponding to a head hmin = 35.3m.
Figures8.18 and 8.19 show the head in the outlet section and the fluid velocity in

the outlet and in the inlet sections, respectively.

Exercise 8.8 In the system in Fig. 8.20, the steel pipeline is made of two trunks
with the following characteristics: upstream trunkAC: D1 = 950mm, L1 = 1800m,
c1=1037m s−1; downstream trunkCB: D2=800mm, L2=2000m, c2=1152m s−1.
The two trunks are free to expand and contract along the axis. The head at the outlet
section is h0 = 350m and the elevation of the sections is zA = 300m, zC = 200m,
zB = 100m. Starting from an initial permanent flow rate equal to Q0 = 2.1m3 s−1,
a linear closure manoeuvre of duration τ = 8 s is performed.

– Using the method of characteristics, calculate the pressure in section C for two
phases.

Neglect the slope of the pipeline axis and the energy losses.

Solution The phase duration of the two trunks is equal to:

θ1 = 2L1

c1
= 2 1800

1037
= 3.47 s,
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Fig. 8.20 Tank and pipeline
with gate valve at the outlet.
The characteristics of the
pipes are not uniform

h 0
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35
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m

1 1 1δ
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B2 2 2δ

C

z B
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10
0 

m

z C
= 
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0 

m

z A
= 

30
0 

m

θ2 = 2L2

c2
= 2 2000

1152
= 3.47 s,

and the phase duration of the pipeline is equal to θ = θ1 + θ2 = 6.94 s. Since θ < τ ,
themanoeuvre is slow. In addition, sectionC is reached in equal times by disturbances
from the inlet or from the gate valve. The gate closure law is as follows:

⎧
⎪⎨

⎪⎩

η = 1 − t

8
for 0 ≤ t ≤ τ,

η = 0 for t > τ,

and, as a function of the time non-dimensional with respect to the phase duration, it
results: ⎧

⎪⎪⎨

⎪⎪⎩

η = 1 − 0.868
t

θ
for 0 ≤ t

θ
≤ 1.152,

η = 0 for
t

θ
> 1.152.

Choosing the coordinate system in Fig. 8.21, it is possible to identify two families
of characteristics for each trunk. It is convenient to assume Q and h as the dependent
variables, and along these characteristics, it results:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dh

dt
+ c1,2

gΩ1,2

dQ

dt
= − Q

Ω1,2
sin α + c1,2 J if

ds

dt
= c1,2, downstream, λ+,

dh

dt
− c1,2

gΩ1,2

dQ

dt
= − Q

Ω1,2
sin α − c1,2 J if

ds

dt
= −c1,2, upstream, λ−.

Neglecting the slope of the pipeline α and the dissipations, the previous expres-
sions are simplified as follows:
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Fig. 8.21 Schematic
adopted to define the
propagation celerity of the
pressure perturbations
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Fig. 8.22 Characteristic curves in the s − t plane

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dh

dt
+ c1,2

gΩ1,2

dQ

dt
= 0 if

ds

dt
= c1,2, downstream, λ+,

dh

dt
− c1,2

gΩ1,2

dQ

dt
= 0 if

ds

dt
= −c1,2, upstream, λ−.
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Figure 8.22 shows the characteristics in the phase-plane s − t . The arrows indicate
the direction of propagation of the information. At non dimensional time 0.25 the
point C is still undisturbed, since the perturbation triggered at the outlet has not yet
arrived. To calculate the condition of the system in C at the time 0.5, it is necessary to
preliminary calculate the condition of the system in B at the time 0.25. The operating
point at the downstream boundary is obtained at time 0.25 by solving the following
system of equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h0.25B − h0C + c2
gΩ2

(
Q0.25

B − Q0
C

) = 0,

h0.25B − h0C

(
Q0.25

B

Q0
C

1

η0.25

)2

= 0.

The first equation is the invariant along the characteristic λ+, coming from C0.
The second equation is the downstream boundary condition and depends on the oper-
ating principle of the gate valve. For the present exercise, we assume the following
relationship between the flow rate, the degree of opening and the head:

Q

Q0
= η

√
h

h0
.

Once the operating condition of the system in B is calculated at the time 0.25, the
condition in C at the time 0.5 is obtained by solving the system consisting of the finite
difference approximations of the characteristic relations that come from upstream
(from A at the time 0.25) and from downstream (from B at the time 0.25):

⎧
⎪⎪⎨

⎪⎪⎩

h0.5C − h0.25A + c1
gΩ1

(
Q0.5

C − Q0.25
A

) = 0,

h0.5C − h0.25B − c2
gΩ2

(
Q0.5

C − Q0.25
B

) = 0.

The pressure in section C is calculated as follows:

p = γw (hC + zB − zC) .

The results are summarized in Table8.13 and are shown in Fig. 8.23.
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Table 8.13 Summary table of the results

t/θ η hC (m) pC ( 105 Pa) QC (m3 s−1)

0.25 0.783 350. 24.5 2.10

0.5 0.566 404.5 29.8 1.73

0.75 0.349 472.0 36.5 1.28

1.0 0.1319 480.9 37.3 0.49

1.25 0 485.9 37.8 −0.45

1.5 0 410.5 30.5 −0.79

1.75 0 238.3 13.6 −0.61

2.0 0 192.3 9.1 −0.14

Fig. 8.23 Pressure (gage)
diagram in the outlet section
(dashed curve) and in the
intermediate section C
(continuous curve),
computed with a numerical
code. Symbols are the results
of the manual calculations
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Exercise 8.9 The pumping plant in Fig. 8.24 conveys, in steady condition, a flow
rate Q0 = (0.3 + Cu/100) m3 s−1. The delivery duct is L = (1500 + Cpu 10)m
long, has a diameter D = 0.4m and has a nominal operating pressure of pmax =(
25 + 0.5 Cpu

)
105 Pa. The Gauckler–Strickler coefficient is k = 80m1/3 s−1.

The static head, measured with respect to a section immediately downstream of
the pump, is H ′

s = 210m.

– Design an expansion tank (i) without damping restriction, and (ii) with optimal
damping restriction, assuming a non-return valve between the tank and the pump.

Assume an instantaneous shut-down of the pump, awater isentropic bulkmodulus
ε = 2 109 Pa, and a steel Young modulus E = 2 1011 Pa. The pipe thickness is
equal to 8 mm.

Solution Consider the plant in regime condition, and abruptely subject to a blackout
of the grid supplying the electric motor. After the pump has been switched off, a
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Fig. 8.24 Pumping plant
with expansion tank

L, D

Y0

Hs

vacuum is generated downstream which can be calculated (for additional safety) by
ignoring the inertia of the impeller and of the fluid and assuming an instantaneous
transition of the flow rate to a zero value, with the following formula:

Δp = −ρcV0.

For Cu = Cpu = 0 it results Q0 = 0.3m3 s−1, L = 1500m, D = 0.4m,
pmax = 2.5MPa, k = 80m1/3 s−1, H ′

s = 210m. The initial velocity in the pipeline
is equal to:

V0 = 4Q0

πD2
= 4 0.3

π 0.42
= 2.39 m s−1,

and the celerity of the perturbation is equal to:

c =

√
ε

ρ
√
1 + ε

E

D

δ

=

√
2.0 109

1000√
1 + 2.0 109

2.0 1011
0.4

0.008

= 1155 m s−1.

The phase duration is equal to:

θ = 2L

c
= 2 1500

1155
= 2.60 s.

The pressure reduction is equal to Δp = −1000 1155 2.39 = −2.76 MPa.
The absolute static head is equal to

Hs = H ′
s + p∗

atm

γw
= 210 + 10.33 = 220.33 m,
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Fig. 8.25 Diagram for the design of an expansion tank without damping restriction

and the absolute pressure in the section immediately downstream of the pump
becomes:

p∗ = γwHs − Δp = 9806 220.33 − 2.76 106 = −0.59MPa � pvap.

Since the absolute pressure cannot be lower than the vapour pressure, cavitation
occurs and the installation of an expansion tank is required. The design and verifi-
cation of the tank will be carried out with the help of two graphs shown in Figs. 8.25
and 8.26.

The maximum value of the admissible head depends on the maximum tolerable
pressure in the pipeline, and it is equal to:

H ′
s + Zmax = pmax

γw
→ Zmax = pmax

γw
− H ′

s ≡ 2.5 106

9806
− 210 = 44.9m.

Tank Without Damping Restriction

The dimensionless parameter to be inserted in the graph in Fig. 8.25 is

zmax = Zmax

Hs
= 44.9

220.33
= 0.20.

Themost critical condition refers to theminimum losses (pipeline new). These losses
are equal to:



314 8 Hydraulic Transients

0.10

0.00

0.20

0.30

0.40

0.50

0.60

0.000.10 0.10 02.002.0 03.003.0 04.004.0

0.10

0.00

0.20

0.30

0.40

0.50

0.60

= 0.12

= 0.12 = 0.10

= 0.15

= 0.25

= 0.20

= 0.30= 0.35

= 0.05

= 0.40

= 0.05
= 0.10

= 0.15

= 0.25
= 0.20

= 0.30

= 0.35

= 0.40

= 0.45

= 0.50

= 0.55

= 0.60

= 0.65

= 0.50

= 0.45

B

A

TANK WITH DAMPING
n=1.41

0.130.13

=max

Z
Z

max

Hs
=min

Z
Z

min

Hs

h =0
Y0

Hs

Fig. 8.26 Diagram for the design of an expansion tank with optimal damping restriction

Y0 = V 2
0

k2R4/3
L = 2.392

802
(
0.4

4

)4/3 1500 = 28.8m.

The second parameter to be inserted in the diagrams is h0 = Y0
Hs

= 28.8

220.33
=

0.13.
From the diagram in Fig. 8.25, intersecting zmax = 0.20 and h0 = 0.13 (point A),

a parameter σ equal to 0.04 is estimated, where σ is a non dimensional group defined
as

σ = ΩL

UsHs

V 2
0

2g
,

whereUs is the volume of gas in the tank in static conditions (pump off, fluid at rest,
head equal to Hs). In the present condition, it is equal to

Us = ΩL

σHs

V 2
0

2g
=

π 0.42

4
1500

0.04 220.33

2.392

2 9.806
= 6.22 m3.

For h0 = 0.13 and σ = 0.04 (point B), from the left axis of the diagram results
zmin = −0.22. Using the gas transformation law, yields HsUn

s = HminUn
max (n is the

exponent of the transformation) and, therefore:

Umax = Us

(1 + zmin)
1/n = 6.22

(1 − 0.22)1/1.41
= 7.42 m3.
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Furthermore,

Umin = Us

(1 + zmax )
1/n = 6.22

(1 + 0.20)1/1.41
= 5.47 m3.

When the pump is running, the head is Hs + Y0 and the air volume in the tank is
equal to

U0 = Us

(1 + h0)
1/n = 6.22

(1 + 0.13)1/1.41
= 5.70 m3.

In order to prevent cavitation, it should be:

h∗
min = Hs (1 + zmin) = 220.33 (1 − 0.22) ≡ 171.9 m >

p∗
atm

γw
.

The minimum value of the relative pressure is equal to:

pmin = γw
(
h∗
min − 10.33

) = 9806 (171.9 − 10.33) = 1.58MPa.

An expansion tank with a total volume of 8m3 is sufficient.

Tank with Damping Restriction
We proceed as for the case of a tank without damping restriction, but using the
diagram in Fig. 8.26. At point A, it results:

σopt = ΩL

UsHs

V 2
0

2g
= 0.12.

The gas volume in the tank in static conditions (pump off, fluid at rest, head equal
to Hs) is equal to:

Us−opt = ΩL

σopt Hs

V 2
0

2g
=

π 0.42

4
1500

0.12 220.33

2.392

2 9.806
= 2.07m3.

From the left axis of the diagram results zmin = −0.27. Using the gas transfor-
mation law, it results HsUn

s = HminUn
max , hence

Umax−opt = Us−opt

(1 + zmin)
1/n = 2.07

(1 − 0.27)1/1.41
= 2.58 m3.

Furthermore:

Umin−opt = Us−opt

(1 + zmax )
1/n = 2.07

(1 + 0.20)1/1.41
= 1.82 m3.
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When the pump is running, the head is Hs + Y0 and the air volume in the tank is
equal to

U0−opt = Us−opt

(1 + h0)
1/n = 2.07

(1 + 0.13)1/1.41
= 1.90 m3.

To prevent cavitation, it should be:

h∗
min = Hs (1 + zmin) = 220.33 (1 − 0.27) ≡ 160.8m >

p∗
atm

γw
.

Theminimum value of the relative pressure is equal to: pmin = γw
(
h∗
min − 10.33

)

= 9806 (160.8 − 10.33) = 1.48MPa.
An expansion tank with a total volume of 3m3 is sufficient. Notice that the instal-

lation of an optimum restriction allows to reduce considerably the volume of the
expansion tank.

To be effective, the restriction should induce a loss, immediately after the pump
switch-off, equal to:

ΔH = Y0 + |Zmin| = Y0 + |Hszmin| = 28.8 + |220.33 (−0.27)| = 88.30m.

The energy loss coefficient of the restriction is calculated considering that:

βQ2
0 = Y0 + |Zmin| = Y0 + |Hszmin| → β = Y0 + |Hszmin|

Q2
0

.

Inserting the numerical values, it results:

β = Y0 + |Hszmin|
Q2

0

= 28.8 + |220.33 (−0.27)|
0.32

= 981.

The restriction can be realized adding a trunk of smaller diameter in the connection
between the box and the pipeline, so as to generate a Borda–Carnot energy loss due
to the sudden expansion of the flow. If the connecting trunk has a diameter equal to
D, the diameter of the restriction is calculated imposing that:

βQ2
0 = Q2

0

2g

(
4

πd2
− 4

πD2

)2

︸ ︷︷ ︸
Borda-Carnot loss

→ 1

d2
= 1

D2
+ π

4

√
2gβ.

Inserting the numerical values, yields

1

d2
= 1

D2
+ π

4

√
2gβ = 1

0.42
+ π

4

√
2 9.806 981 = 115.2 → d = 0.093m.
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Fig. 8.27 Flow rate in the
section downstream of the
expansion tank (dashed
curve) and in the section of
the reservoir (continuous
curve). Tank without
damping restriction
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Fig. 8.28 Pressure in the
pipeline downstream of the
expansion tank (continuous
line) and air volume (dashed
line) in the expansion tank
without damping restriction
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Figure8.27 shows the flow rate in the section immediately downstream of the
expansion tank (dashed curve) and in the reservoir section (continuous curve), as a
functionof the dimensionless time.The inset is an enlargement of the initial evolution.

The diagrams were obtained with an automatic numerical calculation software
that also includes the effect of elastic oscillations. For this reason, the flow rate
in the section of the reservoir is affected by the switch-off of the pump only after
half of a phase duration. Figure8.28 shows the pressure in the section immediately
downstream of the expansion tank and the volume of air in the expansion tank,
respectively.

Figures8.29 and 8.30 show the same results for an expansion tank with an optimal
restriction, with β = 981. It can be observed that the minimum pressure is slightly
higher than 1.2MPa, while on the basis of the calculations performed using the
diagram in Fig. 8.26 it would be equal to 1.48MPa. The difference between the two
results is due to the effects of elastic oscillations which are included in the automatic
calculation software. At the end of the first phase, these effects determine a pressure
reduction which is combined with the pressure reduction due to the mass oscillation.
For the same reason, themaximumpressure in the pipeline (slightly) exceeds 2.5MPa
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Fig. 8.29 Flow rate in the
section downstream of the
expansion tank (dashed
curve) and in the section of
the reservoir (continuous
curve). Tank with optimal
damping restriction
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Fig. 8.30 Pressure in the
pipeline downstream of the
expansion tank (continuous
line) and air volume (dashed
line) in the expansion tank
with optimal damping
restriction
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(design value) and the changes of the air volume in the expansion tank are greater
than expected. The oscillations have a shorter period than in the case of a expansion
tank without restriction, and the damping is faster.



Chapter 9
Flow in Open Channels

In an open channel flow, only part of the current is at contact with walls and a
free surface is present, usually at atmospheric pressure. In most cases, the curvature
of the trajectories is negligible and a hydrostatic pressure distribution is achieved.
Gradient pressure in the direction of flow is rather limited and the flow is driven
by differences in the elevation head. The source of energy per unit of weight and
per unit of length is the slope of the bed, that exactly balances the energy losses
in a uniform regime. In other situations, the source of energy is the slope of the
free surface, which can drive flow also in the presence of horizontal or counter-
sloping bed. The classical terminology defines the area of the cross-section of the
current; the wetted perimeter, i.e. the length of the contact between the liquid and the
walls of the channel; the hydraulic radius, equal to the ratio between the two. The
kinematics of the currents is described in terms of Froude number, with distinction of
the subcritical (Fr < 1) and supercritical flows (Fr > 1), also referred to as tranquil
and shootingflow, respectively. If the uniformflow is tranquil, the bed slope is defined
mild, otherwise it is steep. In critical conditions (Fr = 1), the current requires the
minimum energy to flow and the critical depth corresponds to a stationary point of
energy referred to the local bottom of the channel.

The uniform flow is purely theoretical, as it requires conditions of stationarity in a
long infinite channel with homogeneous slope of the bed, roughness, cross-section.
Under practical conditions, channel flows are varied and unsteady. For gradually
varied steady flows, the hydrostatic pressure distribution assumption still holds, and
the evolution of the profile is susceptible to analytical solution for prismatic channels.
In the general case, a numerical solution is required.

Cu and Cpu , that are two integer numbers between 0 and 9, for example, the last and second-last
digit of the registration number.
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Fig. 9.1 Cross-section of the channel

Exercise 9.1 In the channel with cross-section shown in Fig. 9.1, the central zone
has a Gauckler–Strickler coefficient k1 = (40 + Cpu) m1/3 s−1, and the expansion
zone has a Gauckler–Strickler coefficient k2 = (35 + Cpu) m1/3 s−1. The angle of
the banks is α = (30 + Cpu)

◦, the radius is equal to R = (1 + Cu/100) m and the
slope of the bed is ib = (0.3 + Cpu/20)%.

– Draw the rating curve every 50cm, up to y0 = 3 m.

Assume a distribution of the currents in the three bodies delimited by the walls
and the dashed verticals as shown in Fig. 9.1.

Solution If the water depth, measured from the lowest point of the cross-section,
is less than R, the current is contained in the central channel, see Fig. 9.2, and the
rating curve is calculated as follows:

Q = k1R
1/6
h Ω

√
Rhib ≡ k1

√
ib

Ω5/3

P2/3
, y0 < R,

where Rh is the hydraulic radius, Ω is the area of the cross-section occupied by the
current, P is the wetted perimeter.

From elementary geometry considerations, the area of the cross-section of the
current and the wetted perimeter are equal to:

Ω = R2cos−1

(
R − y0

R

)
− (R − y0)

√
R2 − (R − y0)

2

P = 2Rcos−1

(
R − y0

R

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, y0 < R.

If the current occupies the expansion zone, the flow rate can be calculated as the
sum of the flow rates of the three water bodies separated by the dashed verticals in
Fig. 9.3. In the calculation of the wetted perimeters, the contours represented by the
the dashed verticals must not be taken into account, since the resistance offered by
these to the motion is null by hypothesis.

The central body will contribute with a flow rate equal to:
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Fig. 9.2 Cross-section of the channel with the current remaining in the central channel

Fig. 9.3 Separation of the current into water bodies without tangential stress interaction

Q1 = k1R
1/6
h Ω

√
Rhib ≡ k1

Ω5/3

P2/3

√
ib, y0 ≥ R,

with

Ω = πR2

2
+ 2R (y0 − R)

P = πR

⎫
⎪⎬

⎪⎭
, y0 ≥ R.

The expansion zones will contribute with a flow rate equal to:

Q2 = 2
(
k2R

1/6
h Ω

√
Rhib

)
≡ 2

(
k2

Ω5/3

P2/3

√
ib

)
, y0 ≥ R,

with

Ω = 2R (y0 − R) + (y0 − R)2

2 tan α

P = 2R + (y0 − R)

sin α

⎫
⎪⎬

⎪⎭
, y0 ≥ R.

For Cu = Cpu = 0 it results k1 = 40 m1/3 s−1, k2 = 35 m1/3 s−1, α = 30◦,
R = 1.0 m, ib = 0.3%.

The calculated values are given in Table 9.1 and the rating curve is shown in
Fig. 9.4.
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Table 9.1 Rating curve values. Q1 is the contribution of the central water body, Q2 is the contri-
bution of the two expansion zones

y0 (m) Q1 (m3 s−1) Q2 (m3 s−1) Q (m3 s−1)

0.5 0.59 0 0.59

1.0 2.16 0 2.16

1.5 4.92 2 1.27 7.46

2.0 8.52 2 4.39 17.30

2.5 12.85 2 9.42 31.69

3.0 17.88 2 16.55 50.98

20

10

50

0.5 1.0 2.0 2.5 3.01.5

Q
(m

 /s
)

3

y0 (m)

total flow rate

flow rate in the
central zone

flow rate in the
expansion zones

30

40

0
0

Fig. 9.4 Rating curve (bold curve) and contribution of the central zone (dashed curve) and of the
expansion zones (dash-dotted curve)

Exercise 9.2 In the rectangular channel with cross-section shown in Fig. 9.5, the
flow rate is Q = (60 + Cu) m3 s−1. The bed and the walls have a coefficient of
Gauckler–Strickler k = (40 + Cpu) m1/3 s−1. The slope of the bed is ib = (0.3 +
Cpu/20)% and the width is b = 6 m.

– Calculate the uniform flow depth.
– Calculate the average wall tangential stress.
– Calculate the critical depth.
– Calculate the uniform flow depth if you insert a vertical septum of negligible
thickness and with the same roughness as that of the other walls, as shown in
Fig. 9.6.
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Fig. 9.5 Cross-section of
the channel

b

y0

Fig. 9.6 Cross-section of
the channel after insertion of
the septum

b/2 b/2

y'0

Solution Applying Chézy formula, yields

Q = kR1/6
h Ω

√
Rhib ≡ k

(
by0

b + 2y0

)2/3

by0
√
ib, (9.1)

where Rh = by0/(b + 2y0) is the hydraulic radius. Equation (9.1) admits only numer-
ical solutions.

The average tangential stress at the wall is

τ = γwRhib.

The critical depth is calculated by imposing that the energy head, measured from the
bed of a channel, has a stationary point:

∂E

∂y

∣∣∣∣
y=yc

= 0 → 1 − Q2

gΩ3
c

∂Ω

∂y

∣∣∣∣
y=yc

= 0,

equivalent to

1 − Q2

g(byc)
3 b = 0 → yc = 3

√
Q2

gb2
.

By inserting a vertical septum in an intermediate position, the flow rate is divided,
by symmetry, into equal parts. For each of the two channels, it results:
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Q

2
= kR1/6Ω

√
Rib = k

⎛

⎜
⎝

b

2
y′
0

b

2
+ 2y′

0

⎞

⎟
⎠

2/3

b

2
y′
0

√
ib.

For Cu = Cpu = 0 it results Q = 60 m3 s−1, k = 40 m1/3 s−1, ib = 0.3%,
b = 6 m,

∴ Q = k

(
by0

b + 2y0

)2/3

by0
√
ib →

60 = 40

(
6y0

6 + 2y0

)2/3

6y0
√
0.003 → y0 = 3.35 m,

∴ τ = γwRhib = 9806

(
6 3.35

6 + 2 3.35

)
0.003 = 46.4 Pa,

∴ yc = 3

√
Q2

gb2
= 3

√
602

9.806 62
= 2.17 m,

∴ Q

2
= k

⎛

⎜
⎝

b

2
y′
0

b

2
+ 2y′

0

⎞

⎟
⎠

2/3

b

2
y′
0

√
ib →

60

2
= 40

⎛

⎜
⎝

6

2
y′
0

6

2
+ 2y′

0

⎞

⎟
⎠

2/3

6

2
y′
0

√
0.003 → y′

0 = 4.26 m.

Exercise 9.3 In the system shown in Fig. 9.7, the sluice gate separates the tank from
a channel with rectangular cross-section of width B = 6 m.

– Calculate the flow rate.
– Determine whether the current downstream is sub- or supercritical.
– Draw qualitatively the flow profile in the downstream channel.

Assume H = (6 + Cpu) m, a = (0.6 + Cu/20) mand aGauckler–Strickler coef-
ficient of the downstream channel k = (40 + 2 Cpu) m1/3 s−1. The bed slope is
ib = (0.3 + Cpu/30)%. The contraction coefficient is equal to Cc = 0.61 and the
outflow coefficient is equal to μ = Cc Cv = 0.61 0.98 ≈ 0.60, where Cv is the
speed correction coefficient.
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Fig. 9.7 Outflow under
vertical flat floodgate

H

C aca

Solution Applying Bernoulli’s theorem between an upstream section in the tank
and the vena contracta (where we assume that the trajectories are rectilinear and
parallel and the pressure distribution is hydrostatic), and neglecting the energy losses,
yields:

zu + pu
γw

+ V 2
u

2g
= zc + pc

γw

+ V 2
c

2g
.

Assuming a hydrostatic distribution also in the upstream section (far from the gate),
results in

zu + pu
γw︸ ︷︷ ︸

H

+V 2
u

2g
= zc + pc

γw︸ ︷︷ ︸
Cca

+V 2
c

2g
→ H + V 2

u

2g
= Cca + V 2

c

2g
. (9.2)

Defining q = Q/B the flow rate per unit of width of the channel, Eq. (9.2) can be
written as:

H + q2

2gH 2
= Cca + q2

2g(Cca)2
→ q =

√√√√√
2g (H − Cca)

1

(Cca)2
− 1

H 2

.

Since the water comes from a large tank, the speed upstream Vu can be neglected
(q2/(2gH 2) → 0) and it is thus possible to apply the formula of the outflow from a
slot at the bottom of a vertical floodgate:

Q = CcA
√
2g (H − Cca),

where A = aB. If we include the experimental energy losses through the coefficient
Cv , it results

Q = μA
√
2g (H − Cca),

where μ = CcCv = 0.61 0.98 ≈ 0.60.
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Fig. 9.8 Flow profile if the
downstream channel is mild

H

C aca y0y1

yc

jump

Fig. 9.9 Flow profile if the
downstream channel is steep
and Cca < y0

H

C aca y0

yc

The uniform flow depth downstream is calculated by applying the Chézy for-
mula with Gauckler–Strickler coefficient, Q = kR1/6

h Ω
√
Rhib, which for rectangu-

lar channels becomes:

Q = k

(
By0

B + 2y0

)2/3

By0
√
ib, (9.3)

to be solved numerically with respect to y0.
To determine the state of the current, subcritical or supercritical, we calculate the

critical depth:

yc = 3

√
q2

g
.

For the given data, in the vena contracta the current is supercritical. If the down-
stream channel is mild, a hydraulic jump will occur downstream of a retarded super-
critical flow profile, see Fig. 9.8. The jump connects the uniform flow depth y0 to the
sequent flow depth y1.

If the downstream channel is steep, the uniform flow regime is reached asymptot-
ically downstream, with a retarded (Fig. 9.9) or accelerated (Fig. 9.10) supercritical
flow profile, according to ratio of water depth in the vena contracta to uniform flow
depth.

For Cu = Cpu = 0 it results H = 6 m, a = 0.6 m, k = 40 m1/3 s−1, ib = 0.3%,
Cc = 0.61, μ = 0.60.
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Fig. 9.10 Flow profile if the
downstream channel is steep
and Cca > y0

H

C aca
y0

yc

∴ Q = μA
√
2g (H − Cca) =

0.60 6 0.6
√
2 9.806 (6 − 0.61 0.6) = 22.7 m3 s−1,

q = Q

B
= 22.7

6
= 3.78 m2 s−1.

Inserting numerical values in Eq. (9.3), results

22.7 = 40

(
6y0

6 + 2y0

)2/3

6y0
√
0.003,

and solving, yields y0 = 1.65 m. The critical depth is

∴ yc = 3

√
q2

g
= 3

√
3.782

9.806
= 1.13 m.

The uniform downstream flow is subcritical, since y0 > yc, and the flow profile is as
shown in Fig. 9.8.

Exercise 9.4 The jet of water flowing out of a tap, impacting on a flat horizontal
plane forms a hydraulic jump at the distance r = (5 + Cpu/2) cm from the axis,
see Fig. 9.11. The depth of the radial current upstream of the jump is equal to
y1 = (0.1 + Cu) cm, downstream of the jump is equal to y2 = (0.5 + Cu) cm.

– Calculate the flow rate.

Consider the jump as if it were in a rectangular prismatic channel.

Solution After choosing the control volume shown in Fig. 9.12, we write the
momentum balance and mass conservation. Π1, Π2 and Πlat represent the forces
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Fig. 9.11 Radial jump

y1 y2

r jump
r

jump

Fig. 9.12 Schematic for
computing the characteristics
of the radial jump

r

jump

y2

δr

rδ

U1

U2
U2

U1
δr

Π1

control
volume

y1

Π2

Πlat

Πlat

control
volume

due to pressure and we are neglecting the resistance at the bottom. If we analyze
the jump as if it happened in a prismatic rectangular channel, we can neglect the
components of the lateral forceΠlat in radial direction, and the relationship between
the sequent flow depths is the classic one for a prismatic rectangular cross-section
channel:

y2
y1

= 1

2

(
−1 +

√
1 + 8Fr21

)
, Fr1 = U1√

gy1
,

where Fr1 is the Froude number of the upstream current (supercritical). Since the
sequent depths are known, we can calculate Fr1:

Fr1 =
√√√√1

8

[(
2
y2
y1

+ 1

)2

− 1

]

,

and the velocity U1. The flow rate is Q = 2πr y1U1.
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For Cu = Cpu = 0 it results r = 5 cm, y1 = 0.1 cm, y2 = 0.5 cm,

Fr1 =
√√√√1

8

[(
2
y2
y1

+ 1

)2

− 1

]

=
√√√√1

8

[(
2

0.5

0.1
+ 1

)2

− 1

]

= 3.87,

U1 = Fr1
√
gy1 = 3.87

√
9.806 0.001 = 0.38 m s−1,

∴ Q = 2πr y1U1 = 2 π 0.05 0.001 0.38 = 0.12 l s−1.

Exercise 9.5 Figure 9.13 shows the cross-section of a channel with geometry listed
in Table 9.2. The bed slope is ib = (2 + Cpu/30)% and the Gauckler–Strickler coef-
ficient is k = (40 + 2Cpu) m1/3 s−1. The flow rate is Q = 50 m3 s−1.

– Calculate the uniform flow depth.
– Calculate the critical depth.

Hint: linearly interpolate the geometric data of the table.

Solution The solution of the problem requires the calculation of the rating curve.
At a uniform flow depth value y0 = 1.0 m, the cross-section has a surface area equal
to

Fig. 9.13 Cross-section of
the channel

y

xL xR

Table 9.2 Geometric
characteristics of the
cross-section of the channel

y (m) xL (m) xR (m)

0 0 0

1.0 1.50 1.10

2.0 2.60 2.00

3.0 3.25 3.30

4.0 3.60 5.50

5.0 3.85 8.20

6.0 4.00 10.0



330 9 Flow in Open Channels

Table 9.3 Characteristic quantities of the current in the channel for increasingwater depth.Uniform
flow conditions

y0 (m) xL (m) xR (m) Ω (m2) P (m) Rh (m) Q0 (m3 s−1)

1.0 1.50 1.10 1.30 3.29 0.40 3.96

2.0 2.60 2.00 4.90 6.12 0.80 23.90

3.0 3.25 3.30 10.48 8.95 1.17 65.79

4.0 3.60 5.50 18.30 12.43 1.47 133.97

5.0 3.85 8.20 28.88 16.34 1.77 238.75

6.0 4.00 10.00 41.90 19.41 2.16 395.89

Ω = xL + xR
2

y0 = 1.5 + 1.1

2
1.0 = 1.3 m2,

a wetted perimeter

P =
√
x2L + y20 +

√
x2R + y20 =

√
1.52 + 1.02 +

√
1.12 + 1.02 = 3.29 m,

a hydraulic radius

Rh = Ω

P
= 1.3

3.29
= 0.40 m.

The flow rate is
Q = kR1/6

h Ω
√
Rhib ≡ kR1/6

h Ω
√
Rhib.

For water depth greater than 1.0m it is advisable to add the new contributions of
wetted area and perimeter to the values previously calculated. These contributions
are considered as trapezoidal surfaces. For example, for y = 2.0 m:

ΔΩ = [xL(2.0) + xR(2.0)] + [xL(1.0) + xR(1.0)]

2
1.0,

ΔP =
√
[xL(2.0) − xL(1.0)]

2 + 1.02 +
√
[xR(2.0) − xR(1.0)]2 + 1.02.

For Cu = Cpu = 0 it results ib = 2%, k = 40 m1/3 s−1.
For y0 = 1.0 m, it results

Q = kR1/6Ω
√
Rib = 40 0.401/6 1.3 × √

0.40 0.02 = 3.96 m3 s−1.

Performing the calculations for increasing water depth, yields the results listed in
Table 9.3.

For flow rate Q = 50 m3 s−1, the uniformflowdepth is calculated by interpolating
between y0 = 2.0 m and y0 = 3.0 m:
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Table 9.4 Characteristic quantities of the current in the channel for the increasing water depth.
Critical flow conditions

yc (m) xL (m) xR (m) Ωc (m) Bc (m) Qc (m3 s−1)

1.0 1.50 1.10 1.30 2.60 2.88

2.0 2.60 2.00 4.90 4.60 15.84

3.0 3.25 3.30 10.48 6.55 41.48

4.0 3.60 5.50 18.30 9.10 81.26

5.0 3.85 8.20 28.88 12.05 139.97

6.0 4.00 10.00 41.90 14.00 226.99

Fig. 9.14 Rating curve and
critical flow rate
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 /s
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3

Qc

∴ y0 − 2.0

3.0 − 2.0
= Q − 23.90

65.79 − 23.90
→ y0|Q=50.0 = 2.0 + 50.00 − 23.90

65.79 − 23.90
= 2.62 m.

For the calculation of the critical depth, it is convenient to calculate the value of
the critical flow rate for the assigned geometry of the current. The critical condition
for the current is as follows:

1 − Q2
c

gΩ3
c

Bc = 0 → Qc =
√
gΩ3

c

Bc
,

where the subscript “c” indicates that the value refers to the critical condition. Bc is
the top width in critical conditions.

By performing the calculations for increasing critical depth, the results listed in
Table 9.4 are obtained.
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For the flow rate Q = 50.0 m3 s−1, the critical depth is calculated by interpolating
between yc = 3.0 m and yc = 4.0 m:

∴ yc − 3.0

4.0 − 3.0
= Q − 41.48

81.26 − 41.28
→ yc|Q=50.0 = 3.0 + 50.00 − 41.48

81.26 − 41.28
= 3.21 m.

The current is supercritical, since y0 < yc. Figure 9.14 shows the rating curve and
the critical flow rate.

Exercise 9.6 In the system in Fig. 9.15, the gate separates the tank from a channel
that can be assumed infinitely wide.

– Calculate the flow rate per unit width.
– Calculate the uniform flow depth y0.
– Check if a hydraulic jump develops and, if so, calculate the sequent depth y1.

Assume H = (6 + Cpu) m, a = (0.6 + Cu/20) mand aGauckler–Strickler coef-
ficient of the downstream bed k = (40 + 2 Cpu) m1/3 s−1. The bed slope is
ib = (0.3 + Cpu/30)% and the contraction coefficient (only in the vertical) is
Cc = 0.61.

Solution Applying Bernoulli’s theorem between an upstream section in the tank
and the vena contracta, and neglecting the dissipations, yields

zu + pu
γw

+ V 2
u

2g
= zc + pc

γw

+ V 2
c

2g
,

and, due to the hydrostatic distribution in the two sections,

zu + pu
γw︸ ︷︷ ︸

H

+V 2
u

2g
= zc + pc

γw︸ ︷︷ ︸
Cca

+V 2
c

2g
→ H + V 2

u

2g
= Cca + V 2

c

2g
.

Fig. 9.15 Flow profile
downstream of a flat vertical
floodgate

H

C ac y0
y1

a
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Defining q the flow rate per unit width, it results

H + q2

2gH 2
= Cca + q2

2g(Cca)2
→ q =

√√√√√
2g (H − Cca)

1

(Cca)2
− 1

H 2

.

Theuniformflowdepth downstream is calculated by applyingChézy formulawith the
Gauckler–Strickler coefficient, Q = kR1/6

h Ω
√
Rhib, which, for a very wide channel,

reduces to q = ky5/30

√
ib, hence

y0 = q3/5

k3/5i3/10b

.

To check if the downstream current is sub- or supercritical, we calculate the critical
depth:

yc = 3

√
q2

g
.

If the current below the gate is supercritical and the uniform flow in the downstream
channel is subcritical, a hydraulic jump occurs. To calculate the sequent depth of y0,
we impose the balance of momentum in integral form and per unit width:

1

2
γw y

2
1 + ρ

q2

y1
= 1

2
γw y

2
0 + ρ

q2

y0
,

which can be written as follows:

y1
y0

= 1

2

(
−1 +

√
1 + 8Fr20

)
,

where Fr0 = V0/
√
gy0 is the Froude number of the subcritical uniform flow depth

in the channel downstream.

For Cu = Cpu = 0 it results H = 6 m, a = 0.6 m, k = 40 m1/3 s−1, ib = 0.3%,
Cc = 0.61,

∴ q =
√√√√√

2g (H − Cca)

1

(Cca)2
− 1

H 2

=
√√√√√

2 9.806 (6 − 0.61 0.6)
1

(0.61 0.6)2
− 1

62

= 3.85 m2 s−1,

∴ y0 = q3/5

k3/5i3/10b

= 3.853/5

403/5 0.0033/10
= 1.40 m,
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yc = 3

√
q2

g
= 3

√
3.852

9.806
= 1.14 m.

The uniform downstream flow current is subcritical, since y0 > yc. The uniform
downstream flow velocity is

V0 = q

y0
= 3.85

1.40
= 2.74 m s−1,

and the downstream current Froude number is

Fr0 = V0√
gy0

= 2.75√
9.806 1.40

= 0.74.

The sequent depth of the hydraulic jump is

∴ y1 = y0
2

(
−1 +

√
1 + 8Fr20

)
= 1.40

2

(
−1 +

√
1 + 8 0.742

)
= 0.93 m.

Exercise 9.7 The prismatic channel with cross-section represented in Fig. 9.16
(scale drawing), conveys the flow rate Q = (300 + 0.1 Cu) m3 s−1, has a uniform
bed slope ib = (0.05 + 0.005 Cu)% and roughness uniform on the walls and on the
bed defined by the Gauckler–Strickler coefficient k = (50 + 0.5 Cpu) m1/3 s−1.

– Calculate the uniform flow depth and the critical depth.

Solution We adopt Chézy formula Q = kR2/3
h Ω

√
ib. For the cross-section in

Fig. 9.16, it results

Fig. 9.16 Cross-section of
the channel, scale drawing

12 m

8 m
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Q = k

[(
2b0 + 7

3
y0

)
y0
2

]5/3

[
b0 + y0

3

(√
13 + √

34
)]2/3

√
ib, 0 < y0 ≤ 2 m,

Q = k

[(
2b0 + 14

3

)
+ (y0 − 2)

(
b0 + 14

3

)
+ (y0 − 2)2

3

]5/3

[
b0 + y0

3

√
13 + 2

3

√
34 + (y0 − 2)

]2/3
√
ib, y0 ≥ 2 m.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The specific energy is

E = y + Q2

2gΩ2
,

and, in critical condition, it results

∂E

∂y

∣∣∣∣
y=yc

≡ 1 − Q2

gΩc
3

∂Ω

∂y

∣∣∣∣
y=yc

= 0.

For the cross-section in Fig. 9.16, it results

1 − Q2

gΩc
3

∂Ω

∂y

∣∣∣∣
y=yc

≡ 1 − 72Q2

gyc3
(3b0 + 7yc)

(6b0 + 7yc)
3 = 0, 0 < yc ≤ 2 m,

1 − Q2

gΩc
3

∂Ω

∂y

∣∣∣∣
y=yc

≡ 1 − 9Q2 (3b0 + 2yc + 10)

g
(
y2c + 10yc + 3b0yc − 10

)3 = 0, yc ≥ 2 m.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

For Cu = Cpu = 0 it results Q = 300 m3 s−1, k = 50 m1/3 s−1, ib = 0.05%.
The uniform flow depth is equal to y0 = 6.41 m, the critical depth is equal to

yc = 3.51 m. The flow is tranquil since yc < y0.

Exercise 9.8 In the channel with cross-section shown in Fig. 9.17, with width
b = 12 m, the flow rate is Q = (60 + Cu) m3 s−1. The walls and the bed have
a coefficient of Gauckler–Strickler k = (40 + Cpu) m1/3 s−1 and the bed slope is
ib = (0.3 + Cpu/20)%.

– Calculate the uniform flow depth.
– Calculate the critical depth.
– Calculate the sequent depth of the uniform flow depth y0 in the hydraulic jump.
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Fig. 9.17 Cross-section of
the channel

1

1

y0

b

Solution The uniform flow depth is calculated by applying the Chézy formula:

Q = kR1/6
h Ω

√
Rhib ≡ k

(
by0 − y20

)5/3
(
b + 2

√
2y0

)2/3
√
ib.

The critical depth corresponds to a stationary point of the specific energy function:

∂E

∂y

∣∣∣∣
y=yc

≡ 1 − Q2

gΩ3
c

∂Ω

∂y

∣∣∣∣
c

= 0,

where ∂Ω/∂y|c ≡ b′
c is the top width in critical conditions. For the triangular cross-

section channel in Fig. 9.17, it results

1 − Q2

g
(
byc − y2c

)3 (b − 2yc) = 0.

The sequent depth of the hydraulic jump is obtained by imposing the momentum
balance in integral form,

Fig. 9.18 Rating curve
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1

2
γw y

2
0 (b − 2y0)

︸ ︷︷ ︸
pressure force
on the rectangle

+ 2

3
γw y

3
0

︸ ︷︷ ︸
pressure force
on the triangles

+ ρ
Q2

(
by0 − y20

)

︸ ︷︷ ︸
momentum flux

=

1

2
γw y

2
1 (b − 2y1)

︸ ︷︷ ︸
pressure force
on the rectangle

+ 2

3
γw y

3
1

︸ ︷︷ ︸
pressure force
on the triangles

+ ρ
Q2

(
by1 − y21

)

︸ ︷︷ ︸
momentum flux

, (9.4)

where, for convenience, we have computed the normal forces separating the trape-
zoidal section into a rectangle plus two triangles.

For Cu = Cpu = 0 it results Q = 60 m3 s−1, k = 40 m1/3 s−1, ib = 0.3%.
The rating curve is shown in Fig. 9.18, with a maximum for y0 = 5.25 m, corre-

sponding to 87.5% of the maximum water depth.
The uniform flow depth is equal to y0 = 2.49 m, the critical depth is equal to

yc = 1.41 m and theflow is tranquil, since y0 > yc. The sequent depth (shootingflow)
of the hydraulic jump is obtained by solving Eq. (9.4) and is equal to y1 = 0.73 m.

Exercise 9.9 A flow rate Q = (60 + Cu) m3 s−1 flows in a channel with cross-
section shown in Fig. 9.19. The walls have a coefficient of Gauckler–Strickler
k = (40 + Cpu) m1/3 s−1 and the bed slope is ib = (0.3 + Cpu/20)%.

– Calculate the uniform flow depth.
– Calculate the critical depth.
– Calculate the sequent depth of the uniform flow depth in the hydraulic jump.

Solution The uniform flow depth is calculated by applying Chézy formula:

Q = kR1/6
h Ω

√
Rhib,

which, for the cross-section in Fig. 9.19, yields

Fig. 9.19 Cross-section of
the channel

y0

1

1



338 9 Flow in Open Channels

Q = k
y08/3

(
2
√
2
)2/3

√
ib → y0 =

⎡

⎢
⎣
Q
(
2
√
2
)2/3

k
√
ib

⎤

⎥
⎦

3/8

.

The specific energy is

E = y + Q2

2gΩ2
,

and, in critical conditions, results

∂E

∂y

∣∣∣∣
y=yc

≡ 1 − Q2

gΩc
3

∂Ω

∂y

∣∣∣∣
y=yc

= 0.

For the cross-section in Fig. 9.19, it results

1 − Q2

gΩc
3

∂Ω

∂y

∣∣∣∣
y=yc

≡ 1 − Q2

gyc6
2yc = 0 → yc =

(
2Q2

g

)1/5

.

The sequent depths of the hydraulic jump result from the linearmomentumbalance
equation in integral form:

S = pGΩ + ρ
Q2

Ω
= constant → γw

y30
3

+ ρ
Q2

y20
= γw

y31
3

+ ρ
Q2

y21
,

where S is the total force, sum of the hydrostatic force and of the flux of momentum,
and pG is the pressure in the centroid.

For Cu = Cpu = 0 it results Q = 60 m3 s−1, k = 40 m1/3 s−1, ib = 0.3%.
The uniform flow depth is

∴ y0 =
⎡

⎢
⎣
Q
(
2
√
2
)2/3

k
√
ib

⎤

⎥
⎦

3/8

=

⎡

⎢⎢
⎣
60

(
2

√
2
)2/3

40

√
0.3

100

⎤

⎥⎥
⎦

3/8

= 4.49 m,

and the critical depth is

∴ yc =
(
2Q2

g

)1/5

=
(
2 602

9.806

)1/5

= 3.74 m.

The flow is tranquil, since yc < y0.
The sequent depths of the hydraulic jump satisfy the following equation:
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Fig. 9.20 Diagram of
specific energy and total
force
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,

which admits the solution y1 = 3.08 m. The flow is supercritical.
Figure 9.20 shows the diagrams of the total force S and the specific energy E

computed for the triangular cross-section, dimensionless with respect to their mini-
mum value. Under the assumption of a unitary value for the correction coefficients
of momentum flux and of kinetic power, the two functions have the same minimum
corresponding to the critical condition.

Exercise 9.10 A flow rate Q = (60 + Cu) m3 s−1 flows in the channel shown
in Fig. 9.21. The base is b = (6 + Cpu) m, the walls and the bed have a coe-
fficient of Gauckler–Strickler k = (40 + Cpu) m1/3 s−1 and the bed slope is
ib = (0.3 + Cpu/20)%.

– Calculate the uniform flow depth.
– Calculate the critical depth.
– Calculate the sequent depth of the uniform flow depth in the hydraulic jump.

Fig. 9.21 Cross-section of
the channel

b

y0

1
1
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Solution The uniform flow depth is calculated by applying the Chézy formula:

Q = kR1/6
h Ω

√
Rhib ≡ k

(
by0 + y20

2

)5/3

(
b + y0 + √

2y0
)2/3

√
ib,

and the critical depth is calculated by imposing a stationary point of the specific
energy

1 − Q2

gΩ3
c

dΩ

dy

∣∣∣∣
y=yc

= 0 → 1 − Q2

g

(
byc + y2c

2

)3 (b + yc) = 0,

to be solved numerically.
The sequent depth of the hydraulic jump is computed by imposing the linear

momentum balance in integral form. For computing hydrostatic forces, it is conve-
nient to separate the trapezoidal cross-section into a rectangle and a triangle:

1

2
γw y

2
0b

︸ ︷︷ ︸
hydrostatic force

on rectangle

+ 1

6
γw y

3
0

︸ ︷︷ ︸
hydrostatic force

on triangle

+ ρ
Q2

(
by0 + y20

2

)

︸ ︷︷ ︸
flux of momentum

=

1

2
γw y

2
1b

︸ ︷︷ ︸
hydrostatic force

on rectangle

+ 1

6
γw y

3
1

︸ ︷︷ ︸
hydrostatic force

on triangle

+ ρ
Q2

(
by1 + y21

2

)

︸ ︷︷ ︸
flux of momentum

.

For Cu = Cpu = 0 it results Q = 60 m3 s−1, b = 6 m, k = 40 m1/3 s−1,
ib = 0.3%, and y0 = 2.72 m, yc = 2.04 m, y1 = 1.48 m.

Exercise 9.11 A flow rate Q = (60 + Cu) m3 s−1 flows in the channel with the
cross-section shown in Fig. 9.22. The base is b = 6 m, the side walls and the bed
have a coefficient of Gauckler–Strickler k = (40 + Cpu) m1/3 s−1 and the bed slope
is ib = (0.3 + Cpu/20)%.

– Calculate the uniform flow depth.
– Calculate the critical depth.
– Calculate the sequent depth of the uniform flow depth in the hydraulic jump.



9 Flow in Open Channels 341

Fig. 9.22 Cross-section of
the channel

b

1
1

y0

Fig. 9.23 Total force
diagram
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Solution The uniform flow depth is calculated by applying the Chézy formula:

Q = kR1/6Ω
√
Rhib ≡ k

(
by0 + y20

)5/3
(
b + 2

√
2y0

)2/3
√
ib,

and the critical depth is calculated by imposing a stationary point to the specific
energy

1 − Q2

gΩ3
c

dΩ

dy

∣∣∣∣
y=yc

= 0 → 1 − Q2

g
(
byc + y2c

)3 (b + 2yc) = 0,

which requires a numerical solution.
The sequent depth is obtained by solving the linear momentum balance in integral

form

1

2
γw y

2
0b

︸ ︷︷ ︸
hydrostatic force

on rectangle

+ 1

3
γw y

3
0

︸ ︷︷ ︸
hydrostatic force

on triangles

+ ρ
Q2

(
by0 + y20

)

︸ ︷︷ ︸
flux of momentum

=

1

2
γw y

2
1b

︸ ︷︷ ︸
hydrostatic force

on rectangle

+ 1

3
γw y

3
1

︸ ︷︷ ︸
hydrostatic force

on triangles

+ ρ
Q2

(
by1 + y21

)

︸ ︷︷ ︸
flux of momentum

.

For Cu = Cpu = 0 it results Q = 60 m3 s−1, k = 40 m1/3 s−1, ib = 0.3%,
y0 = 2.40 m, yc = 1.94 m, y1 = 1.52 m.
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Figure 9.23 shows the total force as a function of the water depth, and the two
sequent depths of the hydraulic jump.

Exercise 9.12 Aflow rate Q = (60 + Cu) m3 s−1 flows in the channel having cross-
section shown in Fig. 9.24. The wall BD has a coefficient of Gauckler–Strickler
kBD = (30 + Cu) m1/3 s−1, all other walls have a coefficient of Gauckler–Strickler
k = (40 + Cpu) m1/3 s−1. The bed slope is ib = (0.3 + Cpu/20)%.

– Calculate the uniform flow depth.

Solution Assuming that the overall resistance is given by the sum of the contri-
butions due to the different parts of the wetted perimeter, an equivalent roughness
coefficient can be estimated as:

ks,eq =
√√√√√

P
∑ Pi

k2s,i

,

where Pi indicates the length of the wetted perimeter with a ks,i roughness index.
Notice that this is not the only approach and in literature there are other methods for
calculating ks,eq .

In the present case, it results:

ks,eq =

⎛

⎜⎜⎜⎜
⎝

y0 + 6 + y0
√
101

y0 + 6

k2
+ y0

√
101

k2
BD

⎞

⎟⎟⎟⎟
⎠

1/2

for y0 < 2 m,

and

ks,eq =

⎛

⎜⎜⎜⎜
⎝

2y0 + 4 + 2
√
101

2y0 + 4

k2
+ 2

√
101

k2
BD

⎞

⎟⎟⎟⎟
⎠

1/2

for y0 ≥ 2 m.

No assumption is made about the subdivision of the section.

Fig. 9.24 Cross-section of
the channel with variable
roughness of the walls
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The flow rate is obtained from Chézy formula, Q = ks,eq R
1/6
h Ω

√
Rhib:

Q =

⎛

⎜⎜⎜⎜
⎝

y0 + 6 + y0
√
101

y0 + 6

k2
+ y0

√
101

k2
BD

⎞

⎟⎟⎟⎟
⎠

1/2

(
6y0 + 5y20

)5/3
(
y0 + 6 + y0

√
101

)2/3
√
ib for y0 < 2 m,

and

Q =

⎛

⎜⎜⎜⎜
⎝

2y0 + 4 + 2
√
101

2y0 + 4

k2
+ 2

√
101

k2
BD

⎞

⎟⎟⎟⎟
⎠

1/2

(26y0 − 20)5/3
(
2y0 + 4 + 2

√
101

)2/3
√
ib for y0 ≥ 2 m,

which require a numerical solution.

ForCu = Cpu = 0 it resultsQ = 60 m3 s−1, kBD = 30 m1/3 s−1, k = 40 m1/3 s−1,
ib = 0.3%, and y0 = 1.98 m.

Exercise 9.13 The channel with cross-section shown in Fig. 9.25 has the spanwise
bed inclination 1 : ns , with ns = (4 + Cpu/10), and vertical walls. The bed slope is
ib = (0.5 + 0.5 Cu)%, and the coefficient of Gauckler–Strickler is
k = (35 + Cpu 5) m1/3 s−1. Calculate, with a step of 1.0m and up to 4.0 m:

– the rating curve,
– the critical depth scale.

Assume B = (8 + Cu 0.1) m.

Fig. 9.25 Cross-section of
the channel

1
nS

B

y0
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Solution The cross-section is triangular for 0 < y0 ≤ B/ns , with a top width of
the current b = y0ns , an area Ω = y20ns/2 , a wetted perimeter equal to:

P = y0 + y0
√
1 + n2s .

The hydraulic radius is

Rh = y0ns

2 + 2
√
1 + n2s

.

The cross-section is trapezoidal for y0 > B/ns , with a top width B, an area equal to:

Ω = By0 − B2

2ns
,

and a wetted perimeter equal to:

P = 2y0 − B

ns
+ B

√

1 + 1

n2s
.

The hydraulic radius is

Rh =
By0 − B2

2ns

2y0 − B

ns
+ B

√

1 + 1

n2s

.

The flow rate in uniform regime is calculated using the Chézy formula,
Q = kR2/3

h Ω
√
ib.

The critical depth is computed by imposing a stationary point of the energy:

1 − Q2

gΩ3

∂Ω

∂y

∣∣∣∣
y=yc

= 0,

where ∂Ω/∂y|y=yc ≡ bc is the top width of the current in critical conditions. Hence

yc =
(
8Q2

gn2s

)1/5

if 0 < yc ≤ B/ns,

yc = B

2ns
+

(
Q2

gB2

)1/3

if yc > B/ns .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

It is necessary to verify that the calculated critical depth is actually contained within
the correct domain of the formula.
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Table 9.5 Characteristics of the current for increasing flow rate

y0
(m)

yc
(m)

Q
(m3 s−1)

Ω

(m2)

P
(m)

Rh
(m)

k
(m1/3 s−1)

U
(ms−1)

0.50 0.38 0.42 0.50 2.56 0.20 35.00 0.83

1.00 0.81 2.64 2.00 5.12 0.39 35.00 1.32

1.50 1.25 7.80 4.50 7.68 0.59 35.00 1.73

2.00 1.70 16.79 8.00 10.25 0.78 35.00 2.10

2.50 2.15 31.01 12.00 11.25 1.07 35.00 2.58

3.00 2.52 47.32 16.00 12.25 1.31 35.00 2.96

3.50 2.89 65.14 20.00 13.25 1.51 35.00 3.26

4.00 3.24 84.10 24.00 14.25 1.68 35.00 3.50

Fig. 9.26 Rating curve and
critical depth scale
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It is also possible to calculate the critical flow rate corresponding to an imposed
critical depth. In this case, it results:

Qc =
√
gΩ3

c

bc
,

expressing Ωc and bc with the relationship appropriate to the numerical value of the
imposed water depth.

ForCu = Cpu = 0 it resultsns = (4 + Cpu/10), ib = 0.5%, k = 35 m1/3 s−1. The
numerical results are listed in Table 9.5. The rating curve and the critical depth scale
are shown in Fig. 9.26.
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Fig. 9.27 Cross-section of
the channel with varying
roughness of the walls

1
1

b
kb

ks
ksy0

Exercise 9.14 The channelwith cross-section shown inFig. 9.27, has a bottomwidth
b = 6 m and a bed slope ib = (0.5 + Cpu/10)%. The banks are made of concrete
with a Gauckler–Strickler coefficient ks = 60 m1/3 s−1, the bed is made of gravel
with a Gauckler–Strickler coefficient kb = 45 m1/3 s−1.

– Draw the rating curve up to y0 = 3 m.

SolutionWewill calculate the equivalent roughnesswith twodifferent approaches.
Assuming that the total resistance exerted on the current is given by the sum of the
contributions due to the different parts of thewetted perimeter, results in an equivalent
roughness:

ks,eq =
√√√√√

P
∑ Pi

k2s,i

=

⎛

⎜⎜⎜
⎝

b + 2
√
2y0

2
√
2y0
k2s

+ b

k2b

⎞

⎟⎟⎟
⎠

1/2

,

where the resistances are acting in parallel.
With a different approach, we assume that the average flow velocity is the same

in each arbitrary part in which the section can be divided, hence

U√
ib

= ks,eq

(
Ω

P

)2/3

≡ ks,i

(
Ωi

Pi

)2/3

, with Ω =
∑

Ωi , P =
∑

Pi ,

and, substituting Ωi in the summation, yields

k ′
s,eq =

⎛

⎜⎜⎜
⎝

P
∑ Pi

k3/2s,i

⎞

⎟⎟⎟
⎠

2/3

≡

⎛

⎜⎜⎜⎜
⎝

b + 2
√
2y0

2
√
2y0

k3/2s

+ b

k3/2b

⎞

⎟⎟⎟⎟
⎠

2/3

.

Also with the second approach the resistances are in parallel, but with a different
characteristic exponent.

The flow rate is obtained from Chézy formula:
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Table 9.6 Rating curves values computed with two different expressions for the equivalent rough-
ness

ks,eq k′
s,eq

y0 (m) Q (m3 s−1) Q (m3 s−1)

0.5 6.23 6.25

1.0 20.58 20.66

1.5 42.11 42.31

2.0 70.85 71.20

2.5 107.00 107.55

3.0 150.89 151.67

3.5 202.84 203.88

Fig. 9.28 Rating curves
computed with two different
expressions for the
equivalent roughness

6 21

42

71

107

151

203

0

50

100

150

200

250

0 1 2 3 4
y0 (m)

Q
(m

 /s
)

3

Q = ks,eq R
1/6
h Ω

√
Rhib ≡

⎛

⎜⎜⎜
⎝

b + 2
√
2y0

2
√
2y0
k2s

+ b

k2b

⎞

⎟⎟⎟
⎠

1/2

(
by0 + y20

)5/3
(
b + 2

√
2y0

)2/3
√
ib,

or

Q = k ′
s,eq R

1/6
h Ω

√
Rhib ≡

⎛

⎜⎜⎜⎜
⎝

b + 2
√
2y0

2
√
2y0

k3/2s

+ b

k3/2b

⎞

⎟⎟⎟⎟
⎠

2/3

(
by0 + y20

)5/3
(
b + 2

√
2y0

)2/3
√
ib.

For Cpu = 0 it results ib = 0.5%. The rating curves computed with the two dif-
ferent expressions for the equivalent roughness are listed in Table 9.6 and are shown
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in Fig. 9.28. The results obtained by applying the two formulas are practically coin-
cident.

Exercise 9.15 In the channel in Fig. 9.29 the upstream section is gently connected
to the downstream section with an expansion. The channel Gauckler–Strickler coef-
ficient is ks1 = ks3 = 50 m1/3 s−1, the expansion Gauckler–Strickler coefficient is
ks2 = 60 m1/3 s−1. The length of the expansion is L = 50 m, the upstream section
width is b = 1.5 m and the downstream section width is B = 2 m. The flow rate is
Q = (3.2 + 0.1 Cpu) m3 s−1.

(a) The bed slope upstream is ib1 = 0.1%, while the bed slope downstream and
in the expansion is ib2 = ib3 = (0.3 + 0.01 Cu)%:

– draw the flow profile, the normal depth and the critical depth. Assume a spatial
integration step of 10 m.

(b) The bed slope upstream is equal to ib1 = 2%, see Fig. 9.30, while the bed slope
downstream and in the expansion is ib2 = ib3 = (0.3 + 0.01 Cu)%:

– qualitatively draw the flow profile, describing the critical aspects of a perspective
quantitative draw.

Solution Numerical results refer to Cu = Cpu = 0.

Case (a)
We calculate the uniform flow depth of the upstream and downstream sections,

and the critical depths. For the upstream section the flow rate is:

Fig. 9.29 Geometry of the
channel, case (a)

L

Bb

ib1 = 0.1%
ks1 = 50 m /s1/3 ib2 u= (0.3+0.01C )%

ks2 = 60 m /s1/3 ib3 u= (0.3+0.01C )%
ks3 = 50 m /s1/3



9 Flow in Open Channels 349

Fig. 9.30 Geometry of the
channel, case (b)

L

Bb

ib1 = 2%
ks1 = 50 m /s1/3 ib2 u= (0.3+0.01C )%

ks2 = 60 m /s1/3 ib3 u= (0.3+0.01C )%
ks3 = 50 m /s1/3

Q = ks1Rh1
2/3by01

√
ib1 ≡ ks1

(by01)
5/3

(b + 2y01)
2/3

√
ib1,

and solving, yields y01 = 2.02 m. The specific energy is

E1 = y01 + Q2

2g(by01)
2 = 2.02 + 3.22

2 9.806 (1.5 2.02)2
= 2.07 m,

and the critical depth is

yc1 = 3

√
Q2

gb2
= 0.77 m.

The uniform flow is tranquil.
For the downstream section, it results

Q = ks3Rh3
2/3By03

√
ib3 = ks3

(By03)
5/3

(B + 2y03)
2/3

√
ib3.

Solving, yields y03 = 0.95 m. The energy is

E3 = y03 + Q2

2g(By03)
2 = 0.95 + 3.22

2 9.806 (2 0.95)2
= 1.09 m,

and the critical depth is

yc3 = 3

√
Q2

gB2
= 0.64 m.

The uniform flow is tranquil.
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Fig. 9.31 Characteristic
variables of the current in the
channel

normal depth

critical depth
energy

upstream channel junction downstream channel

B

BA

A

The energy variation between section B-B and section A-A, see Fig. 9.31, is
equal to E1 − E3 = 2.07 − 1.09 = 0.98 m, hence the current must reduce the spe-
cific energy. The uniform regime for tranquil flow is only reached asymptotically
upstream: downstream the profile must be connected with the uniform flow depth
immediately in section B-B, since there are no flow profiles that are energetically
compatible with the characteristics of the flow. Hence, any change in the profile can
only occur upstream of this section. The profile can be drawn for discrete values on
the basis of the specific energy balance equation:

dE

ds
= ib − J,

where J is the friction loss per unit length.
Actually, the expansion of the current generates an additional dissipation, tradi-

tionally assumed to be proportional to the lost velocity head (Borda–Carnot loss).
For the purposes of the calculation, this loss could be concentrated at the beginning
of the expansion, or evenly distributed along the entire expansion.

We divide the expansion into 5 steps of lengthΔs = 10 m. The variation of energy
for each step is equal to:

ΔE = (
ib − J̄

)
Δs,

where J̄ is the average loss per unit length. In performing integration, we assume
that the average characteristics of each step coincide with the characteristics of the
upstream section of the step. The profile is shown in Fig. 9.31. The normal depth (by
definition, it is the uniform flow depth for a prismatic channel with a uniform bed
slope having the same geometric and roughness characteristics as the calculation
section) is calculated, in the junction, for discrete values in a certain number of
sections. The critical depth can be calculated analytically in explicit form and has
the following expression:

yc(s) = 3

√
Q2

g(b + ns)2
for 0 < s < L , with n = B − b

L
.

In the upstream channel, the profile is of subcritical accelerated current. The depth
at the intersection section between the expansion and the upstream section (section
A-A) cannot be less than the critical depth (if this were not the case, the upstream
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sectionwould have a supercritical current profile influenced by downstream, which is
kinematically not admitted). In the downstream channel, the profile is immediately of
uniform flow starting from the intersection section with the expansion (B-B), since
there is no energetic compatible profile reaching asymptotically downstream the
uniform tranquil flow. Spatial integration proceeds from downstream to upstream,
starting from the intersection between the expansion and the downstream section
(section B-B), where the depth must be equal to the uniform flow depth in the
downstream section. The flow profile in the expansion cannot be drawn using the
results valid for the prismatic channel, since the junction is not a prismatic channel.
Actually, it would be necessary to analyze an equation of the profile wherein an
additional term appears that depends on the spatial variation of the cross-section of
the channel. For the geometry of this exercise, this equation develops as follows.

The specific energy in the junction is a function of the abscissa and of the depth
of the current:

E(s, y(s)) = y(s) + Q2

2g[b(s)]2[y(s)]2
≡ y + Q2

2g(b + ns)2y2
, with n = B − b

L
,

whereas for a prismatic channel E = E(�s, y(s)). Since

dH

ds
= −J ; H = E + zb → dE

ds
= ib − J, with

dE

ds
= ∂E

∂s
+ ∂E

∂y

dy

ds
,

we can write

dy

ds
=

ib − J − ∂E

∂s
∂E

∂y

→ dy

ds
=

ib − J + n
Q2

g(b + ns)3y2

1 − Q2

g(b + ns)2y3

. (9.5)

The new term in the numerator of Eq. (9.5),

n
Q2

g(b + ns)3y2

is always positive for a diverging channel, and is equivalent to an increase in the bed
slope. The denominator of Eq. (9.5) is positive or negative for tranquil and shooting
flow, respectively.

Assuming that the Gauckler–Stricler coefficient χ = ks R
1/6
h is uniform in the

diverging channel (a reasonable hypothesis if the depth of the current is subject to a
modest variation), there are nine possible profiles shown in Fig. 9.32 for varying bed
slope and roughness (Noseda 1965).

The parameters have the following definition:
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Fig. 9.32 Expansion mild
slope channel: possible flow
profiles. (From G. Noseda,
1965. Current profiles in
divergent and converging
rectangular channels. Acts of
the IX Conference on
Hydraulics and Hydraulic
Constructions, Trieste,
1965-in Italian)
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and l∗ is the width of the section in which the current reaches the critical depth:

l∗ =
(

Q√
g

)2/5(
ε − 1

2 − η

)3/5

.

li = b and l f = B are the initial and final widths of the expansion. In the present
case, assuming an average depth in the expansion of 1.0 m, the hydraulic radius is
on average equal to 0.46m and results:

ε = 0.85 < 1, η = 2.85 > 2, ε1 = 0.14, l∗ = 0.35 m.

Therefore, profiles (a), (b) and (d) can develop, but not profile (i) because l∗ < li ≡ b.

Case (b)
For the upstream channel the flow rate is:

Q = ks1Rh1
2/3by01

√
ib1 ≡ ks1

(by01)
5/3

(b + 2y01)
2/3

√
ib1,

and solving, yields y01 = 0.62 m. The specific energy is

E1 = y01 + Q2

2g(by01)
2 = 0.62 + 3.22

2 9.806(1.5 0.62)2
= 1.22 m,
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and the critical depth upstream is

yc1 = 3

√
Q2

gb2
= 0.77 m.

The flow is shooting since y01 < yc.
For the downstream channel it is still y03 = 0.95 m, the energy is E3 = 1.09 m

and the critical depth is

yc3 = 3

√
Q2

gB2
= 0.64 m.

The flow is tranquil.
The current must reduce the specific energy and a hydraulic jump can develop,

unless the conditions for a type (i) profile in Fig. 9.32 are met.
In the expansion channel, the profile must immediately connect with the uniform

flow depth from the intersection section between the expansion and the downstream
channel (unless the jump is pushed downstream). The uniform flow depth in the
upstream section is maintained up to the intersection with the expansion (unless a
jump develops in the upstream section).

Exercise 9.16 A channel with bed slope ib = 0.0025, and a rectangular cross-
section of width b = (3 + 0.1 Cu) m, is fed by a tank of infinite capacity. The
flow in the channel is regulated by the gates P1 and P2 positioned at a very large
distance, see Fig. 9.33. In the channel, which has a coefficient of Gauckler–Strickler
k = 70 m1/3 s−1, the flow rate is Q = (20 + Cpu) m3 s−1. The water depth in the
vena contracta downstream of the floodgate P1 is equal to Cca = 0.70 m, while the
water depth upstream of the floodgate P2 is equal to yu2 = 3.50 m.

– Determine the water level yu1 in the tank that feeds the channel.
– Determine the uniform flow depth of the current.
– Determine the character of the bed slope in relation to the flow rate.
– Draw qualitatively the flow profile.
– Calculate the sequent depths of any hydraulic jump that may occur.

Solution To solve the problem, it is necessary to calculate the uniform flow depth
y0 of the current, which is essential for determining the character of the bed slope in
relation to the flow rate Q, and for drawing up the permanent flow profile.

To this aim, we apply the Chézy formula:

Q = kR1/6
h Ω

√
Rhib ≡ k

(
by0

b + 2y0

)2/3

by0
√
ib.
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Since it is not possible to render explicit the unknown y0, the calculation must be
performed numerically. Once the uniform flow depth y0 of the current has been cal-
culated, a comparison is made with the critical depth of the current in the rectangular
bed, equal to:

yc = 3

√
Q2

gb2
.

In this exercise, always results yc < y0 and the bed slope is mild for the given flow
rate Q. The qualitative profile of the current is shown in Fig. 9.34. In the hypothesis of
free outflow, at short distance from the sluice gate P1 a vena contracta is established
(it is a section with rectilinear and parallel trajectories; there the current is therefore
rectilinear with consequent hydrostatic distribution of the pressure) and the current
is supercritical if a < yc/Cc.

For the calculation of yu1 we impose the energy balance between the upstream
section of the sluice gate and the vena contracta, neglecting losses:

yu1 + Q2

2gb2y2u1
= Cca + Q2

2gb2(Cca)2
.

The resulting equation is cubic in the unknown yu1 and can be solved analytically
or numerically. The flow profile downstream of the sluice gate, between section A
and section B, is a decelerated supercritical current profile in a mild slope channel,
and is drawn downstream starting from the water depth Cca in the vena contracta.

Fig. 9.33 Channel with two
control gates

P1

P2

b

y0

ib

Fig. 9.34 Profile of the
current. The surge
immediately upstream of the
gates is equal to the velocity
head and is due to the almost
complete stop of the flow,
with consequent
transformation of kinetic
energy into piezometric head
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Fig. 9.35 Current profile
without hydraulic jump
between the two gates
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This profile, if it could develop completely, would reach with (theoretical) vertical
tangent the critical depth yc at a finite distance from the vena contracta.

Upstream of the gate P2 the flow is tranquil, if yu2 > y0. The profile is of a
subcritical decelerated current, tends asymptotically upstream to uniform flow depth
and must be drawn from downstream to upstream starting from the water depth yu2.

Between the two sluice gates, the transition between the supercritical upstream
current and the subcritical downstream current (governed by the presence of sluice
gate P2) must take place. If the channel is prismatic, the transition occurs abruptly
with a hydraulic jump. The sequent depths of the hydraulic jump, yu and yd , satisfy
the linear momentum balance in integral form:

γwby2u
2

+ ρQ2

byu︸ ︷︷ ︸
Su

= γwby2d
2

+ ρQ2

byd︸ ︷︷ ︸
Sd

.

Moreover, given the long distance between the two gates, it can be reasonably
assumed that the downstream depth of the jump, yd , is practically coincident with
the uniform flow depth of the current y0. If this is not the case, the position of
the jump can be detected by drawing the diagrams of the total force of the two
currents (starting from the vena contracta downstream, for the supercritical current,
and from the floodgate P2 upstream, for the subcritical current) and identifying the
intersection. The resulting equation is cubic in the unknown yu and can be solved
analytically, dividing the third degree polynomial in yu by the binomial (yu − y0),
since the uniform flow depth y0 is known and is a root of the equation, or numerically.

From an energy balance point of view, the current must recover energy in order
to cross the slot underneath the P1 sluice gate. In the profile between sections A and
B and in the jump, the current dissipates part of the gained energy. Finally, to cross
the slot underneath gate P2, it must recover energy again between sections C and
D. As a special case, it may happen that if the two floodgates are relatively close
and if a is sufficiently small, the supercritical current coming out of the floodgate P1
flows under the floodgate P2, see Fig. 9.35. In these conditions, the presence of the
second floodgate is irrelevant and the hydraulic jump develops downstream of the
P2 floodgate.
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Fig. 9.36 Current profile
with a submerged hydraulic
jump

y0 yca yd

A C D
δ

yu2

submerged
jump

C ac

P1

P2

Vu1
2

2g

i <ib c

yu1

Vu2
2

2g

i <ib c

i <ib c

It can also happen that the hydraulic jump is pushed towards the gate P1 becoming
a submerged jump, see Fig. 9.36. In this case, the calculation can be carried out taking
into account that the roller of the hydraulic jump in the vena contracta section does
not contribute to the flow, but contributes with its weight to the pressure. The water
depth upstreamof the gate P1 is calculated by imposing the following energy balance:

yu1 + Q2

2gb2y2u1
= Cca + δ + Q2

2gb2(Cca)2
,

where δ is the thickness of the roller of the jump in correspondence of the vena
contracta. The water depth Cca + δ is calculated imposing the balance of the total
force between the section A and the section C:

γwb(Cca + δ)2

2
+ ρQ2

bCca︸ ︷︷ ︸
Su

= γwby2d
2

+ ρQ2

byd︸ ︷︷ ︸
Sd

.

The presence of the submerged jump implies the loss of hydraulic disconnection,
when the flow rate out of the sluice gate is a function only of the depth level upstream.
When the gate is no longer disconnected, the flow rate is a function of both the
upstream and downstream water depths. The gate is defined as drowned.

For Cu = Cpu = 0 it results ib = 0.0025, b = 3 m, k = 70 m1/3 s−1,
Q = 20 m3 s−1, Cca = 0.70 m, yu2 = 3.50 m.

yu1 + Q2

2gb2y2u1
= Cca + Q2

2gb2(Cca)2
→

yu1 + 202

2 9.806 32 y2u1
= 0.70 + 202

2 9.806 32 0.702
→

y3u1 − 5.325y2u1 + 2.266 = 0. (9.6)
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Equation (9.6) admits the three solutions yu1 = −0.62 m, yu1 = 0.70 m,
yu1 = 5.24 m, of which the first is physically meaningless, and the second coincides
with the depth in the vena contracta. The third solution is the correct value.

Q = k

(
by0

b + 2y0

)2/3

by0
√
ib →

20 = 70

(
3 y0
3 + 2y0

)2/3

3 y0
√
0.0025 → y0 = 2.09 m.

yc = 3

√
Q2

gb2
= 3

√
202

9.806 32
= 1.65 m.

As yc < y0 the bed slope is mild.
To calculate the sequent depth upstream of the hydraulic jump:

γwby2u
2

+ ρQ2

byu︸ ︷︷ ︸
Su

= γwby2d
2

+ ρQ2

byd︸ ︷︷ ︸
Sd

→

9806 3 × y2u
2

+ 1000 202

3 yu
= 9806 3 × 2.092

2
+1000 202

3 2.09
→

y3u − 8.706yu + 9.065 = 0,

which admits the three solutions yu = −3.38 m, yu = 1.29 m, yu = 2.09 m. The
correct solution is the second one.

Between section A and section B, the water depth increases from 0.70m to
1.29 m. For the hypotheses, in section C, immediately downstream of the jump, the
water depth assumes a value equal to the uniform flow depth y0 = 2.09 m. Between
section C and section D, the water depth further increases up to the value of 3.50 m.

The profile of the current is qualitatively shown in Fig. 9.36.

Exercise 9.17 A channel with Gauckler–Strickler roughness k = (60 + 2
Cpu) m1/3 s−1 and bed slope ib = 0.02, derives water from a large quiet basin by
means of a well-connected inlet with negligible losses, see Fig. 9.37. The cross-
section of the channel is triangular with a slope of the banks of α = 45◦. The water
level in the basin has level H = (4 + Cu/5) mabove the threshold at the inlet section.

– Determine the flow rate.
– Determine if the channel has a steep or mild slope.
– Qualitatively draw the profile of the current.

Suppose the channel of unlimited length.
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Fig. 9.37 Channel of
derivation from a reservoir

H

ib = 0.02

y0

1
1

Solution First of all, it is necessary to determine the value of the flow rate Q
derived from the still basin bymaking appropriate assumptions. Given the high value
of the slope of the channel, it is reasonable to assume that it is steep for the derived
flow Q. This hypothesis implies that the uniform flow current is supercritical and
that will tend to reach the depth y0 asymptotically downstream. In correspondence
of the crest there is a spontaneous transition through the critical state. Moreover,
there is no energy dissipation because the entrance is well connected, and the energy
balance equation and the critical state condition can be set up as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H = yc + Q2

2gΩ2
c

,

Ω3
c

Bc
= Q2

g
,

where Bc is the top width of the current in critical condition. For the triangular
cross-section with α = 45◦ results Ωc = y2c , Bc = 2yc, hence

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ω3
c

Bc
= Q2

g
→ Q2

gΩ2
c

= yc
2

,

H = yc + Q2

2gΩ2
c

→ H = 5yc
4

.

Solving the system of equations, results

yc = 4H

5
, Q =

√
gΩ2

c yc
2

≡
√
gy5c
2

.

Once the value of the flow rate Q has been determined, it is necessary to calculate
the uniform flow depth y0 to ensure the character of the bed slope and to draw the
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Fig. 9.38 Profile of the
current
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profile of the current. Applying Chézy formula yields

Q = kR1/6
h Ω

√
Rhib, with Ω = y0

2, P = 2
√
2y0, Rh = Ω

P
≡ y0

2
√
2
.

Hence, it results

Q = k

(
y0

2
√
2

)2/3

y20
√
ib ≡ k

√
ib

(
2
√
2
)2/3 y

8/3
0 ,

which admits the analytical solution

y0 =
Q3/8

(
2
√
2
)1/4

(
k
√
ib
)3/8 .

For the channel in Fig. 9.37, the relation y0 < yc always holds and confirms the
initial hypothesis of a steep channel for the flow rate Q derived from the basin. The
resulting profile is qualitatively shown in Fig. 9.38.

Starting from the critical state, in correspondence of the crest, an accelerated
supercritical current profile develops which tends asymptotically downstream to the
uniform flow depth y0. In the basin, upstream of the crest, a profile of subcritical
accelerated current develops.

For Cu = Cpu = 0 it results k = 60 m1/3 s−1 , ib = 0.02, H = 4 m,

yc = 4H

5
= 4 4

5
= 3.20 m,
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Q =
√
gy5c
2

=
√
9.806 3.25

2
= 40.56 m3 s−1,

y0 =
Q3/8

(
2
√
2
)1/4

(
k
√
ib
)3/8 =

40.563/8
(
2

√
2
)1/4

(
60

√
0.02

)3/8 = 2.33 m.

The geometrical characteristics of the channel and the roughness of the walls,
allow the calculation of the critical bed slope, equal to

ic = 2g

k2y1/3c

= 2 9.806

602 3.201/3
= 0.0037.

Since ib > ic, the flow rate is independent of the slope of the channel and reaches
the maximum value. The channel is hydraulically disconnected.

If ib < ic, the channel is a mild slope one and the uniform flow depth is reached
immediately downstream of the intake. In this case, the flow rate is a function of the
bed slope and of the walls roughness, and decreases for decreasing bed slope or for
increasing roughness. The channel is hydraulically connected.

Exercise 9.18 A channel with rectangular cross-section of width b = 8 m is divided
into two sections with a bed slope ib1 = 0.01 and ib2 = 0.002, with Gauckler–
Strickler coefficient k1 = 70 m1/3 s−1 and k2 = 60 m1/3 s−1, respectively, see
Fig. 9.39. The flow rate is Q = (80 + 5 Cu) m3 s−1.

– Draw qualitatively the profile of the current.
– Determine the values of the sequent depths if there a hydraulic jump develops.

Solution It is preliminary necessary to establish the character of the two channels,
with bed slope and roughness respectively ib1, k1 and ib2, k2, for the given flow rate
Q. It is necessary to calculate the value of the critical depth yc, unique for the
two sections (being a function of the quantities Q, g and b that do not vary in the

Fig. 9.39 Rectangular
cross-section channel with
bed slope variation

i kb 1 1,

i kb 2 2,

b

y0
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two channels), and the uniform flow depths y01 and y02 of the current through the
following relations:

yc = 3

√
Q2

gb2
,

Q = k1R
1/6
h1 Ω1

√
Rh1ib1, with Ω1 = by01, Rh1 = Ω1

P1
≡ by01

b + 2y01
,

and

Q = k2R
1/6
h2 Ω2

√
Rh2ib2, with Ω2 = by02, Rh2 = Ω2

P2
≡ by02

b + 2y02
.

Since for a rectangular cross-section no analytical solution is available for the
unknown y0, the calculation must be performed numerically.

For Cu = Cpu = 0 it results b = 8 m, ib1 = 0.01, ib2 = 0.002, k1 = 70 m1/3 s−1,
k2 = 60 m1/3 s−1, Q = 80 m3 s−1, andwe calculate y01 = 1.39 m and y02 = 2.71 m,
yc = 2.17 m.

Since y01 < yc < y02, the upstream and downstream sections are steep and mild
slope, respectively, for the assigned flow rate Q. The transition from steep to mild
bed slope, if the channel is prismatic, requires a hydraulic jump. The spatial position
of the jump derives from consideration on the total force of the currents with depth
y01 and y02.

The total forces are

S01 ≡ γwby201
2

+ ρQ2

by01
= 9806 8 × 1.392

2
+ 1000 802

8 1.39
= 651.3 kN,

and

S02 ≡ γwby202
2

+ ρQ2

by02
= 9806 8 × 2.712

2
+ 1000 802

8 2.71
= 583.3 kN,

hence it results
S01 > S02.

This condition requires that the hydraulic jump develops in the mild slope section
of the channel. In fact, if the jump developed upstream, in the steep slope channel,
the only possible profile starting from the sequent depth of the jump would be of
subcritical decelerated current, which increases the total force in the direction of the
motion and, therefore, could never drop to assume the value S02 < S01 corresponding
to the uniform flow downstream.

The qualitative flow profile is shown in Fig. 9.40.
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Fig. 9.40 Current profile if
the jump is in the
downstream mild slope
channel
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The uniform flow current in the upstream channel has a specific energy greater
than that of the uniform flow current in the downstream channel. Starting from
section M, the only possible supercritical current profile develops on a mild slope
bed. This profile dissipates specific energy (the current dissipates more energy than
that supplied by gravity) and stops at yu , the sequent depth of the uniform flow depth
y02. The determination of yu is obtained by imposing an equal total force downstream
and upstream of the jump:

γwby202
2

+ ρQ2

by02︸ ︷︷ ︸
Sy02

= γwby2u
2

+ ρQ2

byu︸ ︷︷ ︸
Syu

.

The resulting equation is cubic in the unknown yu and can be solved analytically
or numerically. It is also possible to reduce the degree of the third degree polynomial
dividing it by the binomial (yu − y02), since the uniform flow depth y02 is a root of
the equation.

The solution is yu = 1.70 m. The evolution of total force and energy (dimension-
less with respect to the values assumed in critical condition) is shown in Fig. 9.41.
The continuous curve represents the specific energy for the assigned flow rate Q, the
dashed curve represents the total force.



9 Flow in Open Channels 363

Fig. 9.42 Current profile if
the jump is formed in the
steep slope channel
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Starting from the change of slope (section M), along the decelerated supercritical
current profile the total force drops until it reaches the total force value associated to
yu (section A), the sequent depth of y02. From an energy point of view, the specific
energy is also reduced to the value corresponding to yu . The hydraulic jumpdissipates
further energy, equal to:

ΔE jump = (yu − y02)
3

4yu y02
.

This dissipation occurs, for real fluids, with the transfer of energy toward smaller
vortices up to the geometric scale controlled by viscosity, with final conversion of
mechanical energy to thermal energy.

It is a question of considerable importance how the dissipation in the jump can be
foreseen in a calculation scheme valid for ideal fluids (the viscosity of the fluid, in
fact, does not appear in the equation of conservation of mass and balance of linear
momentum, used to describe the jump). A now accepted interpretation, originally
due to Rayleigh (Rayleigh, Lord, 1910. Aerial plane waves of finite amplitude. Proc.
R. Soc. Lond. A84, 247–284) attributes this inconsistency to the inadequacy of the
differential equations adopted in the presence of a discontinuity. By their nature
the mathematical equations used would not, therefore, be suitable to describe the
behavior of functions (such as speed, pressure, etc.) which, in the jump, are locally
without derivative. A coherent model, able to explain the variation of energy even
for ideal fluids (which can be described with Euler’s equations), postulates that the
subtraction of energy in the jump is the transfer of mechanical energy from the
water current to eddies of virtually null geometric scale, conventionally described as
“heat” or “internal energy” (Broadwell, J.E., 1997. Shocks and energy dissipation in
inviscid fluids: a question proposed by Lord Rayleigh. Journal of Fluid Mechanics
347, 375–380).

If it were S01 < S02, the jump should develop in the steep slope channel, see
Fig. 9.42. In fact, if it were to occur in the mild slope channel, the sequent depth
downstreamwould necessarily be equal to y02 and the sequent depth upstreamwould
reach y01, starting from section M, with a profile of decelerated supercritical current.
This profile reduces the total force in the direction of motion and could never reach
the value S02.

Finally, if it were S01 = S02 the jump would be formed exactly in section M, with
the sequent depths equal to y01 and y02, respectively.
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Fig. 9.43 Schematic of the
channel with flat sluice gate
for control of the flow rate

ib

a
b

y0

Exercise 9.19 In the channel shown in Fig. 9.43, with rectangular cross-section of
width b = (15 + Cu) m, bed slope ib = 0.01 and a coefficient of Gauckler–Strickler
k = 70 m1/3 s−1, the flow rate is Q = 100 m3 s−1. In an intermediate section there is
a sluice gate with a rectangular slot near the bottom of height a = (0.9 + Cpu/20) m.

– Determine the water depth upstream of the floodgate.
– Draw qualitatively the profile of the current.
– If a hydraulic jump develops, determine the value of sequent depths.

The outflow occurs without dissipation and the contraction coefficient is equal to
Cc = 0.61. Consider the channel of indefinite length.

Solution It is preliminary necessary to determine whether the bed has a steep or
a mild slope for the given flow rate Q. It is necessary to calculate the critical depth
yc and the uniform flow depth y0 through the relationships:

yc = 3

√
Q2

gb2
,

and

Q = kR1/6
h Ω

√
Rhib, with Ω = by0, Rh = Ω

P
≡ by0

b + 2y0
.

For a rectangular cross-section it is not possible to analytically express the
unknown y0, and the calculation must be performed numerically.

For Cu = Cpu = 0 it results b = 15 m, ib = 0.01, k = 70m1/3 s−1,
Q = 100 m3 s−1, a = 0.9 m, and we calculate y0 = 1.02 m and yc = 1.65 m. Since
y0 < yc the bed is steep for the given flow rate Q.

The qualitative profile of the current is shown in Fig. 9.44.

Upstream of the Floodgate

Upstream of the floodgate, if the slot height a is less than the uniform flow depth y0,
the current must gain specific energy. This energy recovery can only be achieved in
subcritical current regime, since the cause of disturbance (the floodgate) could not
affect upstream in the presence of a supercritical current. The determination of yu1
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Fig. 9.44 Qualitative profile
of the current

i >if c

a
y0

yd

C ac
a

yu1
yc

i > ib c

i > ib c

jumpA B C

requires the energy balance between the upstream section of the sluice gate and the
vena contracta, neglecting energy losses:

yu1 + Q2

2gb2y2u1
= Cca + Q2

2gb2(Cca)2
.

The resulting equation is cubic in the unknown yu1 and can be solved analytically
or numerically selecting solutions greater than yc. The result is yu1 = 8.03 m.

The profile that is established is a slow decelerated current in a steep sloping bed,
which from the critical condition tends to a horizontal asymptote downstream. The
transition from a uniform supercritical flow to a decelerated subcritical flow requires
a hydraulic jump. This jump connects the uniform flow depth y0 and the sequent
depth yd , computed by imposing the linear momentum balance in integral form:

γwby20
2

+ ρQ2

by0︸ ︷︷ ︸
Sy0

= γwby2d
2

+ ρQ2

byd︸ ︷︷ ︸
Syd

.

The resulting equation is cubic in the unknown yd and can be solved analytically
or numerically, or dividing the third degree polynomial by the binomial (yd − y0),
the uniform flow depth y0 also being one of the root of the equation. The result is
yd = 2.51 m.

Downstream of the Floodgate

The current through the slot is supercritical. Starting from the vena contracta (with
a water depth Cca) the profile is of a supercritical decelerated current and tends
asymptotically downstream to the uniform flow depth y0.

Exercise 9.20 A channel with Gauckler–Strickler coefficient k = (60 + 2
Cpu) m1/3 s−1 deriveswater froma large quiet reservoir bymeans of awell-connected
inlet with negligible losses. The channel has a bed slope ib1 = 0.02 in a first part,
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Fig. 9.45 Intake channel
with slope variation

H

ib 1 = 0.02

y0

60°

ib 2 = 0.001

and ib2 = 0.001 in a second part. The change of slope is very far from the crest of
the inlet and the ib2 slope channel is homogeneous indefinitely downstream. The
cross-section of the channel is triangular with a slope of the banks α = 60◦ as shown
in Fig. 9.45. The level in the reservoir is at H = (4 + Cu/5) m above the entrance
crest.

– Determine the flow rate into the channel.
– Qualitatively draw the profile of the current.
– Quantitatively draw the profile starting from the section of the change of slope.

Assume a number of steps for spatial integration n = 10.

Solution It is preliminary necessary to determine the value of the flow rate Q
derived from the reservoir with some simplifying hypotheses. It is reasonable to
assume that the initial channel has a steep slope for the flow Q derived from the
reservoir. This implies a spontaneous transition of the current through the critical
state in correspondence of the crest. We can also neglect the dissipations at the inlet
because the intake is well-connected. We can write a system of equations of energy
balance of the current between the reservoir and the crest, and the condition of critical
state: ⎧

⎪⎪⎨

⎪⎪⎩

H = yc + Q2

2gΩ2
c

,

Ω3
c

Bc
= Q2

g
,

with the solution

H = yc + Ωc

2Bc
, with Ωc = y2c√

3
, Bc = 2yc√

3
.

Substituting, it results

yc = 4H

5
,

and

Q =
√
gΩ2

c yc
2

≡
√
gy5c
6

.
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Applying Chézy formula

Q = k
( y0
4

)1/6 y20√
3

√
y0
4
ib ≡ k

√
ib y

8/3
0

42/3
√
3

,

gives the uniform flow depth

y0 =
(
42/3

√
3Q

k
√
ib

)3/8

. (9.7)

Substituting ib1 and ib2 into Eq. (9.7), we calculate the uniform flow depths y01 and
y02.

In the present case the relation y01 < yc < y02 always holds: the first channel is
steep while the second one is mild. At the crest there is the spontaneous transition
through the critical state. The profile that develops in the first channel is an accelerated
supercritical current profile that tends to reconstitute the uniform flow asymptotically
downstream. Given the long distance between the crest and the section where the
change of slope takes place, it can be confidently assumed that the uniform flow
depth y01 is reached before the change of slope. The absence of disturbing causes
at the far end of downstream of the mild slope channel guarantees the condition of
uniform flow depth equal to y02.

The supercritical-subcritical current transition requires a hydraulic jump, whose
spatial positionmust be determined through the comparison of the total forces relative
to the currents of depth yu and yd . In the particular case under examination, it can be
assumed that (i) yu ≈ y01, given the long distance between the crest (where the flow
is critical) and the section of change of bed slope; (ii) the sequent depth yd coincides
with the uniform flow depth y02. The total forces are:

Su = γwzGuΩu + ρQ2

Ωu
≡ Sy01 = γw

y301
3
√
3

+
√
3ρQ2

y201
,

and

Sd = γwzGdΩd + ρQ2

Ωd
≡ Sy02 = γw

y302
3
√
3

+
√
3ρQ2

y202
.

zGu and zGd are the depth of the centres of pressure of the cross-sections of the
current with respect to the free surface. In the present case results Su < Sd and the
hydraulic jump develops in the steep channel. In fact, the difference in total force
can only be recovered with a subcritical decelerated current profile downstream of
the jump. If the jump were located in the mild slope channel, it would be directly
connected with the uniform flow depth y02, preceded by a profile of supercritical
decelerated current that further reduces the total force in the direction of motion. In
the steep channel, between the downstream depth of the jump and the section where
the slope changes, a subcritical decelerated current profile develops, the only possible
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Table 9.7 Experimental
length of the hydraulic jump

Fru L/(yd − yu)

2 7.6

3 7.2

5 7.0

10 6.6

15 6.2

20 5.7

subcritical current profile in a steep slope bed (profile between sections M and B).
If this profile could develop entirely, it would reach upstream the critical state with
a vertical tangent at a finite distance from the change of slope (actually, the strong
curvature of the trajectories wouldmake no longer valid the hypothesis of hydrostatic
distribution of pressure, contained in the equations adopted to describe the profile of
gradually varied currents). Given the presence of the uniform supercritical current
from upstream, this profile (we have assumed that the upstream trunk is long enough
to allow the current to reach the uniform flow regime) will stop at a value yd (section
A), the sequent depth of y01. The sequent depth yd is calculated by imposing the
balance of the total force:

γw

y301
3
√
3

+
√
3ρQ2

y201︸ ︷︷ ︸
Su≡Sy01

= γw

y3d
3
√
3

+
√
3ρQ2

y2d︸ ︷︷ ︸
Sd

.

The hydraulic jump has a finite length that, on the basis of experimental data (see
Table 9.7), is a function of difference between the sequent depths and of the Froude
number of the upstream current:

Fru = V√
gyh

,

where yh = Ω/B is the hydraulic depth, equal to the ratio between the area of the
cross-section of the current and the top width.

The qualitative profile is shown in Fig. 9.46.
Quantitative profile drawing from sectionM (change of slope) can be done numer-

ically. Assume, for example, a step of variation of the water depth of the current equal
to:

Δy = (y02 − yd)

n
.

The origin of the coordinate system with a positive downstream abscissa is fixed
in section M. The spatial interval Δsr corresponding to the depth variation of the
current Δyr can be calculated using the discrete form of the profile equation:
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Fig. 9.46 Profile of the
current

H
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i > ib c

i > ib c

jump

Δsr = ΔEr(
ib − Jave,r

) ,

where Δsr is the difference in coordinate between the sections where the current has
depths yr+1 and yr , and ΔEr = Er+1 − Er , Jave,r = 0.5(Jr+1 + Jr ).

For Cu = Cpu = 0 it results k = 60 m1/3 s−1, ib1 = 0.02, ib2 = 0.001, H = 4 m,
hence

yc = 4H

5
= 4 4

5
= 3.2 m,

Q =
√
gy5c
6

=
√
9.806 3.25

6
= 23.42 m3 s−1,

y01 =
(√

3 42/3Q

k
√
ib1

)3/8

=
(
23.42

√
3 42/3

60
√
0.02

)3/8

= 2.54 m,

y02 =
(√

3 42/3Q

k
√
ib2

)3/8

=
(
23.42

√
3 42/3

60
√
0.001

)3/8

= 4.46 m,

Su = γw

y301
3
√
3

+
√
3ρQ2

y201
→ Su = 9806

2.543

3
√
3

+
√
3 1000 23.422

2.542

= 177 932 N,

Sd = γw

y302
3
√
3

+
√
3ρQ2

y202
→ Sv = 9806

4.463

3
√
3

+
√
3 1000 23.422

4.462

= 215 092 N.

The result is Su < Sd . We calculate the sequent depth of the hydraulic jump:
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γw

y301
3
√
3

+
√
3ρQ2

y201︸ ︷︷ ︸
Su≡Sy01

= γw

y3d
3
√
3

+
√
3ρQ2

y2d︸ ︷︷ ︸
Sd

→

177 932 = 9806
y3d

3
√
3

+
√
3 1000 23.422

y2d
→ yd = 3.96 m.

For the numerical integration, we consider the following depth step

Δy = (y02 − yd)

n
= (4.46 − 3.96)

10
= 0.05 m.

From the downstream section (r = 1), with y1 = y02, the cross-section of the current
is calculated:

Ω1 = y21√
3

= 4.462√
3

= 11.48 m2,

the top width

B1 = 2y1√
3

= 2 4.46√
3

= 5.15 m,

the wetted perimeter

P1 = 4y0√
3

= 4 4.46√
3

= 10.30 m,

the hydraulic radius

Rh1 = y1
4

= 4.46

4
= 1.12 m.

Then, the energy gradient J1 and the energy E1 are calculated on the basis of the
data:

J1 = 3 44/3Q2

k2y16/31

= 3 44/3 23.422

602 4.4616/3
= 0.000999,

E1 = y1 + Q2

2gΩ2
1

= 4.46 + 23.422

2 9.806 11.482
= 4.672 m.

The calculation is repeated in section2 with the following results:

y2 = 4.41 m, Ω2 = 11.23 m2, B2 = 5.09 m,

P2 = 10.18 m, Rh2 = 1.10 m, J2 = 0.001061, E2 = 4.632 m.

For the current between sections1 and 2, an energy gradient equal to the average
of J1 and J2 is calculated:
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Jave,1 = J1 + J2
2

= 0.000 999 + 0.001 061

2
= 0.00103,

and the energy drop

ΔE1 = E2 − E1 = 4.63 − 4.67 = −0.040 m.

The profile equation allows the calculation of the distance between the two sections:

Δs1 = ΔE1(
ib1 − Jave,1

) = −0.040

(0.02 − 0.001 03)
= −2.12 m.

The coordinate of section2 will be equal to:

s2 = s1 + Δs1 = 0 − 2.12 = −2.12 m.

The calculation is repeated for all subsequent sections, until we reach the sequent
depth of the hydraulic jump, yd . The results are listed in Table 9.8.

Section B is located 19.91m upstream of section M.
To estimate the length of the jump,we calculate the Froude number of the upstream

supercritical current:

Ω01 = y201√
3

= 2.542√
3

= 3.72 m2,

B01 = 2y01√
3

= 2 2.54√
3

= 2.93 m,

yh,u ≡ yh,01 = Ω01

B01
= 3.72

2.93
= 1.27 m,

Vu ≡ V01 = Q

Ω01
= 23.42

3.72
= 6.30 m s−1,

Fru = Vu√
gyh,u

= 6.30√
9.806 1.27

= 1.78.

Using the experimental data in Table 9.7, yields:

L ≈ 7.6 (yd − yu) = 7.6 (3.96 − 2.54) = 10.8 m.

Section A (toe of the jump) is approximately 10.8m upstream of section B.
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Fig. 9.47 Schematic of the
channel with change of bed
slope and with a control
floodgate

P1

ib1 = 0.001

a

ib2 = 0.02

b

y0

Exercise 9.21 In a channel with a rectangular cross-section, b = (3.5 + Cpu/5) m
wide, with roughness of the bed and of thewalls equal to k = 70 m1/3 s−1, a floodgate
is inserted with a rectangular slot of height a = 0.8 m at the bottom (Cc = 0.61),
see Fig. 9.47. Immediately upstream of the floodgate the water depth is yu = (2 +
Cu/10) m. The bed slope is ib1 = 0.001 in one section and ib2 = 0.02 in a second
section.

– Determine the flow rate.
– Qualitatively draw the profile of the current.
– Check whether there is a hydraulic jump and, if so, calculate the values of the
sequent depths and the dissipated energy.

– Quantitatively draw the profile, starting from the section of the change of bed
slope.

The section of change of slope is very far from the flood gate. Assume n = 10
steps for numerical integration of the profile.

Solution The flow rate is computed on the basis of energy balance between the
upstream section of the sluice gate and the vena contracta, neglecting dissipations:

zu + pu
γw

+ V 2
u

2g
︸ ︷︷ ︸

Hu

= zc + pc
γw

+ V 2
c

2g
︸ ︷︷ ︸

Hc

→ yu1 + Q2

2gb2y2u1
= Cca + Q2

2gb2(Cca)2
,

hence

Q =
√√√√√

2gb2 (yu1 − Cca)
[

1

(Cca)2
− 1

y2u1

] .

The critical depth is

yc = 3

√
Q2

gb2
.

We use Chézy formula to determine the value of the uniform flow depth for the two
channels with bed slope ib1 and ib2, respectively:
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Q = kR1/6
h Ω

√
Rhib, with Ω = by0, Rh = Ω

P
≡ by0

b + 2y0
.

The solution is numerical.
For the channel of this exercise, the relation y02 < yc < y01 always holds; the first

channel is mild and the second channel is steep slope for the computed flow rate Q.
The long distance between the section of the sluice gate and the change of slope

ensures that in the mild slope channel a subcritical current can develop, with a
transition through the critical state and a hydraulic jump. In a section in the mild
slope channel, the shooting flow through the slot and the tranquil flow governed by
the presence of the critical state at the change of slope must meet, in a section where
a balance holds between the total forces Su and Sd :

γwby2u
2

+ ρQ2

byu︸ ︷︷ ︸
Su

= γwby2d
2

+ ρQ2

byd︸ ︷︷ ︸
Sd

.

yu and yd are the sequent depths of the hydraulic jump.
Moreover, given the long distance between the change of slope and the sluice

gate, it can be reasonably assumed that the sequent depth yd (subcritical current) is
practically coincident with the uniform flow depth y01. Therefore, it results:

γwby2u
2

+ ρQ2

byu︸ ︷︷ ︸
Su

= γwby201
2

+ ρQ2

by01︸ ︷︷ ︸
S01

.

The resulting equation is cubic in the unknown yu and can be solved numerically
starting from values lower than yc or dividing the third degree polynomial by the
binomial (yu − y01), since the uniform flow depth y01 is also a root of the equation.
The energy dissipated in the hydraulic jump is:

ΔE jump = − (yd − yu)
3

4yd yu
≡ − (y01 − yu)

3

4y01yu
.

The profile of the current is qualitatively shown in Fig. 9.48.
The profile of the current downstream of the sluice gate is a decelerated supercrit-

ical profile in a mild slope, and is drawn downwards from the vena contracta. If this
profile could develop completely, it would reach with a vertical tangent the critical
height yc at a finite distance from the vena contracta. The presence of a spontaneous
passage through the critical state at the change of slope guarantees the presence of a
tranquil flow current upstream of the change of slope itself. The profile is a tranquil
accelerated current that is traced upstream from the change of slope, and is inter-
rupted by the hydraulic jump. Downstream of the change of slope, the current profile
is supercritical accelerated current and must be traced from upstream to downstream
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Fig. 9.48 Profile of the
current
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~

from the critical depth yc. The current asymptotically tends to the uniform flow depth
downstream.

The profile from section D (change of slope) downstream can be traced numeri-
cally. Assume, for example, a step of variation of the water depth equal to:

Δy = (yc − y02)

n
.

The origin of the coordinate system, positive downstream, is at the change of slope.
The spatial interval Δsr corresponding to the depth variation Δyr can be calculated
by means of the discrete form of the profile equation:

Δsr = ΔEr(
ib − Jave,r

) ,

where Δsr is the difference in coordinate between the sections where the current has
depth yr+1 and yr , and ΔEr = Er+1 − Er , Jave,r = 0.5(Jr+1 + Jr ).

For Cu = Cpu = 0 it results b = 3.5 m, k = 70 m1/3 s−1, a = 0.8 m, Cc = 0.61,
yu = 2 m, ib1 = 0.001, ib2 = 0.02,

Q =
√√√√√

2gb2 (yu1 − Cca)
(

1

(Cca)2
− 1

y2u1

) =
√√√√√

2 9.806 3.52 (2 − 0.61 0.8)
(

1

0.612 0.82
− 1

22

)

= 9.59 m3 s−1.

yc = 3

√
Q2

gb2
= 3

√
9.592

9.806 3.52
= 0.91 m,

y01 = 1.45 m, y02 = 0.51 m,
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Δy = (yc − y02)

n
= (0.91 − 0.51)

10
= 0.04 m.

The results are listed in Table 9.9. The sequent depth of the hydraulic jump is
computed by imposing the equilibrium of total forces:

γwby2u
2

+ ρQ2

byu︸ ︷︷ ︸
Su

= γwby201
2

+ ρQ2

by01︸ ︷︷ ︸
S01

→

9806 3.5 × y2u
2

+ 1000 9.592

3.5 yu
= 9806 3.5 × 1.452

2
+ 1000 9.592

3.5 1.45
→

yu = 0.53 m.

ΔE jump = − (y01 − yu)
3

4y01yu
= − (1.45 − 0.53)3

4 1.45 0.53
= −0.25 m.

As a special case, if the channel downstream of the floodgate before the change
of slope is not long enough, it can happen that the jump does not develop and the
current remains supercritical. The profile in the second channel can be accelerated
or decelerated depending on whether the depth reached in the section D is greater or
less than y02.
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Geometry Properties of Common Plane
Shapes
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Volume and Surface Area of Solid Figures
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Fig. C.1 Water density as a
function of temperature
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Table C.1 Density of water as a function of temperature

T (◦C) ρ (kgm−3) T (◦C) ρ (kgm−3)

−20 993.5500 40 992.2187

−15 996.2860 45 990.2162

−10 998.1200 50 988.0393

−5 999.2590 55 985.6982

0 999.8425 60 983.2018

5 999.9668 65 980.5578

10 999.7026 70 977.7726

15 999.1026 75 974.8519

18 998.5986 80 971.8007

20 998.2071 85 968.6232

25 997.0479 90 965.3230

30 995.6502 95 961.9033

35 994.0349 100 958.3665

Interpolating equation between − 30 ◦C and + 150 ◦C:

ρ
(
kgm−3

) =

⎛

⎝
999.839 52 + 16.945 176T − 7.987 040 1 · 10−3T 2

−46.170 461 · 10−6T 3 + 105.563 02 · 10−9T 4

−280.542 53 · 10−12T 5

⎞

⎠

1 + 16.879 850 · 10−3T
, T in ◦C

Table C.2 Density of degassed pure water as a function of temperature

T (◦C) ρ (kgm−3) T (◦C) ρ (kgm−3)

0 999.87 45 990.25

3.98 1000.00 50 988.07

5 999.99 55 985.73

10 999.73 60 983.24

15 999.13 65 980.59

18 998.62 70 977.81

20 998.23 75 974.89

25 997.07 80 971.83

30 995.67 85 968.65

35 994.06 90 965.34

38 992.99 95 961.92

40 992.24 100 958.38
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Interpolating equation for air density:

ρ
(
kgm−3

) = 1.293

(1 + 0.003 67T ) · 105 p, T in ◦C, p in pascal.

Table C.3 Density of air at 105 Pa

T (◦C) ρ (kgm−3) T (◦C) ρ (kgm−3)

10 1.247 21 1.201

11 1.243 22 1.197

12 1.239 23 1.193

13 1.234 24 1.189

14 1.230 25 1.185

15 1.226 26 1.181

16 1.221 27 1.177

17 1.217 28 1.173

18 1.213 29 1.169

19 1.209 30 1.165

20 1.205

Table C.4 Surface tension for air–water interface

T (◦C) σ ( 10−3 Nm−1) T (◦C) σ ( 10−3 Nm−1)

−8 77.00 25 71.97

−5 76.40 30 71.18

0 75.60 40 69.56

5 74.90 50 67.91

10 74.22 60 66.18

15 73.49 70 64.40

18 73.05 80 62.60

20 72.75 100 58.90
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Table C.5 Vapour pressure of water

T (◦C) pvap (Pa) T (◦C) pvap (Pa)

−15 191.45 55 15737.32

−10 286.50 60 19915.64

−5 421.69 65 25003.20

0 610.48 70 31157.35

5 872.32 75 38543.39

10 1227.76 80 47342.64

15 1704.92 85 57808.41

20 2337.80 90 70095.37

25 3167.19 95 84512.81

30 4242.83 100 101324.72

35 5622.85 105 120799.06

40 7375.90 110 143262.48

45 9583.18 115 169049.62

50 12333.61 120 198535.12

Fig. C.2 Dynamic viscosity
of water as a function of
temperature
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Table C.6 Dynamic viscosity of water

T (◦C) μ ( 10−3 Pa s) T (◦C) μ ( 10−3 Pa s)

0 1.7870 55 0.5040

5 1.5190 60 0.4665

10 1.3070 65 0.4335

15 1.1390 70 0.4042

20 1.0020 75 0.3781

25 0.8904 80 0.3547

30 0.7975 85 0.3337

35 0.7194 90 0.3147

40 0.6529 95 0.2975

45 0.5960 100 0.2818

50 0.5468

Interpolating functions:

log10 μ = 1301

998.333 + 8.1855 (T − 20) + 0.005 85 (T − 20)2
− 4.302 33,

with T in ◦C and μ in Pa s, for 0 ◦C < T < 20 ◦C

log10
μ

μ20
= 1.3272 (20 − T ) − 0.001 053 (20 − T )2

T + 105
,

for 20 ◦C < T < 100 ◦C.

Table C.7 Dynamic viscosity of air

T (◦C) μ ( 10−5 Pa s) T (◦C) μ ( 10−5 Pa s)

−100 1.16 20 1.81

−50 1.45 30 1.86

−20 1.61 40 1.90

−10 1.66 50 1.95

0 1.71 100 2.18

10 1.76
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Table C.8 Isentropic bulk modulus of water

T (◦C) ε (GPa) T (◦C) ε (GPa)

−10 1.801 25 2.21

−5 1.885 30 2.235

0 1.962 35 2.251

5 2.029 40 2.261

10 2.088 45 2.265

15 2.138 50 2.264

20 2.178

Table C.9 Isentropic bulk modulus of some liquids at 20 ◦C
Liquid ε (GPa) Liquid ε (GPa)

Benzene 1.48 Lubricating oil 1.44

Glycerin 4.59 Mercury 28.5

Kerosene 1.43 Sea water 2.42

Table C.10 Relative density of some manometric liquids (referred to water density at 4 ◦C, ρ =
1000 kgm−3)

Liquid s

Benzene 0.879

Mercury 13.55

Meriam red oil 0.827

Meriam blue 1.75

TableC.11 Relative density of somematerials (referred towater density at 4 ◦C,ρ = 1000 kgm−3)

Material s

Steel 7.83

Aluminium 2.64

Concrete 2.4

Liquid concrete 2.5

Cast iron 7.08

Light pine wood 0.43

Oak wood 0.77

Lead 11.4

Copper 8.91
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Modern Formulas for Circular Cross-Section Pipes
Colebrook–White formula:

J = λ
U 2

2g

1

D
,

1√
λ

= −2 log10

(
2.51

Re
√

λ
+ 1

3.71

ε

D

)
.

Smooth pipes:

1√
λ

= −2 log10

(
2.51

Re
√

λ

)
(Prandtl),

λ = 0.316 Re−0.25 Re ≤ 105 (Blasius),

λ = 0.0031 + 0.221 Re−0.237 Re > 105 (Nikuradse).

Fully rough turbulent flow:

1√
λ∞

= −2 log10

(
1

3.71

ε

D

)
(Prandtl–Nikuradse).

Classical Formulas for Circular Cross-Section Pipes

J = V 2

χ2R
with R = D

4
.

where

χ = 87

1 + γ√
D/4

(Bazin),

or

χ = 100

1 + m√
D/4

(Kutter),

or

χ = k

(
D

4

)1/6

(Gauckler–Strickler).

In all these formulas D is in metres and χ is in m1/2 s−1.
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Table D.1 Coefficients of roughness for cylindrical circular pipes

Type of pipeline Equivalent
roughness

Bazin Kutter Gauckler–
Strickler

ε (mm) γ (m1/2) m (m1/2) k (m1/3 s−1)

Smooth pipes
(glass, brass,
extruded copper,
resin)

0–0.02

Steel pipes with
coatings
degradable over
time

0.05–3.0 0.06 0.12 70–120

Steel pipes with
coatings that do
not degrade over
time

0.05–0.15 0.10–0.23 0.15–0.35 120

Welded sheet
metal pipes in
good condition

0.2–0.3 0.06 0.12 90

Welded sheet
metal pipes in
current service,
with incrustations

0.4–1.0 0.16 0.20–0.25 75–87

New bolted sheet
metal pipes

0.3–3.0 0.10–0.30 0.18–0.35 70–90

Pipes in bolted
sheet metal with
incrustations

up to 5.0 0.36 0.45 65

New cast iron
pipes

0.1–0.4 0.06–0.10 0.12–0.15 90–100

Encrusted cast
iron pipes

0.4–5.0 0.16–0.36 0.20–0.45 65–85

New concrete
pipes

0.1–0.15 0.06 0.12 100–105

Cement pipes in
current service

2.0–5.0 0.23–0.36 0.30–0.45 65–70
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Fig. D.1 Convergent pipe,
energy loss

Energy Loss for a Gradual Contraction
Energy loss expressed as (Fig.D.1):

H1 − H2 = ξ
V 2
1

2g
,

with

ξ = 0.8 sin (θ/2)
[
1 − (D2/D1)

2
]

(D2/D1)
4 if θ ≤ 45◦,

ξ = 0.5
√
sin (θ/2)

[
1 − (D2/D1)

2
]

(D2/D1)
4 if 45◦ < θ ≤ 180◦.

Fig. D.2 Divergent pipe,
energy loss

Energy Loss for a Gradual Expansion
Energy loss expressed as (Fig.D.2):

H1 − H2 = ξ
V 2
2

2g
,

Table D.2 Pressure drop coefficients for inlet and outlet of circular ducts

Inlet ξ Outlet ξ

Sharp-edged 0.5 Sharp-edged 1

Re-entering conduct 1.16 Conical outlet 0.20–0.50

With invitation
mouthpiece

0.06

Rounded inlet 0.06–0.10

Conical inlet 0.10–0.25
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with

ξ = 2.6 sin (θ/2)
[
1 − (D1/D2)

2
]2

(D1/D2)
4 if θ ≤ 45◦,

ξ =
[
1 − (D1/D2)

2
]2

(D1/D2)
4 if 45◦ < θ ≤ 180◦.

Modern Formulas for Channels

J = λ
U 2

2g

1

4R
,

1√
λ

= −2 log10

(
2.83

f Re
√

λ
+ 1

13.3

ε

f R

)

where R = hydraulic radius, f = shape factor (TableD.3).

Table D.3 Shape factor

Cross-section shape f

Equilateral triangular 1.30–1.25

Right triangular 1.20–1.15

Semicircular 0.90

Semi-hexagonal 1.00–0.90

Very wide trapeze 0.80

Rectangular (b = 2y) 0.95

Very wide rectangular 0.80

Smooth walls:
1√
λ

= −2 log10

(
2.83

f Re
√

λ

)
,

Fully rough turbulent flow:

1√
λ∞

= −2 log10

(
1

13.3

ε

f R

)
.

Classical Formulas for Channels

J = Q2

χ2Ω2R
,

with

χ = 87

1 + γ√
R

(Bazin),
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or

χ = 100

1 + m√
R

(Kutter),

or
χ = kR1/6 (Gauckler−Strickler),

where Ω = cross-section area of the current. In all these formulas D is in metres
and χ is in m1/2 s−1.

Table D.4 Coefficients of roughness for channels

Type of channel Equivalent
roughness

Bazin Kutter Gauckler–
Strickler

ε (mm) γ (m1/2) m (m1/2) k (m1/3 s−1)

Partially coated
concrete walls,
irregular
masonry, regular
soil without
vegetation

8 0.46 0.55–0.75 60

Fairly regular
earth, old
masonry

15–30 0.60–0.85 0.75–1.25 50

Earth with grass,
regular
watercourses

70 1.3 1.5 40

Earth in poor
condition, natural
watercourses with
pebbles

120–200 1.75 2.0 35

Abandoned
canals with
vegetation,
watercourses with
gravel beds or
dug into rock

300–400 2.0–2.3 3.0 30
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